Modulhandbuch für die Studiengänge

Bachelor und Master Elektrotechnik

Department Elektrotechnik und Informatik

Universität Siegen

Stand: 26.07.13
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEKTROTECHNISCHES PRAKTIKUM</td>
<td>48</td>
</tr>
<tr>
<td>EMBEDDED CONTROL</td>
<td>49</td>
</tr>
<tr>
<td>EMBEDDED SYSTEMS</td>
<td>51</td>
</tr>
<tr>
<td>EREIGNISDISKRETE PROZESSE</td>
<td>53</td>
</tr>
<tr>
<td>ERNEUERBARE UND DEZENTRALE ELEKTROENERGIEERZEUGUNG</td>
<td>54</td>
</tr>
<tr>
<td>ESTIMATION THEORY</td>
<td>56</td>
</tr>
<tr>
<td>FAHRERASSISTENZSYSTEME</td>
<td>58</td>
</tr>
<tr>
<td>FELDBERECHNUNGEN MIT DER FEM</td>
<td>60</td>
</tr>
<tr>
<td>FORTGESCHRITTENE HALBLEITER- UND MIKROELEKTRONIK I</td>
<td>62</td>
</tr>
<tr>
<td>FORTGESCHRITTENE HALBLEITER- UND MIKROELEKTRONIK II</td>
<td>64</td>
</tr>
<tr>
<td>GRUNDLAGEN DER ELEKTROTECHNIK I</td>
<td>66</td>
</tr>
<tr>
<td>GRUNDLAGEN DER ELEKTROTECHNIK II</td>
<td>68</td>
</tr>
<tr>
<td>GRUNDLAGEN DER ELEKTROTECHNIK III</td>
<td>70</td>
</tr>
<tr>
<td>GRUNDLAGEN DER ENERGIETECHNIK</td>
<td>72</td>
</tr>
<tr>
<td>GRUNDLAGEN DER FELDTHEORIE</td>
<td>74</td>
</tr>
<tr>
<td>GRUNDLAGEN DER HALBLEITERPHYSIK</td>
<td>77</td>
</tr>
<tr>
<td>GRUNDLAGEN DER HOCHFREQUENZTECHNIK</td>
<td>80</td>
</tr>
<tr>
<td>GRUNDLAGEN DER NACHRICHTENTECHNIK</td>
<td>82</td>
</tr>
<tr>
<td>GRUNDLAGEN DER OPTISCHEN NACHRICHTENTECHNIK</td>
<td>84</td>
</tr>
<tr>
<td>GRUNDLAGEN DER REGELUNGS TECHNIK</td>
<td>86</td>
</tr>
<tr>
<td>GRUNDLAGEN DER SIGNAL- UND SYSTEMTHERIE</td>
<td>88</td>
</tr>
<tr>
<td>HALBLEITER- UND SCHALTUNGSTECHNIK</td>
<td>90</td>
</tr>
<tr>
<td>HALBLEITERELEKTRONIK I</td>
<td>93</td>
</tr>
</tbody>
</table>
MASTER-ARBEIT .. 128
MATHEMATIK FÜR ELEKTROTECHNIK-INGENIEURE I .. 130
MATHEMATIK FÜR ELEKTROTECHNIK-INGENIEURE II .. 132
MATHEMATIK FÜR ELEKTROTECHNIK-INGENIEURE III .. 134
MECHATRONIC SYSTEMS .. 136
MESSWERTERFASSUNG UND VERARBEITUNG ... 138
MIKROELEKTRONIK I ... 140
MIKROELEKTRONIK II ... 142
MIKROSYSTEMENTWURF - FERTIGUNG .. 144
MIKROSYSTEMENTWURF - GEOMETRIE .. 146
MIKROSYSTEMENTWURF - TEST ... 149
MIKROSYSTEMENTWURF - VERHALTEN .. 151
MOBILE ROBOTIK ... 153
NANOTECHNOLOGIE .. 154
NETZWERKE, SIGNALE, SYSTEME I .. 156
NETZWERKE, SIGNALE, SYSTEME II ... 158
NICHTLINEARE REGELUNGSTECHNIK ... 160
NUMERISCHE VERFAHREN ZUR FELDBERECHNUNG ... 162
OPTIMALE UND ADAPTIVE REGELUNGSTECHNIK ... 164
PHOTONIK I .. 166
PHOTONIK II .. 168
PHYSIK FÜR ELEKTROTECHNIK-INGENIEURE .. 170
PRAKTISCHE SCHALTUNGSTECHNIK .. 172
TELEMATIK - MULTIMEDIA..217
TELEMATIK - TECHNOLOGIE UND ANWENDUNGEN ...219
THEORETISCHE ELEKTROTÉCHNIK..221
ÜBERTRAGUNGS- UND VERMITTLUNGSTECHNIK I ...223
ÜBERTRAGUNGS- UND VERMITTLUNGSTECHNIK II ...225
ZUSTANDSRAUMTHEORIE..227
<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Algorithmen und Datenstrukturen I</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Bachelor</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>AD I</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
<td></td>
</tr>
<tr>
<td>Studiensemester</td>
<td>ab 1. Studiensemester</td>
</tr>
<tr>
<td>Abhaltung:</td>
<td>WS, jährlich</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. V. Blanz</td>
</tr>
<tr>
<td>Dozent(in)</td>
<td>Prof. Dr. V. Blanz</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Bachelor-Studiengang "Informatik" (AuD)</td>
</tr>
<tr>
<td></td>
<td>Bachelor -Studiengang "Duales Studium Informatik" (AuD)</td>
</tr>
<tr>
<td></td>
<td>Bachelor -Studiengang "Elektrotechnik"</td>
</tr>
<tr>
<td></td>
<td>Bachelor -Studiengang "Duales Studium Elektrotechnik"</td>
</tr>
<tr>
<td>Lehrform/SWS</td>
<td>4 SWS (2V + 2 UE)</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>Präsenz: 90 h, Eigenarbeit: 120 h, Prüfungsvorbereitung: 90 h</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
<td>Keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>Keine</td>
</tr>
</tbody>
</table>
| Modulziele / Angestrebte Lernergebnisse | *Die Studierenden sollen einen Überblick über die Begriffe der Informatik gewinnen, auf denen in späteren Veranstaltungen aufgebaut werden wird.
*Die Arbeitsmethoden und die grundlegende Denk- und Herangehensweise der Informatik soll erlernt und aktiv eingeübt werden. Dazu gehören Methoden wie devide-and conquer und rekursive Problemlösung.
*Die Studierenden werden in die Lage versetzt, einfache Programme in C/C++ selbst zu entwickeln und zu implementieren. Dies wird in den Übungen aktiv erlernt.
*Kenntnis der Konzepte wie Rekursion,Iteration, Kenntnis der wichtigsten Datenstrukturen.
*Verständnis der Rolle von Datenrepräsentationen und des Zusammenhangs mit den je nach Datenstruktur sich ergebenden Algorithmen (zum Beispiel Bäume und deren Traversierung).
*Kenntnis elementarer Algorithmen. Diese dienen auch zur Übung, um aus Problemstellungen eine Lösungsidee, einen Algorithmus und schließlich ein Programm zu erstellen und dessen Aufwand zu beurteilen. |
<table>
<thead>
<tr>
<th>Inhalt</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>*Überblick über die Geschichte der Informatik</td>
<td></td>
</tr>
<tr>
<td>*Überblick über die Rechnerarchitektur, von Neumann Rechner, CPU</td>
<td></td>
</tr>
<tr>
<td>*Codierung von Zahlen und Zeichen (Gleitkommazahlen, vorzeichenbehaftete ganze Zahlen)</td>
<td></td>
</tr>
<tr>
<td>*Einführung in die Programmiersprache C++ (elementare Anweisungen, erste Grundlagen der Objektorientierung)</td>
<td></td>
</tr>
<tr>
<td>*Aussagen- und Prädikatenlogik</td>
<td></td>
</tr>
<tr>
<td>*Rekursive Algorithmen</td>
<td></td>
</tr>
<tr>
<td>*Dynamische Datenstrukturen (Listen, Stapel, Schlangen, Bäume), Algorithmen auf Baumstrukturen</td>
<td></td>
</tr>
<tr>
<td>*Graphen und elementare Algorithmen auf Graphen</td>
<td></td>
</tr>
<tr>
<td>*Suchalgorithmen, Hashing</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen</th>
<th>Mindestpunktzahl in den Übungen ist Voraussetzung zur Zulassung zur Prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsformen</td>
<td>K2</td>
</tr>
<tr>
<td>Medienformen</td>
<td>Powerpoint, Folien, Tafel, elektr. Übungssystem DUESIE</td>
</tr>
<tr>
<td>Literatur</td>
<td>H. Gumm & M. Sommer. Einführung in die Informatik. Oldenbourg</td>
</tr>
<tr>
<td></td>
<td>H. Ernst. Grundkurs Informatik. Vieweg</td>
</tr>
<tr>
<td></td>
<td>Cormen, Th., Leiserson, Ch. und Rivest, R. Algorithmen – Eine Einführung. Oldenbourg</td>
</tr>
<tr>
<td></td>
<td>Sedgewick, R. Algorithmen in C++. Pearson Studium</td>
</tr>
<tr>
<td></td>
<td>Stroustrup, B. Die C++ Programmiersprache. Addison-Wesley</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Analoge Schaltungstechnik</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>AS</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>Ab 2. Studiensemester</td>
</tr>
<tr>
<td>Abhaltung:</td>
<td>SS, jährlich</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. D. Ehrhardt</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. D. Ehrhardt</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Master-Studiengang "Elektrotechnik"</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>Vorlesung mit Übung 4 SWS (2V,2Ü)</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeit: 60 h</td>
</tr>
<tr>
<td></td>
<td>Selbststudium: 50 h</td>
</tr>
<tr>
<td></td>
<td>Prüfungsvorbereitung: 40 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
<td>keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>keine</td>
</tr>
<tr>
<td>Modulziele / Angestrebte Lernergebnisse:</td>
<td>Die Studierenden können integrierte analoge Transistorschaltungen (Bipolar und CMOS) entwerfen, berechnen und mit SPICE simulieren. Sie können diskrete analoge Schaltungen entwerfen und berechnen, dazu gehören auch OP- und analoge Filterschaltungen.</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>* Designmethoden</td>
</tr>
<tr>
<td></td>
<td>* Einstufige Verstärker</td>
</tr>
<tr>
<td></td>
<td>* Stromquellen, Stromspiegel, Differenzverstärker</td>
</tr>
<tr>
<td></td>
<td>* Operational Transconductance Amplifier (OTA)</td>
</tr>
<tr>
<td></td>
<td>* Referenzen und Leistungsstufen, Operationsverstärker</td>
</tr>
<tr>
<td></td>
<td>* Current Feedback Amplifier (CFA), Transconductance Amplifier (TA), Arithmetik, Oszillatoren</td>
</tr>
<tr>
<td></td>
<td>* A/D- und D/A-Wandler</td>
</tr>
<tr>
<td></td>
<td>* Layout</td>
</tr>
<tr>
<td></td>
<td>* Operationsverstärkerschaltungen, Filterschaltungen</td>
</tr>
<tr>
<td></td>
<td>* Charakterisierung von Verstärkerschaltungen</td>
</tr>
<tr>
<td></td>
<td>* Netzteile</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen/</td>
<td>Fachprüfung</td>
</tr>
<tr>
<td>Prüfungsformen:</td>
<td>K2</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Begleitmaterial auf kostenloser Daten-DVD vom Dozenten</td>
</tr>
<tr>
<td>Literatur:</td>
<td>* D. Ehrhardt; Integrierte analoge Schaltungstechnik; Verlag Vieweg</td>
</tr>
<tr>
<td></td>
<td>* U. Tietze, Ch. Schenk; Halbleiterschaltungstechnik; Springer Verlag</td>
</tr>
<tr>
<td></td>
<td>* H. Bernstein; Analog Schaltungstechnik mit diskreten und integrierten Bauteilen; Hüthig Verlag</td>
</tr>
<tr>
<td></td>
<td>* D. Ehrhardt; Verstärkertechnik; Verlag Vieweg</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Bachelor-Arbeit</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td>Bachelor</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>BA</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>ab 4. Studiensemester</td>
</tr>
<tr>
<td>Abhaltung:</td>
<td>WS und SS</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Department ETI</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Hochschullehrer und -lehrerinnen des Departments ETI</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
</tbody>
</table>
| Zuordnung zum Curriculum | Bachelor-Studiengang "Elektrotechnik"
| | Bachelor-Studiengang "Duales Studium Elektrotechnik" |
| Arbeitsaufwand: | Eigenstudium: 360 h |
| Kreditpunkte: | 12 |
| Voraussetzungen nach Prüfungsordnung | siehe aktuell gültige Prüfungsordnung sowie "Einheitliche Regeln für Prüfungen in den Studiengängen des Departments Elektrotechnik und Informatik der Naturwissenschaftlich-Technischen Fakultät" §36 Abs. (4) |
| Empfohlene Voraussetzungen: | Kenntnisse im jeweiligen Fachgebiet gemäß der ersten 5 Fachsemester |
| Modulziele / Angestrebte Lernergebnisse: | Mit der Bachelor-Arbeit hat die Absolventin bzw. der Absolvent gezeigt, dass sie bzw. er die Fähigkeit besitzt, innerhalb einer bestimmten Frist ein Problem der Elektrotechnik nach wissenschaftlichen Methoden auf Bachelor-Niveau zu bearbeiten. In der Arbeit sind im Zuge des Studiums erworbene Kompetenzen, insbesondere fachlich-methodischer und fachübergreifender Art, von der Absolventin bzw. vom Absolventen eingesetzt worden. Darüber hinaus werden die folgenden Schlüsselqualifikationen erworben:
1. Planerische und organisatorische Fähigkeiten für die erfolgreiche Durchführung der i.d.R. umfangreichen Entwicklungsarbeiten
2. Fähigkeit, anhand von Literaturdatenbanken und anderen Quellen vorhandenes Wissen und bereits durchgeführte Arbeiten zu einem vorgegebenen Thema zu erschließen, wobei auch anspruchsvolle Quellen in Fremdsprachen (i.d.R. Englisch) |
3. Fähigkeit, vor einem Fachpublikum einen Vortrag zu einem nichttrivialen wissenschaftlichen Thema zu entwerfen, didaktisch richtig zu gestalten und ihn unter Einsatz üblicher Medien abzuhalten
4. Fähigkeit, wissenschaftliche Texte in hinreichendem Umfang zu verfassen, i.d.R. zur Erklärung wissenschaftlicher Inhalte

|---|---|
| **Studien-/Prüfungsleistungen/** | 1. Lösung der fachlichen Fragestellung, i.d.R. verbunden mit umfangreichen Entwicklungsarbeiten
2. Erstellen eines Berichtes über die Arbeit (Dokumentation)
3. Abhalten eines Vortrags über die Ergebnisse der Arbeit |
<p>| Prüfungsformen: | Die Bachelor-Arbeit wird von zwei Prüfenden entsprechend der gültigen Prüfungsordnung bewertet, wobei auch der Vortrag des bzw. der Studierenden berücksichtigt und bewertet wird. |
| Medienformen: | |
| Literatur: | entsprechend dem ausgewählten Thema der Bachelor-Arbeit |</p>
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Bauelemente und Schaltungstechnik</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Bachelor</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>BeS</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>ab 3. Studiensemester</td>
</tr>
<tr>
<td>Abhaltung:</td>
<td>WS, jährlich</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. D. Ehrhardt</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. D. Ehrhardt</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Bachelor-Studiengang "Elektrotechnik"</td>
</tr>
<tr>
<td></td>
<td>Bachelor-Studiengang "Duales Studium Elektrotechnik"</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>4 SWS (2V,2Ü)</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeit: 60 h, Selbstdstudium: 50 h, Prüfungsvorbereitung: 40 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
<td>keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Grundlagen der Elektrotechnik I Grundlagen der Elektrotechnik II</td>
</tr>
<tr>
<td>Modulziele / Angestrebte Lernergebnisse:</td>
<td>Die Studierenden können die Eigenschaften passiver Bauelemente bestimmen, sie können diskrete Transistorschaltungen aus bipolaren Transistoren, JFETs oder MOSFETs berechnen. Die Studierenden können einfache OP-Schaltungen in ihrer Wirkungsweise beschreiben und berechnen.</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>* Grundlagen der Bauelemente (Schwingkreisverhalten, Wärmeleitung)</td>
</tr>
<tr>
<td></td>
<td>* Widerstände</td>
</tr>
<tr>
<td></td>
<td>* Kondensatoren</td>
</tr>
<tr>
<td></td>
<td>* Induktivitäten</td>
</tr>
<tr>
<td></td>
<td>* Homogene Halbleiter</td>
</tr>
<tr>
<td></td>
<td>* Dioden</td>
</tr>
<tr>
<td></td>
<td>* Transistoren</td>
</tr>
<tr>
<td></td>
<td>* Transistoreigenschaften</td>
</tr>
<tr>
<td></td>
<td>* Operationsverstärker</td>
</tr>
<tr>
<td></td>
<td>* Leistungsverstärker</td>
</tr>
<tr>
<td></td>
<td>* Oszillatoren und PLL</td>
</tr>
<tr>
<td></td>
<td>* Analoge Schaltungsprobleme</td>
</tr>
<tr>
<td></td>
<td>* SPICE</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen/</td>
<td>Fachprüfung</td>
</tr>
<tr>
<td>Prüfungsformen:</td>
<td>K2</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Begleitmaterial auf kostenloser Daten-DVD vom Dozenten</td>
</tr>
<tr>
<td>Literatur:</td>
<td>* E. Böhmer; Elemente der angewandten Elektronik; Vieweg Verlag</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>BWL für junge und neue Unternehmen</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td>Bachelor</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>BJNU</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>ab 1. Studiensemester</td>
</tr>
<tr>
<td>Abhaltung:</td>
<td>WS, jährlich</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Gründerbüro der Universität Siegen</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>J. Löher, U. Hietsch</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Bachelor-Studiengang Elektrotechnik</td>
</tr>
<tr>
<td></td>
<td>Bachelor-Studiengang "Duales Studium Elektrotechnik"</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>2 SWS (Seminar)</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzstudium: 30 h</td>
</tr>
<tr>
<td></td>
<td>Eigenstudium: 60 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>3 LP</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
<td>keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Es sind keine speziellen Vorkenntnisse notwendig. Es wird eine aktive Mitarbeit vorausgesetzt ebenso wie die Bereitschaft, die angegebene Literatur zu lesen, und auch eigene ergänzende Recherchen, bspw. für die Fallstudienbearbeitung, durchzuführen.</td>
</tr>
<tr>
<td>Modulziele/Angestrebte Lernergebnisse:</td>
<td>Mit Abschluss des Kurses haben die Teilnehmer den Prozess einer Unternehmensgründung in seinen einzelnen Phasen kennengelernt und erfahren, welche betriebswirtschaftlichen Entscheidungsfelder (Produkt, Markt, Kunde, Finanzen, etc.) im Rahmen einer Gründung zu berücksichtigen sind. Durch die aktive Erarbeitung der Inhalte erwerben die Studierenden eine Vielzahl gründungsrelevanter sozialer Kompetenzen.</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen/</td>
<td>Leistungsnachweis (LN)</td>
</tr>
<tr>
<td>Prüfungsformen:</td>
<td>S</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td>wird im Seminar bekannt gegeben</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Chinesisch</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td>Bachelor</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>Chin</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>ab 1. Studiensemester</td>
</tr>
<tr>
<td>Abhaltung:</td>
<td>n.a.</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>N.N.</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>N.N.</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
</tbody>
</table>
| Zuordnung zum Curriculum | Bachelor-Studiengang Elektrotechnik
| | Bachelor-Studiengang "Duales Studium Elektrotechnik" |
| Lehrform/SWS: | 2 SWS (Seminar) |
| Arbeitsaufwand: | Präsenzstudium: 2 * 15 h Seminar = 30 h
<p>| | Eigenstudium: Vor- und Nachbereitung 60 h |
| Kreditpunkte: | 3 |
| Voraussetzungen nach Prüfungsordnung: | keine |
| Empfohlene Voraussetzungen: | keine |
| Modulziele / Angestrebte Lernergebnisse: | Fähigkeit, einfache Sachverhalte in der chinesischen Sprache auszudrücken |
| Inhalt: | Der Schwerpunkt der Veranstaltung liegt auf umfassender Sprachpraxis. Dabei kommen abwechslungsreiche Lernmethoden zum Einsatz. |
| Studien-/Prüfungsleistungen/ | Leistungsnachweis (LN) |
| Prüfungsformen: | S |
| Medienformen: | |
| Literatur: | Wird in der Veranstaltung bereitgestellt. |</p>
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Communications Engineering I</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>CE I</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Abhaltung:</td>
<td>WS, jährlich</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>ab 1. Studiensemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. O. Loffeld</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. O. Loffeld, wiss. Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Vorlesung: englisch, Seminar: deutsch, englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Master-Studiengang "Elektrotechnik"</td>
</tr>
<tr>
<td></td>
<td>Master-Studiengang "Informatik"</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>4 SWS (Vorlesung: 2 SWS, Seminar: 2 SWS)</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzstudium: 60 h, Eigenstudium: 55 h, Prüfungsvorbereitung: 35 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
<td>keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>* Grundlagen der Nachrichtentechnik (Bachelor-Studiengang, dringend empfohlen)</td>
</tr>
<tr>
<td></td>
<td>* Grundlagen der Signal- und Systemtheorie (Bachelor-Studiengang, dringend empfohlen),</td>
</tr>
<tr>
<td></td>
<td>* inhaltlich: Signale und Signalkenngrößen, periodische Signale und deren Analyse, lineare Systeme, Faltungsintegral und Fouriertransformation, Signalübertragung über lineare Systeme</td>
</tr>
<tr>
<td>Modulziele / Angestrebte Lernergebnisse:</td>
<td>Bereitstellung mathematischer und nachrichtentechnischer Grundlagen, Fertigkeiten und Fähigkeiten</td>
</tr>
<tr>
<td>Kenntnisse:</td>
<td>* Begriff des Signals</td>
</tr>
<tr>
<td></td>
<td>* periodische und nicht periodische Signale</td>
</tr>
<tr>
<td></td>
<td>* lineare und nichtlineare Systeme</td>
</tr>
<tr>
<td></td>
<td>* zeitvariable und zeitinvariante Systeme</td>
</tr>
<tr>
<td></td>
<td>* Abtastung im Zeit- und Frequenzbereich</td>
</tr>
<tr>
<td></td>
<td>* Faltung und Korrelation</td>
</tr>
<tr>
<td></td>
<td>* Modulationsverfahren,</td>
</tr>
<tr>
<td>Fertigkeiten:</td>
<td>* Beschreibung von Signalen in Zeit- und Frequenzbereich</td>
</tr>
<tr>
<td></td>
<td>* Beschreibung von linearen zeitinvarianten Systemen im Zeit- und Frequenzbereich</td>
</tr>
<tr>
<td></td>
<td>* Verständnis der Zusammenhänge zwischen zeitkontinuierlichen und zeitdiskreten Signalen und Systemen auf der Basis der Abtasttheorie</td>
</tr>
<tr>
<td></td>
<td>* Verständnis der Zusammenhänge zwischen periodischen und nichtperiodischen Signalen durch Abtastung im Frequenzbereich</td>
</tr>
<tr>
<td></td>
<td>* Messung der Ähnlichkeit von Signalen durch Minimierung eines quadratischen Abstandsmaßes (Korrelation, Korrelation durch Faltung)</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Teilnahme am Seminar bzw. Übung, Fachprüfung</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen/</td>
<td>K2</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Vorlesung mit Powerpoint-Folien und Lifeannotierung in der Vorlesung unter Verwendung einer aktiven Tafel, Vorlesungsskript als pdf in Deutsch,</td>
</tr>
</tbody>
</table>
| Literatur: | * Lüke, Ohm, Signalübertragung, Springer Lehrbuch
* Puente, Leaon, Kiencke, Jäkel Signale und Systeme, Olderbourg Verlag München
* Aufzeichnung der Folien und Annotierungen als pdf-Datei
* Aufzeichnung und Archivierung der Vorlesung als Real Media Stream

* Matched Filter Empfang
* Tiefpaß- und Bandpaßsysteme und Signale (Verständnis und Beschreibungsformen)

Kompetenzen:
* Anwendung linearer Systemtheorie zur Entwicklung von Verarbeitungsalgorithmen in der ein- und mehrdimensionalen Signalverarbeitung (Codierungstheorie, Bildverarbeitung, Bildanalyse)

Die Studierenden verbessern hierdurch ihre Fähigkeiten:
* reale Probleme und komplexe Zusammenhänge durch Modellbildung zu erfassen, zu abstrahieren und der mathematischen Lösung zugänglich zu machen
* Probleme mit einem hohen Abstraktionsniveau zu erfassen und zu lösen.

Darüber hinaus verbessern die Studierenden ihr logisches Denken sowie ihre Strategie zum weiteren Wissenserwerb.
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Communications Engineering II</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>CE II</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Abhaltung:</td>
<td>SS, jährlich</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>ab 2. Studiensemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. O. Loffeld</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. O. Loffeld, wiss. Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Vorlesung: englisch, Seminar: deutsch, englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Master-Studiengang "Elektrotechnik"</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>4 SWS (Vorlesung: 2 SWS, Seminar 2 SWS)</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzstudium: 60 h, Eigenstudium: 55 h, Prüfungsvorbereitung: 35 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
<td>keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>* Communications Engineering I (dringend empfohlen!)</td>
</tr>
<tr>
<td></td>
<td>* inhaltlich: Signale und Systeme und ihre Beschreibung im Zeit und Frequenzbereich, Faltungsintegral, Fouriertransformation, Abtasttheoreme, Korrelation, Tiefpasssysteme</td>
</tr>
<tr>
<td>Modulziele / Angestrebte Lernergebnisse:</td>
<td>Bereitstellung mathematischer und nachrichtentechnischer Grundlagen, Fertigkeiten und Fähigkeiten</td>
</tr>
</tbody>
</table>

Kenntnisse:
- Bandpass-Tiefpasstransformation, äquivalente Transformationen
- Abtastung von Bandpasssignalen
- komplexe Signalbeschreibung
- analytische Signale, Hilberttransformation
- Momentanphase und Momentanfrequenz
- Modulationsverfahren und Spektren, Demodulation
- mehrdimensionale Faltung und Fouriertransformation
- mehrdimensionale Abtastung
- Modulationsübertragungsfunktion
- Radon Transformation
- Tomographie

Fertigkeiten:
- Beschreibung, Realisierung und Analyse von Bandpasssystemen im äquivalenten Tiefpassbereich
- Beschreibung und Analyse von Modulations- und Demodulationsverfahren im komplexen Signalbereich
- mehrdimensionale Signalverarbeitung in Orts/Zeitbereich
- Beschreibung und Analyse von zeit- und ortsvarianten Systemen
Inhalt:

- Inhaltlich wird Communications Engineering I fortgesetzt. Die Vorlesung beginnt im Kapitel 5 des gemeinsamen Vorlesungsskripts:
 - 5. System- und Signaltheorie der Tiefpass- und Bandpasssignale und -systeme
 - 6. Modulation und Modulationsverfahren
 - 7. Mehrdimensionale Signal- und Systemtheorie

Studien-/Prüfungsleistungen/

- Teilnahme am Seminar bzw. Übung, Fachprüfung

Prüfungsformen:

- K2

Medienformen:

- Vorlesung mit Powerpoint-Folien und Lifeannotierung in der Vorlesung unter Verwendung einer aktiven Tafel, Vorlesungsskript als pdf in Deutsch,

Literatur:

- Lüke, Ohm, Signalübertragung, Springer Lehrbuch
- Puente, Leaon, Kiencke, Jäkel Signale und Systeme, Olderbourg Verlag München
- Aufzeichnung der Folien und Annotierungen als pdf-Datei
- Aufzeichnung und Archivierung der Vorlesung als Real Media Stream
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Digitale Bildverarbeitung I</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>DBV I</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>ab 1. Studiensemester</td>
</tr>
<tr>
<td>Abhaltung:</td>
<td>WS, jährlich</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. K.-D. Kuhnert</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. K.-D. Kuhnert, wiss. Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Master-Studiengang "Elektrotechnik"</td>
</tr>
<tr>
<td></td>
<td>Bachelor Informatik</td>
</tr>
<tr>
<td></td>
<td>Bachelor „Duales Studium Informatik“</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>3 SWS (2 SWS Vorlesung + 1 SWS Übung)</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzstudium: 45 h, Eigenstudium: 75 h, Prüfungsvorbereitung: 30 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
<td>keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>keine</td>
</tr>
<tr>
<td>Modulziele / Angestrebte Lernergebnisse:</td>
<td>Fachliche Kompetenzen:</td>
</tr>
<tr>
<td></td>
<td>* können die technischen Verfahren zur Bildaufnahme und -auswertung beschreiben* können low level Bildauswertalgorithmen synthetisieren* können Bildauswertungen in C++ programmieren</td>
</tr>
<tr>
<td></td>
<td>In den Übungen werden die Studierenden aktiv eingebunden. Sie sammeln dadurch Erfahrungen in der Präsentation und Darstellung von Inhalten.</td>
</tr>
<tr>
<td></td>
<td>Fachliche Kompetenzen: 95 %</td>
</tr>
<tr>
<td></td>
<td>Soziale Kompetenzen: 5 %</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Die Vorlesung digitale Bildverarbeitung umfasst die Darstellung von Bildverarbeitungs- und -auswertungsverfahren für die allgemeine Automatisierung und Multimediatechnik. Im Seminar werden experimentell Bildverarbeitungsverfahren erlernt. Zum Inhalt gehören u.a:</td>
</tr>
<tr>
<td></td>
<td>1. Einleitung / optische Täuschungen / Sehen</td>
</tr>
<tr>
<td></td>
<td>2. Physik der Bildentstehung, Optik, dünne Linse, Zentralprojektion</td>
</tr>
<tr>
<td></td>
<td>3. Abtastung und Quantisierung, Binärbild, Grautonbild, Farbbild</td>
</tr>
<tr>
<td></td>
<td>4. Farbentheorie, RGB, HSI, YUV</td>
</tr>
<tr>
<td></td>
<td>5. Transport der Bildinformation, Fernsehtechnik</td>
</tr>
<tr>
<td></td>
<td>6. Bildeingabe und Speicherung, Beleuchtung</td>
</tr>
<tr>
<td></td>
<td>7. aktive 3-D Vermessung, strukturiertes Licht Interferometrie</td>
</tr>
<tr>
<td></td>
<td>8. statistische Beschreibung digitaler Bilder</td>
</tr>
<tr>
<td></td>
<td>9. Bearbeitung von Binärbildern, Konturfolger, Quadtrees</td>
</tr>
<tr>
<td></td>
<td>10. Deformation/Verzerrung von Bildern, Koordinatentransformation, affine</td>
</tr>
<tr>
<td>Abbildung</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>11. lokale Operatoren, lin. Filter, matched Filter, Tiefpaß, Hochpaß, Pyramide</td>
<td></td>
</tr>
<tr>
<td>12. Qualitätsmessung von lokalen Operatoren</td>
<td></td>
</tr>
<tr>
<td>13. lokale Operatoren, nicht lin. Filter, Median, Olympic</td>
<td></td>
</tr>
<tr>
<td>14. Kanten, Eckendetektion, Laplace, Sobel</td>
<td></td>
</tr>
<tr>
<td>15. Subpixelgenauigkeit</td>
<td></td>
</tr>
<tr>
<td>16. Konturfindung, -verfolgung, -approximation</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen/</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fachprüfung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsformen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>K2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Medienformen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beamer, Tafel, Computerdemonstrationen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haberäcker, Digitale Bildverarbeitung, Hanser Verlag</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
</tr>
<tr>
<td>Abhaltung:</td>
</tr>
<tr>
<td>Studiensemester:</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
</tr>
<tr>
<td>Dozent(in):</td>
</tr>
<tr>
<td>Sprache:</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
</tr>
</tbody>
</table>
| Modulziele / Angestrebte Lernergebnisse: | Fachliche Kompetenzen:
* können Verfahren der objektzentrierten Bildverarbeitung wiedergeben
* können high level Bildauswertalgorithmen und Klassifikationsverfahren synthetisieren
* können komplexe Bildauswertungen in C++ programmieren

In den Übungen werden die Studierenden aktiv eingebunden. Sie sammeln dadurch Erfahrungen in der Präsentation und Darstellung von Inhalten.

Fachliche Kompetenzen: 95 %
Soziale Kompetenzen: 5 %

23
Inhalt:
Die Vorlesung digitale Bildverarbeitung II umfasst die Darstellung von Mustererkennungs- und Lernverfahren für die Bildverarbeitung in der allgemeinen Automatisierung und Multimediatechnik. Im Seminar wird experimentell die Klassifikation erlernt.
1. globale Operatoren
2. morphologische Operatoren
3. Flächensegmentierung
 * Split and Merge
 * Energieminimierung
 * Grauwertflächen und Farbflächen
 * Beschreibung durch Patches und Wavelets
4. Klassifikation 1
 * Statistik (Bayes)
 * Merkmalsraum
 * Beschreibung der Klassifikationsgüte
 * lineare optimale Klassifikation
5. Klassifikation 2: neuronale Klassifikation
 * neuronale Netze
 * Aufbau eines Neurons
 * Netztopologie
 * Lernen und Klassifizieren
 * Backpropagation learning
6. Selbstlernende Systeme
 * Übersicht
 * Statistische Verfahren (Hauptkomponentenanalyse, Clusterung)
 * Art Map
 * Self Organising Map

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen/</th>
<th>Fachprüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsformen:</td>
<td>M</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Beamer, Tafel, Computerdemonstrationen</td>
</tr>
</tbody>
</table>
| Literatur: | * Haberäcker, Digitale Bildverarbeitung, Hanser Verlag
 * Niman, Mustererkennung, Springer |
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Digitale Bildverarbeitung - Praktikum</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>DBV-P</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ggf. Untertitel</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>ggf. Lehrveranstaltungen:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Abhaltung:</th>
<th>SS, jährlich</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Studiensemester:</th>
<th>ab 2. Studiensemester</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche(r):</th>
<th>Prof. Dr. K.-D. Kuhnert</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Dozent(in):</th>
<th>Prof. Dr. K.-D. Kuhnert, wiss. Mitarbeiter</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Sprache:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Zuordnung zum Curriculum</th>
<th>Master-Studiengang "Elektrotechnik"</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bachelor-Studiengang „Informatik“</td>
</tr>
<tr>
<td></td>
<td>Bachelor-Studiengang „Duales Studium Informatik“</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform/SWS:</th>
<th>3 SWS</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Arbeitsaufwand:</th>
<th>Präsenzstudium: 45 h, Eigenstudium: 105 h</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Kreditpunkte:</th>
<th>5</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Voraussetzungen nach Prüfungsordnung</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Empfohlene Voraussetzungen:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Modulziele / Angestrebte Lernergebnisse:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Fachliche Kompetenzen:</th>
<th>Können eigenständig typische Aufgabenstellungen der Bildverarbeitung analysieren und kreativ programmieren.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Aufgaben werden in Kleingruppen bearbeitet und jeweils kurz präsentiert. Dadurch wird die Fähigkeit der Zusammenarbeit und die knappe, aussagekräftige Darstellung von Inhalten trainiert.</td>
<td></td>
</tr>
<tr>
<td>Fachliche Kompetenzen:</td>
<td>75 %</td>
</tr>
<tr>
<td>Soziale Kompetenzen:</td>
<td>25 %</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalt:</th>
</tr>
</thead>
</table>

| Im Praktikum zur digitalen Bildverarbeitung werden teilnehmerzentriert exemplarisch Versuche durchgeführt, die möglichst breit das gesamte Feld der Bildverarbeitung abdecken sollen. In der Mehrzahl der Versuche sollen eigene Bildverarbeitungsalgorithmen in der Programmiersprache C++ und OpenCV programmiert werden. Es besteht die Möglichkeit die entwickelten Algorithmen mit einer Vielzahl vorhandener Algorithmen zu vergleichen und einer Vielzahl von Bildern auszutesten. |

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen/</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Befragung, Aufgabenergebnisse</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Prüfungsformen:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>P</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Medienformen:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Beamer, Tafel, Computerdemonstrationen</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Literatur:</th>
</tr>
</thead>
</table>

<p>| * Haberäcker, Digitale Bildverarbeitung, Hanser Verlag |
| * Niman, Mustererkennung, Springer |</p>
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Digitale Kommunikationsnetze</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Bachelor</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>DKN</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Abhaltung:</td>
<td>SS, jährlich</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>ab 4. Studiensemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Ch. Ruland</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Ch. Ruland, wiss. Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Bachelor-Studiengang "Elektrotechnik"</td>
</tr>
<tr>
<td></td>
<td>Bachelor-Studiengang "Duales Studium Elektrotechnik"</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>4 SWS (2 SWS Vorlesung, 2 Praktikum)</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzstudium: 45 h, Eigenstudium: 60 h, Prüfungsvorbereitung: 45 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
<td>keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>GNT</td>
</tr>
<tr>
<td>Modulziele / Angestrebte Lernergebnisse:</td>
<td>Verstehen und Unterscheiden der Eigenschaften moderner Übertragungssysteme und Kommunikationsnetze (Protokolle, Schnittstellen, Dienste, Vorteile und Nachteile, Kosten, Zuverlässigkeit, Quality of Service)</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>* Physikalische Schnittstellen</td>
</tr>
<tr>
<td></td>
<td>* MAN, LAN, WAN</td>
</tr>
<tr>
<td></td>
<td>* drahtlose Kommunikationsnetze (Bluetooth, GSM, UMTS, LTE,...)</td>
</tr>
<tr>
<td></td>
<td>* Data Link (HDLC, Basic Mode,...)</td>
</tr>
<tr>
<td></td>
<td>* Signalisierung</td>
</tr>
<tr>
<td></td>
<td>* Formale Protokollbeschreibung (Zustandsautomaten, SDL)</td>
</tr>
<tr>
<td></td>
<td>* ISDN, Breitband-ISDN</td>
</tr>
<tr>
<td></td>
<td>* Quality of Service</td>
</tr>
<tr>
<td></td>
<td>* Paketvermittlungsnetze, Vermittlungsprotokolle</td>
</tr>
<tr>
<td></td>
<td>* Transportprotokolle</td>
</tr>
<tr>
<td></td>
<td>* Realzeit-Protokolle</td>
</tr>
<tr>
<td></td>
<td>* Industriebussysteme</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen/</td>
<td>Fachprüfung</td>
</tr>
<tr>
<td>Prüfungsformen:</td>
<td>M</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Vorlesungsskript, Beamer, Tafel</td>
</tr>
<tr>
<td>Literatur:</td>
<td>n.a.</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Digitale Kommunikationstechnologie I</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>DKT I</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Abhaltung:</td>
<td>WS, jährlich</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>ab 1. Studiensemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Ch. Ruland</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Ch. Ruland, wiss. Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Master-Studiengang "Elektrotechnik"</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>4 SWS (2 V, 2 Ü)</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzstudium: 45 h, Eigenstudium: 60 h, Prüfungsvorbereitung: 45 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
<td>keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Grundlagen der Nachrichtentechnik (Bachelor)</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>* Übertragung im Basisband</td>
</tr>
<tr>
<td></td>
<td>* Shannon-Grenze</td>
</tr>
<tr>
<td></td>
<td>* Modulationsverfahren</td>
</tr>
<tr>
<td></td>
<td>* Leitungscodierung</td>
</tr>
<tr>
<td></td>
<td>* Multiplexen (FDMA, WDMA, TDMA, CDMA, PDH, SDH)</td>
</tr>
<tr>
<td></td>
<td>* Kanalcodierung (Blockcodes, Zyklische Codes, besonders Reed Solomon, Faltungscodec, Turbo-codes, Softinput - Softoutput)</td>
</tr>
<tr>
<td></td>
<td>* Cross-Layer-Techniken</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen/</td>
<td>Fachprüfung</td>
</tr>
<tr>
<td>Prüfungsformen:</td>
<td>M</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Vorlesungsskript, Beamer, Tafel</td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td></td>
</tr>
<tr>
<td>* J. Lindner: Informationsübertragung, Springer Verlag</td>
<td></td>
</tr>
<tr>
<td>* U. Freyer: Nachrichtenübertragungstechnik, Hanser Verlag</td>
<td></td>
</tr>
<tr>
<td>* J. Ohm, H.D. Lüke: Signalübertragung, Springer Verlag</td>
<td></td>
</tr>
<tr>
<td>* D. Lochmann: Digitale Nachrichtentechnik, Verlag Technik</td>
<td></td>
</tr>
<tr>
<td>* K.D. Kammeyer: Nachrichtenübertragung, Vieweg+Teubner Verlag</td>
<td></td>
</tr>
<tr>
<td>* M. Bossert: Kanalcodierung, Teubner-Verlag</td>
<td></td>
</tr>
<tr>
<td>* S. Lin, D. Costello: Error Control Coding, Prentice Hall</td>
<td></td>
</tr>
<tr>
<td>* T. Moon: Error Correction Coding, Wiley</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Digitale Kommunikationstechnologie II</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>DKT II</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Abhaltung:</td>
<td>SS, jährlich</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>ab 2. Studiensemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Ch. Ruland</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Ch. Ruland, wiss. Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Master-Studiengang "Elektrotechnik"</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>4 SWS (2 Vorlesung, 2 Praktikum)</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzstudium: 60 h, Eigenstudium: 45 h, Prüfungsvorbereitung: 45 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
<td>keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>DKT I, GNT,</td>
</tr>
<tr>
<td>Modulziele / Angestrebte Lernergebnisse:</td>
<td>In Teil II werden die Studierenden in die Lage versetzt, Probleme und Lösungen zu verstehen, die bei der Kommunikation vieler gleichzeitigiger Teilnehmer entstehen. Sie wissen, was in Lokalen Netzen passiert, wie der Netzzugriff in Lokalen Netzen und drahtlosen Netzen (Broadcast-basierte Systeme) erfolgt. Sie sind in der Lage, Warteschlangentheorie einzusetzen, um Anforderungen an Router zu formulieren, und können Vermittlungsknoten für leitungsvermittelte Verbindungen entwerfen. Sie können diese Techniken auch für ähnliche Anwendungen anwenden, z.B. Multi-SIM/Multi ME. Auch die Analog-/Digitalwandlungen, allgemein Verfahren der Quellcodierung werden von ihnen beherrscht und können nach Bedarf für andere Anwendungen eingesetzt werden.</td>
</tr>
</tbody>
</table>
| Inhalt: | * MAC-Protokolle (drahtgebunden und drahtlos)
| | * Vermittlungstechniken
| | * Warteschlangentheorie für Paketvermittlung
| | * Blockieraten bei Leitungsvermittlung/Vermittlungsknoten
| | * Quality of Service (IntServ/DiffServ)
| | * Routingverfahren
| | * Internetprotokolle (bis Schicht 4, dazu VoIP, RTP)
| | * PCM-Technik, Analog/digital-Wandlung
| | * Datenkompressionsverfahren (V.42bis, arithmetische Codierung, verlustfrei, verlustbehaftet, JPEG-x, MPEG-y)
<p>| | * Quellcodierung |
| Studien-/Prüfungsleistungen/ | Fachprüfung |
| Prüfungsformen: | M |
| Medienformen: | Vorlesungsskript, Beamer, Tafel |</p>
<table>
<thead>
<tr>
<th>Literatur:</th>
</tr>
</thead>
<tbody>
<tr>
<td>* siehe DKT I und zusätzlich</td>
</tr>
<tr>
<td>* F. Kaderali: Digitale Kommunikationstechnik I und II, Vieweg</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
</tr>
<tr>
<td>Abhaltung:</td>
</tr>
<tr>
<td>Studiensemester:</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
</tr>
<tr>
<td>Dozent(in):</td>
</tr>
<tr>
<td>Sprache:</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
</tr>
</tbody>
</table>

Modulziele / Angestrebte Lernergebnisse:

- Analysieren der Charakteristiken und Verstehen der besonderen Anforderungen des Mobilfunkkanals
- Unterscheidung und Auseinanderhalten der in drahtlosen und mobilen Kommunikationssystemen verschiedenen eingesetzten Verfahren. Beurteilung der Vor- und Nachteile je nach Einsatzgebiet
- Fähigkeit, die Architektur von Mobilfunksystemen und ihre Abläufe wieder zu geben

Inhalt:

- Diskussion der Wellengleichung
- Störungen des Mobilfunkkanals (Fading, Mehr-Wege-Ausbreitung, Frequenzverschiebung, etc.)
- MIMO, Kanalmatrizen
- Modulationsverfahren im Mobilfunk
- Spurzotechniken, OFDM, spektrale Effizienz
- MAC-Protokolle in drahtlosen Systemen
- GSM/UMTS/LTE
- Bluetooth, DECT
- WiFi, WiMax
- Vocoder

Studien-/Prüfungsleistungen/Prüfungsformen:

- Fachprüfung
- M

Medienformen:

- Vorlesungsskript, Beamer, Tafel

Literatur:

- T. Benkner/C. Stepping: UMTS, J. Schlembach Fachverlag
- K. David, T. Benkner: Digitale Mobilfunksysteme, Teubner-Verlag
- J. Eberspächer, H.-J. Vogel: GSM, Teubner-Verlag
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Digitale Regelungstechnik</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Bachelor</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>DRT</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td>Modulelement des Moduls Regelungstechnik (RT)</td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Abhaltung:</td>
<td>SS, jährlich</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>ab 4. Studiensemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. H. Roth</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. H. Roth, wiss. Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Bachelor-Studiengang "Elektrotechnik"</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>3 SWS (2 SWS Vorlesung + 1 SWS Übung)</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzstudium: 45 h, Eigenstudium: 30 h, Prüfungsvorbereitung: 45 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>4</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td>keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Grundlagen der Regelungstechnik</td>
</tr>
</tbody>
</table>
| Modulziele / Angestrebte Lernergebnisse: | * Erklären der Strukturunterschiede zwischen analogen und digitalen Regelsystemen.
* Anwenden der z-Transformation (Erstellen von Vor- und Rückwärtstransformationen, arbeiten mit den Rechenregeln).
* Analysieren wesentlicher Eigenschaften geschlossener digitaler Regelkreise (Stabilität, Einschwingverhalten).
* Gegenüberstellen grundlegenden Entwurfsverfahren für kontinuierliche, quasi-kontinuierliche und digitale Regelsysteme.
* Entwerfen von digitalen Reglern, insbesondere auch Deadbeat-Reglern.
* Analysieren digitaler Regelsysteme im Zustandsraum. |
| Studien-/Prüfungsleistungen/Prüfungsformen: | siehe Modulbeschreibung RT |
| Medienformen: | Tafel, Beamer |
* Gene F. Franklin; J. Davied Powell, Michael L. Workman: Digital control of dynamic systems.
* Isermann, Rolf: Regel- und Steueralgorithmen für die digitale Regelung mit Prozessrechnern.
* Wolfgang Latzel: Einführung in die digitalen Regelungen.
* Richard C. Dorf; Robert H. Bishop: Modern Control Systems.
* Martin Horn; Nicolas Dourdoumas: Regelungstechnik. |
* J. Lunze: Regelungstechnik 2, Mehrgrößensysteme, Digitale Regelung.
* Holger Lutz; Wolfgang Wendt: Taschenbuch der Regelungstechnik.
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Digitale Simulation elektrischer Netzvorgänge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>DSN</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Abhaltung:</td>
<td>WS, jährlich</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>3</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. M. Kizilcay</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. M. Kizilcay</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch/Englisch (Skript)</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Masterstudiengang Elektrotechnik, Studienmodell "Automatisierungstechnik" - Wahlpflichtmodul -</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>2 SWS VO + 2 SWS UE</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Vorlesung: 2 h * 15 W = 30 h, Übung: 2 h * 15 W = 30 h, Eigenstudium: 2 h * 15 W = 30 h, Übungsvorbereitung: 1 h * 15 W = 15 h, Prüfungsvorbereitung: 45 h, Summe: 150 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
<td>keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Vorkenntnisse aus dem Modul "Grundlagen der Energietechnik" (Bachelor-Studiengang Elektrotechnik) und dem Master-Modul "Regelung und Berechnung elektrischer Netze"</td>
</tr>
<tr>
<td>Modulziele / Angestrebte Lernergebnisse:</td>
<td>Nachdem die Studierende dieses Modul besucht haben, können sie - quasistationäre und transiente Vorgänge in den elektrischen Energieversorgungsnetzen interpretieren - komplexe dynamische Vorgänge mit Hilfe digitaler Simulationen berechnen und veranschaulichen - eine strukturierte und zielgerichtete Vorgehensweise für die Simulation der langsamen und schnellen Ausgleichsvorgänge in elektrischen Energienetzen entwickeln und umsetzen - die Simulationsergebnisse verifizieren und auf Plausibilität prüfen.</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen/</td>
<td>Teilnahme im Labor an PC-Übungen, Mündliche Prüfung</td>
</tr>
<tr>
<td>Prüfungsformen:</td>
<td>M</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Präsentation, PC, Moodle (E-Learning), Vorführung von Simulationen am PC</td>
</tr>
<tr>
<td>Modulbezeichnung</td>
<td>Digitaltechnik</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td>Bachelor</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>DT</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
<td></td>
</tr>
<tr>
<td>Abhaltung:</td>
<td>WS, jährlich</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>1</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. R. Obermaisser</td>
</tr>
<tr>
<td>Dozent(in)</td>
<td>Prof. Dr. R. Obermaisser</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch</td>
</tr>
</tbody>
</table>
| Zuordnung zum Curriculum | Bachelor-Studiengang "Elektrotechnik"
| | Bachelor-Studiengang "Duales Studium Elektrotechnik" |
| Lehrform/SWS | 4 SWS (2 SWS VO + 2 SWS UE) |
| Arbeitsaufwand | Präsenzstudium: 60 h, Eigenstudium: 45 h, Prüfungsvorbereitung: 45 h |
| Kreditpunkte | 5 |
| Voraussetzungen nach Prüfungsordnung | keine |
| Empfohlene Voraussetzungen | keine |
| Modulziele / Angestrebte Lernergebnisse | Nachdem Studierende die Veranstaltung besucht haben, können sie die grundlegenden Entwurfsmethoden nennen und beschreiben, sowie digitale Schaltungen eigenständig entwerfen. Studierende können die Schaltalgebra als mathematisches Modell anwenden, Registertransfersprachen zur Beschreibung von Steuerwerken benutzen und auf der Mikroprogrammenebene programmieren. Im Rahmen der Bewertungskompetenzen sind Studierende in der Lage die Vor- und Nachteile unterschiedlicher Realisierungsalternativen zu untersuchen, Optimierungskriterien für digitale Schaltung zu beurteilen, sowie Zeit- und Speicherprobleme von Steuerungen zu beurteilen. |
| Inhalt | Digitaltechnik
| | *Boolesche Algebra (Schaltalgebra)
| | *logische Grundverknüpfungsschaltungen
| | *Entwurf von Schaltnetzen
| | *Speicherglieder und Speicherschaltungen
| | *Automatenbegriff
| | *Entwurf von Schaltwerken
| | *Analog-digital-wandlung
| | *Verwendung von Bausteinen wie Decoder, Mulplexer, ROM und PLA
<p>| | *Entwurf von fest-verdrahteten und mikroprogrammierten Steuerwerken |
| Studien-/Prüfungsleistungen | Fachprüfung |
| Prüfungsformen | K1.5 |
| Medienformen | Powerpoint |</p>
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Echtzeitsysteme</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>EZS</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Abhaltung:</td>
<td>SS, jährlich</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>ab. 1 Studiensemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. K.-D. Kuhnert</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. K.-D. Kuhnert, wiss. Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Master-Studiengang "Elektrotechnik"</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>3 SWS (2 SWS Vorlesung + 1 SWS Übung)</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzstudium: 45 h, Eigenstudium: 75 h, Prüfungsvorbereitung: 30 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td>keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>keine</td>
</tr>
<tr>
<td>Modulziele / Angestrebte Lernergebnisse:</td>
<td>Fachliche Kompetenzen:</td>
</tr>
<tr>
<td></td>
<td>• können die allgemeinen Struktur von Prozessdatenverarbeitungsanlagen darstellen</td>
</tr>
<tr>
<td></td>
<td>• können Prozessabläufe beschreiben</td>
</tr>
<tr>
<td></td>
<td>• können Echtzeitprogrammen schreiben</td>
</tr>
<tr>
<td></td>
<td>In den Übungen werden die Studierenden aktiv eingebunden. Sie sammeln dadurch Erfahrungen in der Präsentation und Darstellung von Inhalten.</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Im Rahmen der Vorlesung Echtzeitsysteme werden anfangs die Grundlagen der Realzeitprogrammierung gelegt. Das Zusammenspiel von Hard- und Software für die Prozessautomatisierung wird ausführlich dargestellt. Unterbrechungsbearbeitung und für die Echtzeitverarbeitung nötige Softwarekonzepte (task, scheduling, semaphore) werden erarbeitet.</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen/</td>
<td>Fachprüfung</td>
</tr>
<tr>
<td>Prüfungsformen:</td>
<td>K2</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Projektor, Tafel, Computerdemonstrationen</td>
</tr>
<tr>
<td>Literatur:</td>
<td>Erik Jacobson, Einführung in die Prozessdatenverarbeitung, Karl Hanser Verlag, 1996</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Elektrische Antriebstechnik</td>
</tr>
<tr>
<td>---------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td>Bachelor</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>EA</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Abhaltung:</td>
<td>SS, WS nach Vereinbarung, jährlich</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>ab 5. Studiensemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. M. Pacas</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. M. Pacas, wiss. Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Bachelor-Studiengang "Elektrotechnik"</td>
</tr>
<tr>
<td></td>
<td>Bachelor-Studiengang "Duales Studium Elektrotechnik"</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>4 SWS (Kombination aus Vorlesung und Simulationsübungen)</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzstudium: 60 h, Eigenstudium: 45 h, Prüfungsvorbereitung: 45 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach</td>
<td>Keine</td>
</tr>
<tr>
<td>Prüfungsordnung:</td>
<td></td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Kenntnisse, die in den Veranstaltungen Leistungselektronik, Elektrische Maschinen und Antriebe und Grundlagen der Regelungstechnik vermittelt wurden.</td>
</tr>
<tr>
<td>Lageregelung in elektrischen Antrieben</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Übergeordnete Regelung: Lageregelung, Synchronlauf, elektronisches Getriebe</td>
<td></td>
</tr>
<tr>
<td>Kommunikation in der Antriebstechnik</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen/</th>
<th>Übungen am PC, Bericht, Fachprüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsformen:</td>
<td>M</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Tafelanschrift, Präsentationsfolien, Skripte, Übungsaufgaben für SIMULINK</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur:</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Leonhard, W.: Regelung in der elektrischen Antriebstechnik. Springer, Berlin</td>
</tr>
<tr>
<td>* Späth, H.: Steuerverfahren für Drehstrommaschinen: Theoretische Grundlagen.</td>
</tr>
<tr>
<td>* Nguyen Phung Quang, Jörg-Andreas Dittrich, Praxis der feldorientierten Drehstromantriebsregelungen. Expert-Verlag (Januar 1999)</td>
</tr>
<tr>
<td>* Ulrich Riefenstahl, Elektrische Antriebstechnik, Teubner</td>
</tr>
<tr>
<td>* Schröder, D.: Elektrische Antriebe, Grundlagen. Springer-Verlag</td>
</tr>
<tr>
<td>* Schröder, D.: Elektrische Antriebe - Grundlagen: Mit durchgerechneten Übungs- und Prüfungsaufgaben, Springer Verlag</td>
</tr>
<tr>
<td>* Schröder, D.: Elektrische Antriebe - Regelung von Antriebssystemen, Springer Verlag</td>
</tr>
<tr>
<td>* Schulze, M: Elektrische Servoantriebe: Baugruppen mechatronischer Systeme, Carl Hanser Verlag GmbH & CO. KG</td>
</tr>
<tr>
<td>* Probst, U.: Servoantriebe der Automatisierungstechnik: Komponenten, Aufbau und Regelverfahren, Vieweg+Teubner</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
</tr>
<tr>
<td>Abhaltung:</td>
</tr>
<tr>
<td>Studiensemester:</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
</tr>
<tr>
<td>Dozent(in):</td>
</tr>
<tr>
<td>Sprache:</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
</tr>
<tr>
<td>Modulziele / Angestrebte Lernergebnisse:</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen/</td>
</tr>
<tr>
<td>Prüfungsformen:</td>
</tr>
<tr>
<td>Medienformen:</td>
</tr>
<tr>
<td>Literatur:</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
</tr>
<tr>
<td>---------------------------</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
</tr>
<tr>
<td>Abhaltung:</td>
</tr>
<tr>
<td>Studiensemester:</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
</tr>
<tr>
<td>Dozent(in):</td>
</tr>
<tr>
<td>Sprache:</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Modulziele / Angestrebte Lernergebnisse:</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
| Inhalt: | Das Modul "Elektrische Messtechnik" vermittelt die Grundlagen zur Beschreibung und zum Verständnis messtechnischer Problemstellungen. Die Veranstaltung vermittelt das Messen elektrischer Größen. Vorgestellt werden:
* Messtechnische Grundlagen
* Messtechnische Kenngrößen
* Messfehler und Fehlerrechnung
* Messbrückenschaltungen
* Messverstärker
* Oszilloskop
* Analog-Digitalwandlerprinzipien |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Studien-/Prüfungsleistungen:</td>
<td>Fachprüfung</td>
</tr>
<tr>
<td>Prüfungsformen:</td>
<td>K2</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Beamer, Tafel</td>
</tr>
</tbody>
</table>
| Literatur: | * Stöckl-Winterling: Elektrische Messtechnik, B.G. Teubner Stuttgart
* W. Schmusch: Elektronische Messtechnik Vogel Verlag
* E. Schrüfer: Elektrische Messtechnik, Hanser Verlag
* Friedrich: Tabellenbuch Elektronik Elektrotechnik, Dümmler Verlag |
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Elektrische Signalübertragung</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>ESÜ</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ggf. Untertitel</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester:</th>
<th>ab 1. Studiensemester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abhaltung:</td>
<td>SS, jährlich</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. E. Griese</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. E. Griese, wiss. Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Master-Studiengang "Elektrotechnik"</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform/SWS:</th>
<th>4 SWS (3 SWS Vorlesung, 1 SWS Übung)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzstudium: 60 h, Eigenstudium: 45 h, 45 h Prüfungsvorbereitung</td>
</tr>
</tbody>
</table>

| Kreditpunkte: | 5 |

Voraussetzungen nach Prüfungsordnung: keine

Empfohlene Voraussetzungen: keine

<table>
<thead>
<tr>
<th>Modulziele / Angestrebte Lernergebnisse:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach erfolgreicher Absolvierung des Moduls besitzen die Studierenden die folgenden Kompetenzen:</td>
</tr>
</tbody>
</table>

Inhaltskompetenzen:
* Kenntnis der physikalischen Grundlagen der Signalausbreitung auf elektrischen Leitungen
* Kenntnis von TEM-Wellen auf Leitungen
* Kenntnis von Reflexionen und Übersprechen
* Kenntnis aktiver und passiver Komponenten der elektrischen Verbindungstechnik
* Kenntnis von Modellierungs- und Simulationsverfahren für elektrischen Leitungen

Methodenkompetenzen:
* Grundlegender Entwurf elektrischer Verbindungen
* Entwurfsmethodik und Entwurfsregeln für die Sicherstellung der Signalintegrität
* Optimierung und Charakterisierung elektrischer Verbindungen
* Simulationsbasierter Entwurf von High-Speed-Verbindungen

Bewertungskompetenzen:
Die durch dieses Modul vermittelten Bewertungskompetenzen beziehen sich ausschließlich auf fachliche Aspekte der Signal- und Informationsübertragung.
Das Modul "Elektrische Signalübertragung" vermittelt nach einer Einführung zunächst die Theorie zur Beschreibung der Signalausbreitung auf elektrischen Einzelleitungen und gekoppelten Leitungssystemen. Darauf aufbauend werden Aspekte des Entwurfs elektrischer Leiterplatten (High-Speed Design) behandelt. Die Inhalte gliedern sich in:

1. Einführung
 * Bedeutung der elektrischen Verbindungstechnik
 * Leiterplattentechnologien

2. Theorie elektrischer Leitungen
 * Telegraphengleichungen
 * Modellierung elektrischer Leitungen
 * Wellenausbreitung auf elektrischen Leitungen
 * Impedanztransformation und Smith-Diagramm
 * Ausgleichsvorgänge und Impulse auf Leitungen

3. Gekoppelte Leitungssysteme
 * Beschreibung und Modellierung von Leitungssystemen
 * Differentielle Signalleitungen

4. Signalintegrität elektrischer Verbindungen
 * Reflexionen und Crosstalk, Timing
 * Modelle elektrischer Sende- und Empfangskomponenten
 * Maßnahmen zur Verbesserung der Signalintegrität
 * Modellierung und Simulation elektrische Übertragungsstrecken

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen/</th>
<th>Fachprüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsformen:</td>
<td>M</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Beamer (Vorlesungsskript ist vorhanden), Tafel, Versuche</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Elektromagnetische Verträglichkeit</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>EMV</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Abhaltung:</td>
<td>WS, jährlich</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>ab 1. Studiensemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Dr. U. Schmidt</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Dr. U. Schmidt</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Master-Studiengang "Elektrotechnik"</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>3 SWS (2 Vorlesung, 1 Übung)</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzstudium: 45 h, Eigenstudium: 75 h Vor- und Nachbereitung von Vorlesung und Übungen, 30 h Prüfungsvorbereitung</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
<td>keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Kenntnisse der Module</td>
</tr>
<tr>
<td></td>
<td>* Grundlagen der Signal- und Systemtheorie</td>
</tr>
<tr>
<td></td>
<td>* Grundlagen der Feldtheorie des Bachelor-Studiengangs "Elektrotechnik"</td>
</tr>
<tr>
<td>Modulziele / Angestrebte Lernergebnisse:</td>
<td>Nach erfolgreicher Absolvierung des Moduls besitzen die Studierenden die folgenden Kompetenzen:</td>
</tr>
<tr>
<td></td>
<td>Inhaltskompetenzen:</td>
</tr>
<tr>
<td></td>
<td>* Verständnis, Erkennen und Vermeiden gegenseitiger elektromagnetischer Beeinflussung</td>
</tr>
<tr>
<td></td>
<td>* Kenntnis der wichtigsten Messprinzipien</td>
</tr>
<tr>
<td></td>
<td>Methodenkompetenzen:</td>
</tr>
<tr>
<td></td>
<td>* Planung und Beurteilung elektronischer Geräte und Anlagen nach EMV-Gesichtspunkten.</td>
</tr>
<tr>
<td></td>
<td>Bewertungskompetenzen:</td>
</tr>
<tr>
<td></td>
<td>* Sinnvolle Auswahl geeigneter Stör- und Beeinflussungsebenen</td>
</tr>
<tr>
<td></td>
<td>* Verständnis von Messverfahren zur Bestimmung der Störgrößen</td>
</tr>
<tr>
<td></td>
<td>* Einschätzung von realen Störquellen, Störsenken und Kopplungsvorgängen.</td>
</tr>
</tbody>
</table>

Darüber hinaus verbessern die Studierenden ihr logisches Denken sowie ihre Strategie zum Wissenserwerb.
<table>
<thead>
<tr>
<th>Inhalt:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Das Modul "Elektromagnetische Verträglichkeit" vermittelt die</td>
</tr>
<tr>
<td>Grundlagen des Verständnisses, Erkennens und Vermeidens</td>
</tr>
<tr>
<td>gegenseitiger elektromagnetischer Beeinflussung:</td>
</tr>
<tr>
<td>* CE-Kennzeichnung</td>
</tr>
<tr>
<td>* EMV-Kenngrößen</td>
</tr>
<tr>
<td>* Störquellen</td>
</tr>
<tr>
<td>* Störsenken</td>
</tr>
<tr>
<td>* Kopplungswege</td>
</tr>
<tr>
<td>* Pegelrechnung</td>
</tr>
<tr>
<td>* EMV-Messtechnik</td>
</tr>
<tr>
<td>* Schirmung, Filter, Überspannungsschutz</td>
</tr>
<tr>
<td>* Layout</td>
</tr>
<tr>
<td>* Maßnahmen zur EMV-Verbesserung</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen/</td>
</tr>
<tr>
<td>Fachprüfung</td>
</tr>
<tr>
<td>Prüfungsformen:</td>
</tr>
<tr>
<td>M</td>
</tr>
<tr>
<td>Medienformen:</td>
</tr>
<tr>
<td>Beamer (die Veranstaltungsunterlagen, sowie zusätzliches</td>
</tr>
<tr>
<td>Vertiefungsmaterial wird den Studierenden auf einer CD</td>
</tr>
<tr>
<td>ausgehändigt)</td>
</tr>
<tr>
<td>Literatur:</td>
</tr>
<tr>
<td>* Adolf J. Schwab: Elektromagnetische Verträglichkeit</td>
</tr>
<tr>
<td>* Ernst Habinger: Elektromagnetische Verträglichkeit</td>
</tr>
<tr>
<td>* K. H. Gonschorek: EMV für Geräteentwickler und</td>
</tr>
<tr>
<td>Systemintegratoren</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
</tr>
<tr>
<td>Dozent(in):</td>
</tr>
<tr>
<td>Sprache:</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
</tr>
<tr>
<td>Modulziele / Angestrebte Lernergebnisse:</td>
</tr>
<tr>
<td>Inhalt:</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen/</td>
</tr>
<tr>
<td>Prüfungsformen:</td>
</tr>
<tr>
<td>Medienformen:</td>
</tr>
<tr>
<td>Literatur:</td>
</tr>
<tr>
<td>Modulbezeichnung</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
</tr>
<tr>
<td>Abhaltung:</td>
</tr>
<tr>
<td>Studiensemester</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
</tr>
<tr>
<td>Dozent(in)</td>
</tr>
<tr>
<td>Sprache</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
</tr>
<tr>
<td>Bachelor-Studiengang Informatik</td>
</tr>
<tr>
<td>Bachelor-Studiengang Duales Studium Informatik</td>
</tr>
<tr>
<td>Master-Studiengang Informatik</td>
</tr>
<tr>
<td>Master-Studiengang Mechatronics</td>
</tr>
<tr>
<td>Master-Studiengang Elektrotechnik</td>
</tr>
<tr>
<td>Lehrform/SWS</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
</tr>
<tr>
<td>Kreditpunkte</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
</tr>
<tr>
<td>*Grundlagen der Regelungstechnik</td>
</tr>
<tr>
<td>*Grundlagen Rechnerorganisation und Digitaltechnik</td>
</tr>
<tr>
<td>*Programmiersprachen</td>
</tr>
<tr>
<td>*Modellierung und Simulation</td>
</tr>
<tr>
<td>Modulziele / Angestrebte Lernergebnisse</td>
</tr>
<tr>
<td>Inhalt</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>Modeling and Mathematical Descriptions of Dynamic Systems</td>
</tr>
<tr>
<td>*Discrete Dynamics</td>
</tr>
<tr>
<td>*Hybrid Systems</td>
</tr>
<tr>
<td>*Composition of State Machines</td>
</tr>
<tr>
<td>*Concurrent Models of Computation</td>
</tr>
<tr>
<td>Design of Embedded Control Systems</td>
</tr>
<tr>
<td>*Embedded Processors</td>
</tr>
<tr>
<td>*Memory Architectures</td>
</tr>
<tr>
<td>*Input and Output</td>
</tr>
<tr>
<td>*Multitasking</td>
</tr>
<tr>
<td>*Scheduling</td>
</tr>
<tr>
<td>Analysis and Verification</td>
</tr>
<tr>
<td>*Invariants and Temporal Logic</td>
</tr>
<tr>
<td>*Equivalence, Refinement, Simulations</td>
</tr>
<tr>
<td>State-of-the-Art Tools for Embedded Controller Development</td>
</tr>
<tr>
<td>*MATLAB/Simulink</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fachprüfung, Übungsaufgaben</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsformen</th>
</tr>
</thead>
<tbody>
<tr>
<td>K2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Medienformen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Powerpoint</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>*P.J. Mosterman. Model-Based Design for Embedded Systems. CRC Press. 2010</td>
</tr>
<tr>
<td>Modulbezeichnung</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
</tr>
<tr>
<td>Abhaltung:</td>
</tr>
<tr>
<td>Studiensemester</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
</tr>
<tr>
<td>Dozent(in)</td>
</tr>
<tr>
<td>Sprache</td>
</tr>
</tbody>
</table>
| Zuordnung zum Curriculum | Master-Studiengang Informatik
| | Master-Studiengang Elektrotechnik |
| Lehrform/SWS | 4 SWS (2 VO + 2 UE) |
| Arbeitsaufwand | Präsenzstudium: 60 h, Eigenstudium: 45 h, Prüfungsvorbereitung: 45 h |
| Kreditpunkte | 5 |
| Voraussetzungen nach Prüfungsordnung | keine |
| Empfohlene Voraussetzungen | *Digitales Design
| | *Rechnerarchitekturen I
| | *Betriebssysteme I |

Inhaltsüberblick:
*Kontext und Anforderungen eingebetteter Echtzeitsysteme
*Modellierung eingebetteter Echtzeitsysteme
*Globale Zeit und zeitliche Relationen
*Zuverlässigkeit
*Echtzeitkommunikation
*Echtzeitbetriebssysteme
*Real-Time Scheduling
*Interaktion mit der Umgebung
*Design eingebetteter Systeme
*Validierung
*Internet of Things
*Beispiele von Systemarchitekturen für eingebettete Echtzeitsysteme

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen</th>
<th>Fachprüfung und Übung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsformen</td>
<td>M</td>
</tr>
<tr>
<td>Medienformen</td>
<td>Powerpoint</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Ereignisdiskrete Prozesse</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>EdP</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>ab 1. Studiensemester</td>
</tr>
<tr>
<td>Abhaltung:</td>
<td>WS, jährlich</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. G. Schröder</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. G. Schröder, wiss. Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Master-Studiengang "Elektrotechnik"</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>Vorlesung 2 SWS, Übung 2 SWS</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzstudium 60h; Eigenstudium: 45 h, Prüfungsvorbereitung 45 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
<td>keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>keine</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>* Einführung in ereignisdiskrete Systeme</td>
</tr>
<tr>
<td></td>
<td>* Deterministische Automaten</td>
</tr>
<tr>
<td></td>
<td>* Nichtdeterministische Automaten</td>
</tr>
<tr>
<td></td>
<td>* Autonome Automaten</td>
</tr>
<tr>
<td></td>
<td>* Petrinetze</td>
</tr>
<tr>
<td></td>
<td>* Verifikation und Validierung von Steuerungen</td>
</tr>
<tr>
<td></td>
<td>* Aus der Beschreibung sollten die Gewichtung der Inhalte und ihr Niveau hervorgehen.</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen/</td>
<td>Fachprüfung</td>
</tr>
<tr>
<td>Prüfungsformen:</td>
<td>M</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td>* Litz, L.: Grundlagen der Automatisierungstechnik, Oldenbourg Verlag</td>
</tr>
<tr>
<td></td>
<td>* Lunze, L.: Automatisierungstechnik, Oldenbourg Verlag</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Erneuerbare und dezentrale Elektroenergieerzeugung</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>EDE</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Abhaltung:</td>
<td>WS, jährlich</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>1 oder 3</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. M. Kizilcay</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. M. Kizilcay</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Masterstudiengang Elektrotechnik, Studienmodell</td>
</tr>
<tr>
<td>"Automatisierungstechnik"</td>
<td>- Wahlpflichtmodul -</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>2,5 SWS VO + 1,5 SWS UE</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Vorlesung: 2,5 h * 15 W = 37,5 h, Übung: 1,5 h * 15 W = 22,5 h, Eigenstudium: 3 h * 15 W = 45 h, Prüfungsvorbereitung: 45 h, Summe: 150 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td>keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Vorkenntnisse aus dem Modul "Grundlagen der Energietechnik" (Bachelor-Studiengang Elektrotechnik)</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen/</td>
<td>Prüfungsleistung schriftliche Prüfung</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Präsentation, Tablet-PC, Moodle (E-Learning), Vorführung von Simulationen</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Estimation Theory</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>Est</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Abhaltung:</td>
<td>SS, jährlich</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>ab 2. Studiensemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. O. Loffeld</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. O. Loffeld / wiss. Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>English</td>
</tr>
</tbody>
</table>

Zuordnung zum Curriculum
- Master-Studiengang "Elektrotechnik"
- Master-Studiengang "Informatik"

Lehrform/SWS: 2 SWS Vorlesung + 2 SWS Seminar (4 SWS)

Arbeitsaufwand:
- Präsenzstudium: 60 h,
 Eigenstudium: 55 h,
 Prüfungsvorbereitung: 35 h

Kreditpunkte: 5

Voraussetzungen nach Prüfungsordnung: keine

Empfohlene Voraussetzungen:
* Stochastic Models (dringend empfohlen), "cannot do without it!!!”
* inhaltlich: Linear dynamic and stochastic models, probability and random variables (in depth)

Modulziele / Angestrebte Lernergebnisse:
Bereitstellung mathematischer und estimationstheoretischer Grundlagen, Fertigkeiten und Fähigkeiten

Kenntnisse:
* Stochastic processes
* linear dynamic models with stochastic input
* optimal estimation principles for dynamic problems

Fertigkeiten:
Modelling dynamic stochastic problems and estimation of time varying unknown states with optimal recursive estimation approaches

Kompetenzen:
Given a stochastic observation problem of a dynamically changing unknown state, find the optimal estimation solution to determine the unknown state from the noisy observations.

Inhalt:
1.) Stochastic Processes:
Stochastic Processes in continuous and discrete time, description of stochastic processes, classes of stochastic processes, processes with independent increments, Brownian motion, continuity and differentialability of stochastic processes, white noise, modeling with additive noise processes, integration of stochastic processes, Wiener’s stochastic integral, Markovian processes, Gauss Markov Processes, linear models with white Gaussina noise,
2.) Estimation Approaches for Stochastic Processes: Kalman Filter and different formulations, different approaches to the derivation of Kalman filters,
3.) Applications: State Space Modelling and Optimal Estimation by Examples

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen/</th>
<th>Teilnahme am Seminar bzw. Übung, Fachprüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsformen:</td>
<td>M</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Vorlesung mit Powerpoint-Folien und Lifeannotierung in der Vorlesung unter Verwendung einer aktiven Tafel, Vorlesungsskript als pdf in Deutsch,</td>
</tr>
</tbody>
</table>
| Literatur: | * O. Loffeld, Estimationstheorie II, Oldenbourg Verlag München,
* P.S. Maybeck, Stochastic Models Estimation and Control I, II, Academic Press,
* Aufzeichnung der Folien und Annotierungen als pdf-Datei
* Aufzeichnung und Archivierung der Vorlesung als Real Media Stream
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Fahrerassistenzsysteme</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>FAS</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Abhaltung:</td>
<td>WS, jährlich</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>ab 1. Studiensemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. R. Mayr</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. R. Mayr, Dr.-Ing. Peter Will</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Master-Studiengang "Elektrotechnik"</td>
</tr>
<tr>
<td></td>
<td>Bachelor-Studiengang Informatik</td>
</tr>
<tr>
<td></td>
<td>Bachelor-Studiengang „Duales Studium Informatik“</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>3 SWS (2 SWS Vorlesung + 1 SWS Übung)</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzzeit: 45 h, Eigenstudium: 75 h, Prüfungsvorbereitung: 30 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
<td>keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>* Technische Mechanik für Elektrotechnik-Ingenieure (Bachelor),</td>
</tr>
<tr>
<td></td>
<td>* Grundlagen der Elektrotechnik I-III (Bachelor),</td>
</tr>
<tr>
<td></td>
<td>* Grundlagen der Regelungstechnik (Bachelor)</td>
</tr>
<tr>
<td>Modulziele / Angestrebte Lernergebnisse:</td>
<td>Kenntnisse:</td>
</tr>
<tr>
<td></td>
<td>* Fachwissen hinsichtlich des fahrdynamisches Verhaltens von Kraftfahrzeugen insoweit, wie für die Erarbeitung geeigneter Fahrerassistenzsysteme relevant,</td>
</tr>
<tr>
<td></td>
<td>* Funktionsweise und Wirkung von automatischen Eingriffen in das Bremssystem sowie in den Bereich der Fahrzeugquerdynamik,</td>
</tr>
<tr>
<td></td>
<td>* Kenntnisse in Bezug auf aktive und passive Sicherheitssysteme,</td>
</tr>
<tr>
<td></td>
<td>* Kenntnisse in Hinsicht auf Systeme zur Erhöhung des Fahrkomforts,</td>
</tr>
<tr>
<td></td>
<td>Fertigkeiten:</td>
</tr>
<tr>
<td></td>
<td>* Erkennen von Sicherheitsproblemen im Fahrzeugbereich,</td>
</tr>
<tr>
<td></td>
<td>* Erarbeitung von Lösungen unter Zuhilfenahme moderner Werkzeuge aus der Regelungstechnik und Informatik</td>
</tr>
<tr>
<td></td>
<td>Kompetenzen:</td>
</tr>
<tr>
<td></td>
<td>* Integration von Kenntnissen aus der Elektrotechnik, Systemdynamik, Regelungstechnik, Maschinenwesen, des Fahrzeugbaus, sowie der Informatik und Informationstechnik</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Fachpräfung</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>* Fahrverhalten, Fahrsicherheit, aktive und passive Systeme</td>
<td></td>
</tr>
<tr>
<td>* Verhältnisse am Reifen, Bremsvorgänge, Antiblockiersysteme (ABS), Antriebsschlupfregelung (ASR), Sensoren</td>
<td></td>
</tr>
<tr>
<td>* Elektronisches Stabilitätsprogramm (ESP), Unter- Übersteuern, Struktur und Funktionsweise von ESP</td>
<td></td>
</tr>
<tr>
<td>* Automatische Bremsfunktionen (HBA, CDP, HHC, HDC, CCD, HFC, HRB, BDW, EPB), Elektrohydraulische Bremse (SBC)</td>
<td></td>
</tr>
<tr>
<td>* Adaptive Fahrgeschwindigkeitsregelung ACC, Funktion und Wirkungsweise, Wunschabstand, Wunschzeitlücke</td>
<td></td>
</tr>
<tr>
<td>* Spurhalte- und Spurwechselassistenten, Aktivlenkung</td>
<td></td>
</tr>
<tr>
<td>* Insassenschutzsysteme, Gurt, Sitzbelegungserkennung, Airbag, Steugerät, Sensorik, Precrash-Verkehrssituation</td>
<td></td>
</tr>
<tr>
<td>* Einparkhilfe inkl., Sensorik, Fahrzeugbeleuchtung, Leuchtwielenregelung, Kurvenlicht, biometrische Systeme</td>
<td></td>
</tr>
<tr>
<td>* Heizung, Klimatisierung, Belüftung, Kurvenlicht, Instrumentierung</td>
<td></td>
</tr>
<tr>
<td>* KFZ-Informationssystem, RDS, Mobil- und Datenfunk, Antennensysteme, TMC, Ortung, Koppelortung, Navigation, Verkehrsdatenerfassung</td>
<td></td>
</tr>
<tr>
<td>* Kurvenassistent</td>
<td></td>
</tr>
<tr>
<td>* Modellbildung in der Fahrzeugdynamik, Aufbau von Simulationen zur Verifikation der Arbeitsweise von Fahrerassistenzsystemen</td>
<td></td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen/</td>
<td>Fachpräfung</td>
</tr>
<tr>
<td>Prüfungsformen:</td>
<td>M</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Präsentation, Versuche mit Simulationssoftware (Kopierlizenz zur Weitergabe der Simulationssoftware an die Studierenden vorhanden)</td>
</tr>
<tr>
<td>Literatur:</td>
<td>* Bosch: Sicherheits- und Komfortsysteme, Vieweg Verlag, ISBN 3-528.13875-0</td>
</tr>
<tr>
<td></td>
<td>* Bosch: Autoelektrik, Autoelektronik, Vieweg Verlag, ISBN 978-3-528-23872-8</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Feldberechnungen mit der FEM</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>ggf. Modulsitzung</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td>FEM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ggf. Untertitel</th>
<th>ggf. Lehrveranstaltungen:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Abhaltung:</th>
<th>WS, jährlich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studiensemester:</td>
<td>ab 1. Studiensemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. E. Griese</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Dr. Th. Kübler</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Master-Studiengang Elektrotechnik</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>4 SWS (2 SWS Vorlesung, 2 SWS Übung)</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzstudium: 60 h, Eigenstudium: 45 h, Prüfungsvorbereitung 45 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td>keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>keine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulziele / Angestrebte Lernergebnisse:</th>
<th>Inhaltskompetenzen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nachdem Studierende die Veranstaltung besucht haben, besitzen Sie * Kenntnis der Grundlagen numerischer Operationen (lineare Gleichungssysteme, Eigenwertprobleme) * Kenntnis der grundlegenden Ansätze bei der Finiten Elemente Methode</td>
<td></td>
</tr>
<tr>
<td>Methodenkompetenzen:</td>
<td></td>
</tr>
<tr>
<td>Die Studierenden können Algorithmen und Verfahren zur numerischen Berechnung elektrotechnischer Problemstellungen mit Finiten Elementen entwickeln und die Ergebnisse bewerten.</td>
<td></td>
</tr>
<tr>
<td>Bewertungskompetenzen:</td>
<td></td>
</tr>
<tr>
<td>Die Studierenden erlangen die Fähigkeit, die Funktion und das Verhalten von verschiedenen Finite Elemente Verfahren zu beurteilen und kritisch zu bewerten.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalt:</th>
</tr>
</thead>
</table>
| In der zugehörigen Übung werden die Vorlesungsinhalte unter Anleitung in Matlab umgesetzt. Zusätzlich werden einige
komplexe zwei- und dreidimensionale Problemstellungen mit einem kommerziellen FEM-Tool modelliert.

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen/</th>
<th>Fachprüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsformen:</td>
<td>M</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Tafel/Beamer</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Fortgeschrittene Halbleiter- und Mikroelektronik I</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>FHME I</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ggf. Untertitel</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
</tr>
<tr>
<td>Studiensemester:</td>
</tr>
<tr>
<td>Abhaltung:</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
</tr>
<tr>
<td>Dozent(in):</td>
</tr>
<tr>
<td>Sprache:</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen/</th>
<th>Vortrag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsformen:</td>
<td>M</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td>* Böhm, M.: Mikroelektronik; Skript</td>
</tr>
<tr>
<td></td>
<td>* Böhm, M.: Halbleiterelektronik; Skript</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Fortgeschrittene Halbleiter- und Mikroelektronik II</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>FHME II</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>ab 3. Studiensemester</td>
</tr>
<tr>
<td>Abhaltung:</td>
<td>WS, jährlich</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. M. Böhm</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. M. Böhm, wiss. Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Master-Studiengang "Elektrotechnik"</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>4 SWS (2 SWS Vorlesung, 2 SWS Übung)</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzstudium: 60 h, Eigenstudium: 60 h, Prüfungsvorbereitung: 30 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td>keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Die Lehrveranstaltung setzt die Kenntnis der Inhalte der Lehrveranstaltungen Halbleiterelektronik I, Halbleiterelektronik II sowie Mikroelektronik I und Mikroelektronik II voraus.</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen/</td>
<td>Vortrag</td>
</tr>
<tr>
<td>Prüfungsformen:</td>
<td>M</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
</tbody>
</table>
| Literatur: | * Böhm, M.: Mikroelektronik; Skript
* Böhm, M.: Halbleiterelektronik; Skript |
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Grundlagen der Elektrotechnik I</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Bachelor</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>GET_I</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
</tbody>
</table>

Abhaltung: Jedes Semester
Studiensemester: ab 1. Semester im Bachelor
Modulverantwortliche(r): Prof. Dr. H. Bessai
Dozent(in): Prof. Dr. H. Bessai
Sprache: Deutsch
Zuordnung zum Curriculum
Bachelor-Studiengang Elektrotechnik Pflichtmodul
Bachelor-Studiengang Elektrotechnik Dual, Pflichtmodul
Bachelor-Studiengang Informatik, Modulkatalog Informatik-Vertiefung
Bachelor-Studiengang Informatik Dual Modulkatalog Informatik-Vertiefung
Lehrform/SWS: 3 SWS Vorlesung + 1 SWS Übung
(2 Übungsgruppen mit jeweils max 30 Personen, Übungs-Doppelstunde jeweils 14-tägig)
Arbeitsaufwand: Präsenzstudium: 60 h (45 h Vorlesung + 15 h Übung), Eigenstudium: 30 h (Übungsvor- und Nachbereitung), Prüfungsvorbereitung: 60 h
Kreditpunkte: 5
Voraussetzungen nach Prüfungsordnung keine
Modulziele / Angestrebte Lernergebnisse: Die Studierenden
*kennen die in der Elektrotechnik üblichen Größen und Einheiten
*können elektrische Schaltpläne lesen und Schaltzeichen identifizieren
*beherrschen den Umgang mit den elektrischen Grundgrößen wie Ladung, Spannung, Strom usw.
berechnen selbstständig die Ströme und Spannungen in einfachen elektrischen Schaltungen mit linearem, zeitinvariantem Verhalten
Inhalt: *Elektrische Grundgrößen, Begriffe und Schaltkreiselemente (10 %)
*Ersatzschaltbilder f. Spannungs- und Stromquellen, Spannungs- und Stromteiler (10 %)
*Analyse von Brückenschaltungen (10 %)
*Knotenpotenzialanalyse (20 %)
*Maschenstromanalyse (20 %)
*Ersatzstromquellen (Norton) u. Ersatzspannungsquellen (Thevenin) (10 %)
*Leistungsanpassung u. Einführung in Vierpoltheorie (10 %)
| Studien-/Prüfungsleistungen/ | *2-stündige Gruppenübung alle 14 Tage,
*2-stündige Klausur im allgemeinen Prüfungszeitraum |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsformen:</td>
<td>K2</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Tafel (hauptsächlich), Overhead-Projektor, Beamer, inhaltlich angepasste Formelsammlungen + Tabellen, Hinweise auf spezielle Internet-Seiten</td>
</tr>
</tbody>
</table>
| Literatur: | *Frohne, H. et al. Moeller Grundlagen der Elektrotechnik Vieweg / Teubner (hierin insbesondere Kapitel 1, 2, 5, 6 + 7)
*Albach, M. Grundlagen der Elektrotechnik 1. Pearson
*Pregla, R. Grundlagen der Elektrotechnik. Hüthig
*Süße, R. Theoretische Grundlagen der Elektrotechnik 1. Vieweg / Teubner |
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Grundlagen der Elektrotechnik II</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Bachelor</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>GET II</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td>Elektrisches Feld, Magnetisches Feld</td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td>Elektrisches Feld, Magnetisches Feld</td>
</tr>
<tr>
<td>Abhaltung:</td>
<td>WS, jährlich</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>1 oder 2</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr.-Ing. Mario Prof. Dr. M. Pacas</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr.-Ing. Mario Prof. Dr. M. Pacas und wiss. Mitarbeiter / Mitarbeiterin</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
</tbody>
</table>
| Zuordnung zum Curriculum | Pflichtmodul Grundlagen der Elektrotechnik
| | Bachelor-Studiengang "Elektrotechnik"
| | Bachelor-Studiengang "Duales Studium Elektrotechnik"
| | Bachelor-Studiengang "Informatik" Modulkatalog Informatik Vertiefung
| | Bachelor-Studiengang "Duales Studium Informatik" Modulkatalog Informatik Vertiefung" |
| Lehrform/SWS: | 4 SWS verteilt auf: Vorlesung, Übungen, Übungen in kleinen Gruppen |
| Arbeitsaufwand: | Insgesamt 150 Stunden:
| | Präsenz Vorlesung 15 x 2,5 = 37,5 Stunden
| | Präsenz Übung 15 x 1,5 = 22,5 Stunden
| | Vor- und Nachbereitung Vorlesungs- und Übungsstoff, einschließlich Kleingruppenübungen und Hausaufgaben: 40 Stunden
<p>| | Eigenstudium einschließlich Prüfungsvorbereitung: 50 Stunden |
| Kreditpunkte: | 5 |
| Voraussetzungen nach Prüfungsordnung | Keine |
| Empfohlene Voraussetzungen: | Vektorrechnung, Integral- und Differentialrechnung |
| Modulziele / Angestrebte Lernergebnisse: | Die Studierenden sollen in diesem Modul -phäno\nmenologisch und ingenieurmäßig an die Erscheinungen und Gesetzmäßigkeiten in elektrischen und magnetischen Feldern herangeführt werden, - die Herleitung der elementaren Gesetzmäßigkeiten physikalisch anschaulich verstehen und mathematisch korrekt nachvollziehen können, - die Techniken zur Anwendung dieser grundlegenden Zusammenhänge kennen lernen, nachvollziehen und einüben, - die Feldkonfigurationen für einfache statische quasistatische Problemstellungen anschaulich qualitativ herleiten und formal quantitativ berechnen, - die Bedeutung der elektrischen und magnetischen Feldern in der Elektrotechnik anhand von Beispielen kennenlernen. |</p>
<table>
<thead>
<tr>
<th>Inhalt:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elektrisches Potentialfeld</td>
</tr>
<tr>
<td>Definition und Wirkung der elektrischen Ladung</td>
</tr>
<tr>
<td>Elektrisches Feld in Leitern (Strömungsfeld)</td>
</tr>
<tr>
<td>Elektrisches Feld in Nichtleitern</td>
</tr>
<tr>
<td>Kräfte auf Grenzflächen im elektrischen Feld</td>
</tr>
<tr>
<td>Strom und Spannung</td>
</tr>
<tr>
<td>Elektrische Ladung und elektrischer Strom</td>
</tr>
<tr>
<td>Elektrisches Potential und elektrische Spannung</td>
</tr>
<tr>
<td>Das magnetische Feld</td>
</tr>
<tr>
<td>Magnetischer Fluss und magnetische Durchflutung</td>
</tr>
<tr>
<td>Magnetische Spannung und Feldstärke</td>
</tr>
<tr>
<td>Eigenschaften von magnetischen Werkstoffen</td>
</tr>
<tr>
<td>Berechnung magnetischer Kreise</td>
</tr>
<tr>
<td>Elektromagnetische Spannungserzeugung</td>
</tr>
<tr>
<td>Selbstinduktion und Gegeninduktion</td>
</tr>
<tr>
<td>Energie und Kräfte im magnetischen Feld</td>
</tr>
<tr>
<td>Vergleich elektrischer und magnetischer Felder</td>
</tr>
<tr>
<td>Magnetische Kopplung</td>
</tr>
<tr>
<td>Idealer Übertrager</td>
</tr>
<tr>
<td>Verlustlose Übertrager und Transformatoren</td>
</tr>
<tr>
<td>Übertrager und Transformatoren ohne Eisenverluste</td>
</tr>
<tr>
<td>Transformatoren mit Kupfer- und Eisenverlusten</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen:</th>
<th>schriftliche Prüfung, zweistündig</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsformen:</td>
<td>K2</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Tafelanschrift, Präsentationsfolien, Skripte, Übungsaufgaben</td>
</tr>
<tr>
<td></td>
<td>* Weißgerber, W.: Elektrotechnik für Ingenieure 1, Vieweg; ISBN 3-528-44616-1</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Grundlagen der Elektrotechnik III</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td>Bachelor-Studiengang</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>GET_III</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ggf. Untertitel</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>ggf. Lehrveranstaltungen:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Abhaltung:</th>
<th>jedes Semester</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Studiensemester:</th>
<th>3 (Beginn WS); 2 (Beginn SS)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche(r):</th>
<th>Prof. Dr. M. Kizilcay</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Dozent(in):</th>
<th>Prof. Dr. M. Kizilcay</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Sprache:</th>
<th>Deutsch</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Zuordnung zum Curriculum</th>
</tr>
</thead>
</table>

Bachelor-Studiengang Elektrotechnik
Bachelor-Studiengang „Duales Studium Elektrotechnik“

<table>
<thead>
<tr>
<th>Lehrform/SWS:</th>
<th>2,5 SWS VO + 1,5 SWS UE</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
</table>

Vorlesung: 2,5 h * 15 W = 37,5 h, Übung: 1,5 h * 15 W = 22,5 h, Eigenstudium: 3 h * 15 W = 45 h, Prüfungsvorbereitung: 45 h, Summe: 150 h

<table>
<thead>
<tr>
<th>Kreditpunkte:</th>
<th>5</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Voraussetzungen nach Prüfungsordnung</th>
<th>keine</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Empfohlene Voraussetzungen:</th>
</tr>
</thead>
</table>

Grundlagen der Elektrotechnik I

<table>
<thead>
<tr>
<th>Modulziele / Angestrebte Lernergebnisse:</th>
</tr>
</thead>
</table>

Nachdem die Studierende dieses Modul besucht haben, sind sie in der Lage
- die Funktionsweise der Betriebsmittel und der Geräte, die an Wechsel- und Drehstrom betrieben werden, zu beschreiben
- den Betriebszustand von Verbrauchern am Wechsel- und Drehstromnetz vereinfacht zu berechnen
- mittels der Methoden der Differentialrechnung die Zeitvorgänge bzw. Schaltvorgänge in einfachen elektrischen Netzwerken abzuleiten
- ein Verständnis für das Zeitverhalten der Grundelemente R, L und C bei Schaltvorgängen zu entwickeln
- eigenverantwortlich alleine und in Gruppen Aufgaben zu lösen
<table>
<thead>
<tr>
<th>Inhalt:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wechselstromtechnik:</td>
</tr>
<tr>
<td>- Erzeugung von Wechselspannungen</td>
</tr>
<tr>
<td>- Wechselgrößen und sinusförmige Wechselgrößen</td>
</tr>
<tr>
<td>- Berechnung von sinusförmigen Wechselgrößen mit Hilfe komplexer Rechnung</td>
</tr>
<tr>
<td>- Reihen- und Parallelschaltungen, Schwingkreise</td>
</tr>
<tr>
<td>- Die Leistung im Wechselstromkreis</td>
</tr>
<tr>
<td>- Blindleistungskompensation</td>
</tr>
<tr>
<td>- Berechnung von Wechselstromnetzen beliebiger Struktur</td>
</tr>
<tr>
<td>- Ortskurven</td>
</tr>
<tr>
<td>Mehrphasensysteme:</td>
</tr>
<tr>
<td>- Erzeugung von Drehstrom</td>
</tr>
<tr>
<td>- Schaltungen der Dreiphasensysteme</td>
</tr>
<tr>
<td>- Symmetrische und unsymmetrische Dreiphasensysteme</td>
</tr>
<tr>
<td>Schaltvorgänge in einfachen elektrischen Netzwerken:</td>
</tr>
<tr>
<td>- Berechnungsverfahren</td>
</tr>
<tr>
<td>- Schalten von Gleichströmen und -spannungen</td>
</tr>
<tr>
<td>- Schalten von Sinusströmen und -spannungen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen/</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teilnahme an Übungen dringend empfohlen, Schriftliche Prüfung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsformen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>K2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Medienformen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsentationen, Tablet-PC, Moodle (E-Learning)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
</tr>
<tr>
<td>Abhaltung:</td>
</tr>
<tr>
<td>Studiensemester:</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
</tr>
<tr>
<td>Dozent(in):</td>
</tr>
<tr>
<td>Sprache:</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
</tr>
<tr>
<td>Modulziele / Angestrebte Lernergebnisse:</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen/</td>
</tr>
<tr>
<td>Prüfungsformen:</td>
</tr>
<tr>
<td>Medienformen:</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ggf. Untertitel</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>ggf. Lehrveranstaltungen:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Studiensemester:</th>
<th>ab 4. Studiensemester</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Abhaltung:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche(r):</th>
<th>Prof. Dr. E. Griese</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Dozent(in):</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Sprache:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Zuordnung zum Curriculum</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Bachelor-Studiengang "Elektrotechnik"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bachelor-Studiengang "Duales Studium Elektrotechnik"</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform/SWS:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>6 SWS (4 SWS Vorlesung, 2 SWS Übung)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Arbeitsaufwand:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Präsenzstudium: 90 h, Eigenstudium: 60 h, Prüfungsvorbereitung 30 h</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Kreditpunkte:</th>
</tr>
</thead>
</table>

| 6 |

<table>
<thead>
<tr>
<th>Voraussetzungen nach Prüfungsordnung</th>
</tr>
</thead>
</table>

| keine |

<table>
<thead>
<tr>
<th>Empfohlene Voraussetzungen:</th>
</tr>
</thead>
</table>

| * Mathematik für Elektrotechnik-Ingenieure I-II |
| * Mathematik für Elektrotechnik-Ingenieure IIIb |
| * Grundlagen der Elektrotechnik I-III |

<table>
<thead>
<tr>
<th>Modulziele / Angestrebte Lernergebnisse:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Nach erfolgreicher Absolvierung des Moduls besitzen die Studierenden die folgenden Kompetenzen:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Inhaltskompetenzen:</th>
</tr>
</thead>
</table>

| * Darstellung von Vektorfeldern in othogonalen Koordinatensystemen |
| * Kenntnis der Maxwellschen Gleichungen zur Beschreibung von elektrischen und magnetischen Feldern |
| * Kenntnis der Eigenschaften elektrischer und magnetischer Felder |
| * Stromverdrängung in elektrischen Leitern |
| * Grundlagen der Ausbreitung elektromagnetischer Wellen (ebene Welle) |

<table>
<thead>
<tr>
<th>Methodenkompetenzen:</th>
</tr>
</thead>
</table>

| * Vektoranalytische Beschreibung von elektrischen und magnetischen Feldern |
| * Darstellung und Berechnung von elektrischen und magnetischen Feldern von bekannten Ladungen und Strömen |
| * Lösung einfacher partieller Differentialgleichungen |
| * Beschreibung des Energetransports durch des Poyntingschen Vektor |

<table>
<thead>
<tr>
<th>Bewertungskompetenzen:</th>
</tr>
</thead>
</table>

| Die zu erlernenden Methoden in diesem Modul sind aus Gründen des Aufwandes und im Interesse der Übersichtlichkeit auf einfache elektrotechnische Systeme beschränkt. Die zu Grunde liegenden Modelle beschreiben diese Systeme dann aber im |

<table>
<thead>
<tr>
<th>Inhalt:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Das Modul "Grundlagen der Feldtheorie" vermittelt die Grundlagen zur Beschreibung und zum Verständnis elektromagnetischer Felder. Nach der Einführung der Maxwellschen Gleichungen wird das allgemeine Verhalten der Feldstärken an Grenzflächen behandelt. Der Schwerpunkt des Moduls liegt dann auf den elektrostatischen Feld und dem magnetischen Feld zeitlich konstanter Ströme, deren Beschreibungsformen und Eigenschaften intensiv behandelt werden. Abschließend werden einfache zeitveränderliche elektromagnetische Felder behandelt. Die Inhalte gliedern sich wie folgt:</td>
</tr>
<tr>
<td>1. Einführung</td>
</tr>
<tr>
<td>* Die Maxwellschen Gleichungen</td>
</tr>
<tr>
<td>* Verhalten der Feldgrößen an Grenzschichten (Randbedingungen)</td>
</tr>
<tr>
<td>* Übersicht und Einteilung der Felder</td>
</tr>
<tr>
<td>2. Das elektrostatische Feld</td>
</tr>
<tr>
<td>* Felder von Punkt-, Linien-, Flächen- und Raumladungen</td>
</tr>
<tr>
<td>* Felder von elektrostatischen Dipolen und Dipolverteilungen</td>
</tr>
<tr>
<td>* Das komplexe elektrostatische Potential</td>
</tr>
<tr>
<td>* Das elektrostatische Feld in Gegenwart leitender Körper</td>
</tr>
<tr>
<td>* Das elektrostatische Feld in Gegenwart dielektrischer Körper</td>
</tr>
<tr>
<td>* Grundlagen der Potential- und Ladungsspiegelung</td>
</tr>
<tr>
<td>* Energie und Kraft im elektrostatischen Feld</td>
</tr>
<tr>
<td>3. Das magnetische Feld zeitlich konstanter Ströme</td>
</tr>
<tr>
<td>* Das magnetische Vektorpotential</td>
</tr>
<tr>
<td>* Das magnetische Skalarpotential</td>
</tr>
<tr>
<td>* Strombelag und magnetisches Feld</td>
</tr>
<tr>
<td>* Das komplexe magnetische Potential</td>
</tr>
<tr>
<td>* Halbräume unterschiedlicher Permeabilität</td>
</tr>
<tr>
<td>* Energie des magnetischen Feldes</td>
</tr>
<tr>
<td>* Induktivitäten im System massiver Leiter</td>
</tr>
<tr>
<td>* Kraft auf Strom durchflossene Leiter</td>
</tr>
<tr>
<td>4. Das zeitveränderliche elektromagnetische Feld (Einführung)</td>
</tr>
<tr>
<td>* Die elektrodynamischen Potentiale</td>
</tr>
<tr>
<td>* Der Poyntingsche Vektor</td>
</tr>
<tr>
<td>* Die Feldgleichungen bei sinusförmiger Zeitabhängigkeit</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen</td>
</tr>
<tr>
<td>----------------------------</td>
</tr>
<tr>
<td>Prüfungsformen:</td>
</tr>
<tr>
<td>Medienformen:</td>
</tr>
<tr>
<td>Literatur:</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
</tr>
<tr>
<td>Studiensemester:</td>
</tr>
<tr>
<td>Abhaltung:</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
</tr>
<tr>
<td>Dozent(in):</td>
</tr>
<tr>
<td>Sprache:</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Modulziele / Angestrebte Lernergebnisse:</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
verbessern dadurch ihre Fähigkeiten,
* komplexe Zusammenhänge durch Modellierung zu erfassen und zu beschreiben,
* Probleme mit einem hohen Abstraktionsniveau zu erfassen und zu lösen.

Darüber hinaus verbessern die Studierenden ihr logisches Denken sowie ihre Strategie zum Wissenserwerb.

Studien-/Prüfungsleistungen/	schriftliche Prüfung
Prüfungsformen:	K2
Medienformen:	Beamer (Vorlesungsskript mit Folien ist vorhanden), Tafel
Literatur:	* S.M. Sze, K.K. Ng, Physics of Semiconductor Devices ISBN: 0471143235
* F. Thuselt: Physik der Halbleiterbauelemente, Einführendes Lehrbuch für Ingenieure und Physiker, Springer Verlag, Berlin Heidelberg 2005
* W. Demtröder: Atoms, Molecules and Photons, An Introduction to Atomic-, Molecular- and Quantum Physics, Springer Verlag, |
Berlin Heidelberg 2010
* L. Michalowsky: Magnettechnik, Grundlagen, Werkstoffe und Anwendungen, Vulkan Verlag, Essen 2006
Modulbezeichnung: Grundlagen der Hochfrequenztechnik

ggf. Modulniveau: Bachelor

ggf. Kurzle: GHF

ggf. Untertitel:

ggf. Lehrveranstaltungen:
- * Grundlagen der Hochfrequenztechnik I (WS)
- * Grundlagen der Hochfrequenztechnik II (SS)

Studiensemester:
ab 5. Studiensemester

Abhaltung:
SS/WS jährlich

Modulverantwortliche(r):
Prof. Dr. P. Haring Bolivar

Dozent(in):
Prof. Dr. P. Haring Bolivar, wiss. Mitarbeiter

Sprache:
deutsch

Zuordnung zum Curriculum:
Bachelor-Studiengang "Elektrotechnik"
Bachelor-Studiengang "Duales Studium Elektrotechnik"

Lehrform/SWS:
4 SWS (3 SWS Vorlesung, 1 SWS Übung)

Arbeitsaufwand:
Präsenzstudium: 60 h, Eigenstudium: 50 h, Prüfungsvorbereitung 40 h

Kreditpunkte:
5

Voraussetzungen nach Prüfungsordnung:
keine

Empfohlene Voraussetzungen:
keine

Modulziele / Angestrebte Lernergebnisse:
Inhaltskompetenzen (Verbenniveaus "W" Wissen; "V" Verstehen; "AW" Anwenden; "AN"; "E" Evaluieren):
1. Einführung in die HF-Technik (W,V)
2. Ausbreitung elektromagnetischer Strahlung (W,V)
 * Maxwellgleichungen
 * Die ebene Welle / Wellengrößen
 * Übergänge zwischen zwei Materialien
3. Passive Hochfrequenzbauelemente (W,V)
 * HF Verhalten von realen R, L und C Bauelementen
 * Beschreibung durch Streumatrizen (N-Tore)
 * Einfache Anwendungen (Leistungsteiler, Filter...)
4. HF-Wellenleiter (W,V)
 * Ersatzschaltbild eines Wellenleiters, Leitungsgleichung
 * Impedanztransformation und -anpassung
 * Leitungsdigramme (Smith chart, ...)
 * Wellenleiter
 * Koaxialleitungen
 * Stripline / Microstripline
 * Parallelplatten-Wellenleiter (TE-Wellen, TM-Wellen, cut-off,...)
 * Dispersion, Phasen und Gruppengeschwindigkeit
5. HF-Antennen (W,V)
 * Der Hertzsche Dipol
 * Eigenschaften von Antennen (Charakteristik, Gewinn, Wirkfläche, ..)

Methodenkompetenzen (Verbenniveaus "W" Wissen; "V" Verstehen; "AW" Anwenden; "AN"; "E" Evaluieren):
<p>| Studien-/Prüfungsleistungen/ | Prüfung |
| Prüfungsorten: | K2 |
| Medienformen: | Beamer (Vorlesungsskript mit Folien ist vorhanden), Tafel, Versuche |</p>
<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Grundlagen der Nachrichtentechnik</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Bachelor</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>GNT I</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>ab 2. Semester im Bachelor</td>
</tr>
<tr>
<td>Modulverantwortliche/</td>
<td>SS, jährlich</td>
</tr>
<tr>
<td>Dozent(in)</td>
<td>Prof. Dr. Ch. Ruland</td>
</tr>
<tr>
<td>Sprache</td>
<td>Dr. Natasa Zivic</td>
</tr>
<tr>
<td>Zuordnung zum</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Curriculum</td>
<td></td>
</tr>
<tr>
<td>Lehrform/SWS</td>
<td>Bachelor-Studiengang Elektrotechnik</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>Bachelor-Studiengang "Duales Studium Elektrotechnik"</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>Bachelor-Studiengang Informatik</td>
</tr>
<tr>
<td>Voraussetzungen</td>
<td>Bachelor-Studiengang "Duales Studium Informatik"</td>
</tr>
<tr>
<td>Prüfungsordnung</td>
<td>5</td>
</tr>
<tr>
<td>Empfohlene</td>
<td>keine</td>
</tr>
<tr>
<td>Modulziele /</td>
<td>keine</td>
</tr>
<tr>
<td>Angestrebte</td>
<td></td>
</tr>
<tr>
<td>Lernergebnisse</td>
<td></td>
</tr>
<tr>
<td>Inhalt</td>
<td></td>
</tr>
<tr>
<td>Architektur- und Referenzmodelle der Nachrichtentechnik (ISO-Referenzmodell, Shannon, ITU-T)</td>
<td></td>
</tr>
<tr>
<td>Charakteristiken des Übertragungskanals (Dämpfung, Störungen)</td>
<td></td>
</tr>
<tr>
<td>Modulationsarten</td>
<td></td>
</tr>
<tr>
<td>Multiplextechniken</td>
<td></td>
</tr>
<tr>
<td>Fehlererkennung und -korrekturverfahren</td>
<td></td>
</tr>
<tr>
<td>Protokollbeschreibung und -programmierung in der Nachrichtentechnik (Zustandsautomaten)</td>
<td></td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen</td>
<td>Fachprüfung</td>
</tr>
<tr>
<td>Prüfungsformen</td>
<td>K2</td>
</tr>
<tr>
<td>Medienformen</td>
<td>Vorlesungsskript, Beamer, Tafel</td>
</tr>
</tbody>
</table>

Die Studierenden kennen die nachrichtentechnischen Grundlagen, die der Kommunikationstechnologie und den Übertragungsnetzen zu Grunde liegen. Sie verstehen die Eigenschaften unterschiedlicher Technologien, damit sie im Berufsleben in der Lage sind, die richtige Technologie, die den Anforderungen ihrer Anwendungen am besten entspricht, auszuwählen. Ihnen ist das Vokabular und die Inhalte der Begriffe vertraut, die z.B. von Geräteherstellern und Netzbetreibern verwendet werden, um die technischen Charakteristiken von Übertragungsnetzen und -systemen zu beschreiben.
<table>
<thead>
<tr>
<th>Literatur</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>*Werner, Martin. Information und Codierung, 2. Auflage. Vieweg+Teubner, Wiesbaden 2009. (http://dx.doi.org/10.1007/978-3-8348-9550-9)</td>
<td></td>
</tr>
<tr>
<td>*Ohm, Jens-Rainer; Lüke, Hans Dieter. Signalübertragung, 11. Auflage. Springer Verlag, Heidelberg 2010. (http://dx.doi.org/10.1007/978-3-642-10200-4)</td>
<td></td>
</tr>
<tr>
<td>*Butz, Tilman. Fouriertransformation für Fußgänger, 6. Auflage. Vieweg+Teubner, Wiesbaden 2009. (http://dx.doi.org/10.1007/978-3-8348-9609-4)</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Grundlagen der optischen Nachrichtentechnik</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td>Bachelor</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>GONT</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>ab 5. Studiensemester</td>
</tr>
<tr>
<td>Abhaltung:</td>
<td>SS, jährlich</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Haring</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. E. Griese, Prof. Dr. P. Haring Bolivar, wiss. Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Bachelor-Studiengang "Elektrotechnik"</td>
</tr>
<tr>
<td></td>
<td>Bachelor-Studiengang "Duales Studium Elektrotechnik"</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>4 SWS (3 SWS Vorlesung, 1 SWS Übung)</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzstudium: 60 h, Eigenstudium: 50 h, Prüfungsvorbereitung: 40 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
<td>keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>* Mathematik für Elektrotechnik-Ingenieure I-III</td>
</tr>
<tr>
<td></td>
<td>* Grundlagen der Elektrotechnik I-III</td>
</tr>
<tr>
<td></td>
<td>* Grundlagen der Feldtheorie</td>
</tr>
<tr>
<td>Modulziele / Angestrebte Lernergebnisse:</td>
<td>Inhaltskompetenzen (Verbenniveaus "W" Wissen; "V"Verstehen; "AW"Anwenden; "AN"; "E" Evaluieren):</td>
</tr>
<tr>
<td></td>
<td>* Einführung in die Photonik, Literatur (W,V)</td>
</tr>
<tr>
<td></td>
<td>* Eigenschaften von Licht (W,V)</td>
</tr>
<tr>
<td></td>
<td>* Propagation von Licht, Strahlenoptik (W,V)</td>
</tr>
<tr>
<td></td>
<td>* Optische Wellenleiter (W,V)</td>
</tr>
<tr>
<td></td>
<td>* Optische Moden (W,V)</td>
</tr>
<tr>
<td></td>
<td>* Optische Resonatoren (W,V)</td>
</tr>
<tr>
<td></td>
<td>* Dispersion, Glasfasern (W,V)</td>
</tr>
<tr>
<td></td>
<td>* LED's (W,V)</td>
</tr>
<tr>
<td></td>
<td>* Laser (W,V)</td>
</tr>
<tr>
<td></td>
<td>* Photodioden (W,V)</td>
</tr>
<tr>
<td></td>
<td>* Displays (W,V)</td>
</tr>
<tr>
<td></td>
<td>* Optische Kommunikationssysteme (W,V)</td>
</tr>
<tr>
<td></td>
<td>Methodenkompetenzen (Verbenniveaus "W" Wissen; "V"Verstehen; "AW"Anwenden; "AN"; "E" Evaluieren):</td>
</tr>
<tr>
<td></td>
<td>* Grundlagen der Optischen Nachrichtentechnik (AW,AN)</td>
</tr>
<tr>
<td></td>
<td>* Grundlagen weiterer Photonischer Anwendungsbereiche (AW,AN)</td>
</tr>
<tr>
<td></td>
<td>* Genereller Aufbau, Funktion und Wirkungsweise von Wellenleitern, Glasfasern, Lasern, Modulatoren, Photodioden und Displays (AW,AN)</td>
</tr>
<tr>
<td></td>
<td>Bewertungskompetenzen (Verbenniveaus "W" Wissen; "V"Verstehen; "AW"Anwenden; "AN"; "E" Evaluieren):</td>
</tr>
<tr>
<td></td>
<td>* Verständnis zur Funktion optischer Kommunikationssysteme (AN, E)</td>
</tr>
</tbody>
</table>
Inhalt:

Das Modul "Grundlagen der optischen Nachrichtentechnik" vermittelt einen Einblick in Ansätze, Funktion und Systemintegration optischer Nachrichtenübertragungssysteme. In einem ersten Modulabschnitt (Prof. Griese) werden die wesentlichen Eigenschaften von Licht eingeführt, die Propagation von Licht beschrieben und die Grundlagen zur Beschreibung von passiven optischen Komponenten gelegt (Wellenleiter, Modenbegriff, Dispersion, Resonatoren, Glasfaser, ...). In einem zweiten Modulabschnitt (Prof. Haring Bolivar) werden aktive optoelektronische Komponenten, deren Funktion und Modellierung erläutert (Photodetektoren, Optische Speichermedien, Lichtquellen, Laser, ...). Die theoretischen Darstellungen werden durch anwendungsrelevante Beispiele erläutert, um einen vertieften Einblick in die Thematik zu gewähren und auch aktuelle Fragestellungen überblicken und verstehen zu können.

Literatur:

<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Grundlagen der Regelungstechnik</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Bachelor</td>
</tr>
<tr>
<td>ggf. Kurzziel</td>
<td>GRT</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td>Modulelement des Moduls Regelungstechnik (RT)</td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Abhaltung:</td>
<td>SS, jährlich</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>ab 5. Studiensemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. R. Mayr</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. R. Mayr, wiss. Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Bachelor-Studiengang "Elektrotechnik"</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>3 SWS (2 SWS Vorlesung + 1 SWS Übung)</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzstudium: 45 h, Eigenstudium: 55 h, Prüfungsvorbereitung: 20 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>4</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td>keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>* Mathematik für Elektrotechnik-Ingenieure I-III,</td>
</tr>
<tr>
<td></td>
<td>* Grundlagen der Elektrotechnik I-III,</td>
</tr>
<tr>
<td></td>
<td>* Grundlagen der Signal- und Systemtheorie</td>
</tr>
<tr>
<td>Modulziele / Angestrebte Lernergebnisse:</td>
<td>Kenntnisse:</td>
</tr>
<tr>
<td></td>
<td>* Verständnis der Zusammenhänge zwischen Signalen im Zeit- und im Frequenzbereich,</td>
</tr>
<tr>
<td></td>
<td>* Verständnis der Zusammenhänge zwischen linearen Differentialgleichungen und komplexen Übertragungsfunktionen,</td>
</tr>
<tr>
<td></td>
<td>* Verständnis für die Architektur und Wirkungsweise von regelungstechnischen Algorithmen</td>
</tr>
<tr>
<td></td>
<td>Fertigkeiten:</td>
</tr>
<tr>
<td></td>
<td>* Behandlung von linearen zeitinvarianten Systemen,</td>
</tr>
<tr>
<td></td>
<td>* Analyse von technischen Systemen im Frequenzbereich,</td>
</tr>
<tr>
<td></td>
<td>* Synthese von Regelalgorithmen,</td>
</tr>
<tr>
<td></td>
<td>* Anwendung von analytischen sowie graphischen Methoden,</td>
</tr>
<tr>
<td></td>
<td>Kompetenzen:</td>
</tr>
<tr>
<td></td>
<td>*Anwendung der Methoden der klassischen Regelungstechnik</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>* Signalflussplan, lineare und nichtlineare Komponenten</td>
</tr>
<tr>
<td></td>
<td>* Eigenschaften von Übertragungselementen</td>
</tr>
<tr>
<td></td>
<td>* typische Eingangssignale für Regelkreise</td>
</tr>
<tr>
<td></td>
<td>* Laplacetransformation, Grenzwertsätze der Laplacetransformation, komplexe Übertragungsfunktion</td>
</tr>
<tr>
<td></td>
<td>* Rücktransformation, Transformationstabelle</td>
</tr>
<tr>
<td></td>
<td>* charakteristische Gleichung</td>
</tr>
<tr>
<td></td>
<td>* Signalflussalgebra</td>
</tr>
<tr>
<td></td>
<td>* komplexe s-Ebene, Stabilität, periodisches Schwingungsverhalten</td>
</tr>
<tr>
<td></td>
<td>* Systeme erster und zweiter Ordnung, Totzeitelement, Integrator</td>
</tr>
<tr>
<td></td>
<td>*PID-Regelalgorithmen im geschlossenen Regelkreis</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen/</td>
<td>siehe Modulbeschreibung RT</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Prüfungsformen:</td>
<td>siehe Modulbeschreibung RT</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Präsentation, Demonstration mit Simulationssoftware (Kopierlizenz zur Weitergabe der Simulationssoftware an die Studierenden vorhanden)</td>
</tr>
</tbody>
</table>
| Literatur: | * Vorlesungsskript
* O. Föllinger: Regelungstechnik, ISBN 3-7785-2336-8 |
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Grundlagen der Signal- und Systemtheorie</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Bachelor</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>GSS</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>ab 3. Studiensemester</td>
</tr>
<tr>
<td>Abhaltung:</td>
<td>WS, jährlich</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. E. Griese</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. E. Griese, wiss. Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Bachelor-Studiengang „Elektrotechnik“</td>
</tr>
<tr>
<td></td>
<td>Bachelor-Studiengang „Duales Studium Elektrotechnik“</td>
</tr>
<tr>
<td></td>
<td>Bachelor-Studiengang „Informatik“</td>
</tr>
<tr>
<td></td>
<td>Bachelor-Studiengang „Duales Studium Informatik“</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>4SWS (2 SWS Vorlesung, 2 SWS Übung)</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzstudium: 60 h, Eigenstudium: 50 h, Prüfungsvorbereitung 40 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td>keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Mathematik für Elektrotechnik-Ingenieure I-II</td>
</tr>
<tr>
<td></td>
<td>Mathematik für Elektrotechnik-Ingenieure III, Teil I</td>
</tr>
<tr>
<td></td>
<td>Grundlagen der Elektrotechnik I-II</td>
</tr>
<tr>
<td>Modulziele / Angestrebte Lernergebnisse:</td>
<td>Nach erfolgreicher Absolvierung des Moduls besitzen die Studierenden die folgenden Kompetenzen:</td>
</tr>
<tr>
<td></td>
<td>Inhaltskompetenzen:</td>
</tr>
<tr>
<td></td>
<td>* Darstellung von periodischen Signalen durch komplexe und reelle FOURIER-Reihen</td>
</tr>
<tr>
<td></td>
<td>* Kenntnis der FOURIER-, LAPLACE- und Z-Transformation</td>
</tr>
<tr>
<td></td>
<td>* Kenntnis der Eigenschaften der FOURIER-, LAPLACE- und Z-Transformation</td>
</tr>
<tr>
<td></td>
<td>* Kenntnis der mathematischen Beschreibung linearer Systeme</td>
</tr>
<tr>
<td></td>
<td>Methodenkompetenzen:</td>
</tr>
<tr>
<td></td>
<td>* Beschreibung von Signalen und linearen Systemen im Zeit- und Frequenzbereich</td>
</tr>
<tr>
<td></td>
<td>* Spektralanalyse von Signalen mit Hilfe der FOURIER-Transformation</td>
</tr>
<tr>
<td></td>
<td>* Lösung gewöhnlicher Differentialgleichungen mit Hilfe der LAPLACE-Transformation</td>
</tr>
<tr>
<td></td>
<td>* Lösung von Differenzengleichungen mit Hilfe der Z-Transformation</td>
</tr>
<tr>
<td></td>
<td>* Mathematische Beschreibung linearer Systeme durch Differentialgleichungen</td>
</tr>
<tr>
<td></td>
<td>Bewertungskompetenzen:</td>
</tr>
<tr>
<td></td>
<td>Die zu erlernenden Methoden in diesem Modul sind aus Gründen des Aufwandes und im Interesse der Übersichtlichkeit auf</td>
</tr>
</tbody>
</table>
einfache elektrotechnische Systeme beschränkt. Die zu Grunde liegenden Modelle beschreiben diese Systeme dann aber im Rahmen der Theorie mit Hilfe mathematischer Methoden exakt. Deshalb kommt der Modellerstellung im Rahmen der Signal- und Systemtheorie eine sehr zentrale Rolle zu. Die Studierenden verbessern dadurch ihre Fähigkeiten,
* komplexe Zusammenhänge durch Modellierung zu erfassen und zu beschreiben,
* Probleme mit einem hohen Abstraktionsniveau zu erfassen und zu lösen.
Darauf hinaus verbessern die Studierenden ihr logisches Denken sowie ihre Strategie zum Wissenserwerb.

* Periodische Signale, Fourier-Reihen
* Lineare, zeitinvariante Systeme (Definition und Eigenschaften)
* Fourier-Transformation
* Laplace-Transformation
* Verallgemeinerte Funktionen (Distributionen)
* Z-Transformation
* Mathematische Beschreibung von linearen Systemen (Zustandsmodell) |

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen/</th>
<th>Fachprüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsformen:</td>
<td>K2</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Beamer (Vorlesungsskript ist vorhanden), Tafel, Versuche</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Halbleiter- und Schaltungstechnik</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td>Bachelor</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>HST</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td>Bauelemente und Schaltungstechnik (BeS), Grundlagen der Halbleiterphysik (GHP)</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>ab 3. Studiensemester</td>
</tr>
<tr>
<td>Abhaltung:</td>
<td>BeS im WS, GHP im SS, jährlich</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. M. Böhm, Prof. Dr. D. Ehrhardt</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. M. Böhm, Prof. Dr. D. Ehrhardt, wiss. Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Bachelor-Studiengang "Elektrotechnik"</td>
</tr>
<tr>
<td></td>
<td>Bachelor-Studiengang "Duales Studium Elektrotechnik"</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>8 SWS (4 SWS Vorlesung, 4 SWS Übung)</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzstudium: 105 h, Eigenstudium: 155 h, Prüfungsvorbereitung 40 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>10</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
<td>keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>* Mathematik für Elektrotechnik-Ingenieure I-II</td>
</tr>
<tr>
<td></td>
<td>* Grundlagen der Elektrotechnik I-II</td>
</tr>
<tr>
<td>Modulziele / Angestrebte Lernergebnisse:</td>
<td>Inhaltskompetenzen (BeS):</td>
</tr>
<tr>
<td></td>
<td>* Grundlagen der Bauelemente (Schwingkreisverhalten, Wärmeleitung); Widerstände; Kondensatoren; Induktivitäten; Homogene Halbleiter; Dioden; Transistoren; Transistoreigenschaften; Operationsverstärker; Leistungsverstärker und Spice</td>
</tr>
<tr>
<td></td>
<td>Inhaltskompetenzen (GHP):</td>
</tr>
<tr>
<td></td>
<td>* Physikalische und technologische Grundlagen der Halbleiterphysik, Grundlagen der Festkörperelektronik; Wasserstoffmodell; Chemische Bindungen; Kristalline Festkörper; Bändermodell des Halbleiters; Halbleitergleichungen, Ladungsträgertransport; pn-Übergang: Shockley'sches Modell; MO-Feldeffektransistor MOS-Inverter, Gatter Flip Flop, SRAM, DRAM-Halbleitertechnologie, Siliziumtechnologie, Technologische Verfahren, Herstellungsverfahren; Dielektrische und magnetische Werkstoffe</td>
</tr>
<tr>
<td></td>
<td>Methodenkompetenzen:</td>
</tr>
<tr>
<td></td>
<td>* Beschreibung von elektronischen Zuständen in Halbleiterbauelementen und -schaltungen</td>
</tr>
<tr>
<td></td>
<td>* Verständnis der mikroskopischen Grundlagen von Ladungsträgertransport</td>
</tr>
<tr>
<td></td>
<td>* Modellierung von elementaren Halbleiterbauelementen</td>
</tr>
<tr>
<td>Bewertungskompetenzen:</td>
<td>Die zu erlernenden Methoden in diesem Modul sind aus</td>
</tr>
</tbody>
</table>

Darüber hinaus verbessern die Studierenden ihr logisches Denken sowie ihre Strategie zum Wissenserwerb.

| Inhalt: | Die Studierenden kennen die Eigenschaften passiver Bauelemente, sie können diskrete Transistorschaltungen aus bipolaren Transistoren, JFETs oder MOSFETs berechnen. Die Studierenden können einfache OP-Schaltungen in Ihrer Wirkungsweise beschreiben und berechnen.
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Studien-/Prüfungsleistungen/</td>
<td>schriftliche Prüfung</td>
</tr>
<tr>
<td>Prüfungsformen:</td>
<td>K3</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Beamer (Vorlesungsskript mit Folien ist vorhanden), Tafel, Begleitmaterial auf kostenloser Daten-DVD vom Dozenten</td>
</tr>
</tbody>
</table>
* S.M. Sze, K.K. Ng, Physics of Semiconductor Devices ISBN: 04711143235
* F. Thuselt: Physik der Halbleiterbauelemente, Einführendes Lehrbuch für Ingenieure und Physiker, Springer Verlag, Berlin |
<table>
<thead>
<tr>
<th>Heidelberg 2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>* W. Demtröder: Atoms, Molecules and Photons, An Introduction to Atomic-, Molecular- and Quantum Physics, Springer Verlag, Berlin Heidelberg 2010</td>
</tr>
<tr>
<td>* L. Michalowsky: Magnettechnik, Grundlagen, Werkstoffe und Anwendungen, Vulkan Verlag, Essen 2006</td>
</tr>
</tbody>
</table>
Modulbezeichnung: **Halbleiterelektronik I**
ggf. Modulniveau: Master
ggf. Kürzel: HE I

<table>
<thead>
<tr>
<th>ggf. Untertitel</th>
<th>ggf. Lehrveranstaltungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studiensemester: ab 1. Studiensemester</td>
<td></td>
</tr>
<tr>
<td>Abhaltung: WS, jährlich</td>
<td></td>
</tr>
<tr>
<td>Modulverantwortliche(r): Prof. Dr. M. Böhm</td>
<td></td>
</tr>
<tr>
<td>Dozent(in): Prof. Dr. M. Böhm, wiss. Mitarbeiter</td>
<td></td>
</tr>
<tr>
<td>Sprache: deutsch</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zuordnung zum Curriculum</th>
<th>Master-Studiengang "Elektrotechnik"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lehrform/SWS:</td>
<td>4 SWS (2 SWS Vorlesung, 1 SWS Übung, 1 SWS Labor)</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzstudium: 60 h, Eigenstudium: 60 h, Prüfungsvorbereitung: 30 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kreditpunkte:</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
<td>keine</td>
</tr>
</tbody>
</table>

| Studien- | Fachprüfung |

93
<table>
<thead>
<tr>
<th>/Prüfungsleistungen/</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsformen:</td>
<td>K2</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Beamer (Vorlesungsskript mit Folien ist vorhanden), Tafel</td>
</tr>
<tr>
<td>Literatur:</td>
<td>* Böhm, M.: Halbleiterelektronik; Skript</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Halbleiterelektronik II</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>HE II</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>ab 1. Studiensemester</td>
</tr>
<tr>
<td>Abhaltung:</td>
<td>SS, jährlich</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. M. Böhm</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. M. Böhm, wiss. Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Master-Studiengang "Elektrotechnik"</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>3 SWS (2 SWS Vorlesung, 1 SWS Übung)</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzstudium: 45 h, Eigenstudium: 75 h, Prüfungsvorbereitung: 30 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td>keine</td>
</tr>
</tbody>
</table>

Empfohlene Voraussetzungen:

Die Lehrveranstaltung erfordert Vorkenntnisse der Mathematik für Elektrotechnik-Ingenieure I-III, Grundlagen der Halbleiterphysik und der Physik für Elektrotechnik-Ingenieure.

Modulziele / Angestrebte Lernergebnisse:

Inhalt:

Studien-

Fachprüfung
<table>
<thead>
<tr>
<th>Prüfungsleistungen/</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsformen:</td>
</tr>
<tr>
<td>K2</td>
</tr>
<tr>
<td>Medienformen:</td>
</tr>
<tr>
<td>Beamer (Vorlesungsskript mit Folien ist vorhanden), Tafel</td>
</tr>
<tr>
<td>Literatur:</td>
</tr>
<tr>
<td>* Böhm, M.: Halbleiterelektronik; Skript</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
</tr>
<tr>
<td>Studiensemester:</td>
</tr>
<tr>
<td>Abhaltung:</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
</tr>
<tr>
<td>Dozent(in):</td>
</tr>
<tr>
<td>Sprache:</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
</tr>
</tbody>
</table>
| Empfohlene Voraussetzungen: | * Mathematik für Elektrotechnik-Ingenieure I-II
 * Mathematik III, Teil I
 * Grundlagen der Hochfrequenztechnik |
| Modulziele / Angestrebte Lernergebnisse: | Inhaltskompetenzen (Verbenniveaus "W" Wissen; "V"Verstehen; "AW"Anwenden; "AN"; "E" Evaluieren) :
 1. Wellenleitung und Filterung (W, V)
 * Hohlleiter
 * HF-Filter (Anwendungen, Filterparameter: Güte, ...)
 * Leitungsresonator
 * Hohlraumresonator
 2. Hochfrequenz-Übertragungsstrecken (W, V)
 * Rauschen (Rauschfaktor, Rauschtemperatur, S/N ratio)
 * Rauschquellen (Oszillator-, Verstärker-, Kabel-, Antennenrauschen, ...)
 * Modulationsverfahren (Statistik des Schmalbandrauschens, Amplitudenmodulation, Phasenmodulation mit zeitdiskreten Signalen (2 PSK bis 256 QAM), Frequenzmodulation
 3. Bandbreite, Modulatoren und Demodulatoren (W, V)
 * Beispiele von Übertragungsstrecken: Leitungsstrecken (Kabel-TV) und Funkstrecken (Richtfunk, Satellitenübertragung, Radar, ...)
 4. Hochfrequenz-Verstärker und Oszillatoren (W, V)
 * Transistorverstärker, Tunneledioden
 * Empfangsverstärker (MMIC Leistungsverstärker, Reflexionsverstärker, ...)
 * Sendeverstärker (Klystron, Wanderfeldröhren, ...)
 * Oszillatoren (IMPATT, Gunn, Reflexklystron, Magnetron, ...)
 5. Hochfrequenzmischer (W, V) |
Prinzipien der Frequenzmischung (Direkte Multiplikation, nichtlineare Frequenzmischer)
* Diodenmischer (Schottky, ...)
* Varaktor (HBV, ...)

6. Antennensysteme (W, V)
* Dipolantennen (1/2, 1/4, Yagi), Spiralantennen
* Patchantennen
* Parabolspiegel und Hornstrahler
* Antennensarrays
* Adaptive / Intelligente Antennensysteme

Methodenkompetenzen (Verbenniveaus "W" Wissen; "V" Verstehen; "AW" Anwenden; "AN"; "E" Evaluieren):
* Berechnung und Dimensionierung von Wellenleitern (AW, AN)
* Berechnung und Dimensionierung von Übertragungsstrecken (AW, AN)
* Berechnung des Hochfrequenzverhaltens elementarer Schaltungen (AW, AN)
* Berechnung und Dimensionierung von Antennensystemen (AW, AN)

Bewertungskompetenzen (Verbenniveaus "W" Wissen; "V" Verstehen; "AW" Anwenden; "AN" Analysieren; "E" Evaluieren):
* Detailliertes Verständnis HF-technischer Denk- und Vorgehensweisen (AN, E)
* Kenntnis der Funktion wesentlicher HF-Komponenten (Übertragungsstrecken, Oszillatoren, Antennen, Mischer) (AN, E)
* Allgemeiner Überblick aktueller HF-relevanter Fragestellungen (z.B. adaptive Systeme, ...) (AN, E)

Inhalt:
Das Modul "Hochfrequenztechnik" vermittelt einen vertieften Einblick in die Hochfrequenztechnik und erlaubt wesentliche HF-Komponenten und Systeme verstehen, dimensionieren und modellieren zu können. Die Beschreibung bearbeitet sowohl integrierte Komponenten (Wellenleiter, Mischer, Oszillatoren, ...) als auch Übertragungsrelevante Aspekte (Antennen, Übertragungsstrecken, Signalmodulationsansätze, ...). Anhand der Beschreibung von HF-Bauelementen werden relevante theoretische Konzepte, die Ansätze für deren Beschreibung, deren Relevanz in der Anwendung erklärt, sowie moderne Fragestellungen erläutert.

Studien-/Prüfungsleistungen/ Fachprüfung
Prüfungsformen: K2
Medienformen: Beamer (Vorlesungsskript mit Folien ist vorhanden), Tafel, Versuche
<table>
<thead>
<tr>
<th>Literatur:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
</tr>
<tr>
<td>Abhaltung:</td>
</tr>
<tr>
<td>Studiensemester:</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
</tr>
<tr>
<td>Dozent(in):</td>
</tr>
<tr>
<td>Sprache:</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
</tr>
<tr>
<td>Inhalt:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen/</td>
</tr>
<tr>
<td>Prüfungsformen:</td>
</tr>
<tr>
<td>Medienformen:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung</td>
</tr>
<tr>
<td>--------------------------</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
</tr>
<tr>
<td>Studiensemester</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
</tr>
<tr>
<td>Dozent(in)</td>
</tr>
<tr>
<td>Sprache</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Lehrform/SWS</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
</tr>
<tr>
<td>Kreditpunkte</td>
</tr>
<tr>
<td>Voraussetzungen nach</td>
</tr>
<tr>
<td>Prüfungsordnung</td>
</tr>
<tr>
<td>Empfohlene Voraussetzten</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Gefahren und Risiken beim Einsatz der Kommunikations- und Informationstechnik</td>
</tr>
<tr>
<td>* Kurzer historischer Rückblick auf kryptographische Verfahren</td>
</tr>
<tr>
<td>* Grundbegriffe der Kryptographie</td>
</tr>
<tr>
<td>* Symmetrische kryptographische Verfahren</td>
</tr>
<tr>
<td>* Modes of Operation</td>
</tr>
<tr>
<td>* Message Authentication Codes</td>
</tr>
<tr>
<td>* Bitstromverschlüsselung, Zufallszahlengenerierung</td>
</tr>
<tr>
<td>* Arithmetik auf endlichen Körpern (GF(p), GF(2**n))</td>
</tr>
<tr>
<td>* Hashfunktionen, Geburtstagsparadoxon</td>
</tr>
<tr>
<td>* Asymmetrische kryptographische Verfahren (RSA, El Gamal, DSS, elliptische Kurvenkryptographie)</td>
</tr>
<tr>
<td>* Digitale Signaturen, Blinde Signaturen, Einmal-Signaturen, Beweisbar sichere Verfahren</td>
</tr>
<tr>
<td>* Key Management</td>
</tr>
<tr>
<td>* Seitenkanalattacken, Implementationsgesichtspunkte</td>
</tr>
</tbody>
</table>

<p>| Studien-/Prüfungsleistungen | Fachprüfung |</p>
<table>
<thead>
<tr>
<th>Prüfungsformen</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen</td>
<td>Vorlesungsskript, Beamer, Tafel</td>
</tr>
</tbody>
</table>
| Literatur | * B. Schneier: Applied Cryptography, Wiley
* C. Paar, J. Pelzl: Understanding Cryptography, Springer Verlag
* A. Salomaa: Public-Key Cryptography, Springer Verlag
* D. Davies, W. Price: Security for Computer Networks, Wiley & Sons
* D. Stinson: Cryptography, Chapman & Hall/CRC
* C. Ruland: Informationssicherheit, Datacom-Verlag |
<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Kommunikations- und Informationssicherheit II</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>IKS II</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
<td></td>
</tr>
<tr>
<td>Studiensemester</td>
<td>ab 2. Semester im Master SS, jährlich</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. Ch. Ruland</td>
</tr>
<tr>
<td>Dozent(in)</td>
<td>Prof. Dr. Ch. Ruland</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Wahlpflichtmodul im Masterstudium Informatik, Wahlfach im Masterstudium Elektrotechnik, Studienmodell Kommunikationstechnik</td>
</tr>
<tr>
<td>Lehrform/SWS</td>
<td>4 SWS (2 V, 2 P)</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>Präsent: 45 h, Eigenstudium: 60 h, Prüfungsvorbereitung: 45 h</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
<td>IKS I</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td></td>
</tr>
</tbody>
</table>

Modulziele / Angestrebte Lernergebnisse

Inhalt

* kryptographische Protokolle zur Datenintegrität, Authentikation, Key Management, Non-Repudiation
* Sicherheitsmodule, Chipkarten
* Zertifikate, Public Key Infrastrukturen
* Common Criteria, Evaluation und Zertifizierung
* Einbindung kryptographischer Verfahren in Kommunikationssysteme (physical layer, LAN, Mobilfunk, WLAN, Bluetooth, ...)
* Internet Security, SSL/TLS, SRTP,..
* Packetfilter und Firewalls
* Informationssicherheit bei eCommerce und Industrieanwendungen (Banking, Automotive, Smart Grid, Smart Metering, ...)
* Anonyme Kommunikation
* Sicherheitsmanagement
* Übersicht über Standards auf dem Gebiet IT-Sicherheit

Studien-/Prüfungsleistungen

Mündliche Prüfung, erfolgreiche Teilnahme am Praktikum
<table>
<thead>
<tr>
<th>Prüfungsformen</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen</td>
<td>Vorlesungsskript, Beamer, Tafel</td>
</tr>
</tbody>
</table>
| Literatur | * C. Eckert: IT-Sicherheit, Oldenbourg Verlag,
 * H. Kersten: Sicherheit in der Informationstechnik, Oldenbourg Verlag
 * M. a Campo, N. Pohlmann: Virtual Private Networks, MITP Verlag
 * N. Pohlmann: Firewall-Systeme, MITP Verlag |
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Kosten- und Erlösrechnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Bachelor</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>KER</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Abhaltung:</td>
<td>SS, jährlich</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>ab 1. Studiensemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. G. Hoch</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. G. Hoch, wiss. Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Bachelor-Studiengang Elektrotechnik</td>
</tr>
<tr>
<td></td>
<td>Bachelor-Studiengang "Duales Studium Elektrotechnik"</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>4 SWS (2 VO + 2 UE)</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzstudium: 60 h, Eigenstudium: 80 h, Prüfungsvorbereitung: 40 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>6</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
<td>keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>keine</td>
</tr>
</tbody>
</table>

Modulziele / Angestrebte Lernergebnisse:

* In der Grundlageneinheit erlernen die Studierenden die begrifflichen und die kostentheoretischen Grundlagen sowie die verschiedenen Rechnungsziele der Kosten- und Erlösrechnung.
* Die zweite Einheit bringt den Studierenden den Ablauf der Kosten- und Erlösrechnung näher und geht detailliert auf die Kostenarten-, Kostenstellen- und Kostenträgerrechnung ein.
* In der dritten Einheit lernen die Studierenden den Umgang mit der kalkulatorischen Erfolgsrechnung sowie ausgewählte Entscheidungsrechnungen kennen.

Inhalt:

* Begriffliche Grundlagen und Rechnungsziele der Kosten- und Erlösrechnung
* Abgrenzung der Kosten- und Erlösrechnung vom externen Rechnungswesen
* Ablauf der Kosten- und Erlösrechnung
* Kostenartenrechnung
* Kostenstellenrechnung
* Kostenträgerrechnung
* kalkulatorische Erfolgsrechnung
* ausgewählte Entscheidungsrechnung

(Dieses Modul ist identisch mit dem Modul M1-3 des Studiengangs Bachelor of Science in Betriebswirtschaftslehre.)
<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen/</th>
<th>Leistungsnachweis (LN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsformen:</td>
<td>K1</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Laborpraktikum Allgemeine Elektrotechnik</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td>Bachelor</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>AE-P</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>ab 4. Studiensemester</td>
</tr>
<tr>
<td>Abhaltung:</td>
<td>WS und SS</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. E. Griese</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. E. Griese, Prof. Dr. P. Haring Bolivar, Prof. Dr. Ch. Ruland, Prof. Dr. K.-D. Kuhnert</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Bachelor-Studiengang "Elektrotechnik"</td>
</tr>
<tr>
<td></td>
<td>Bachelor-Studiengang "Duales Studium Elektrotechnik"</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>2 SWS Praktikum</td>
</tr>
<tr>
<td>ArbeitSAufwand:</td>
<td>Präsenzstudium: 20 h, Eigenstudium: 40 h Vor- und Nachbereitung der Versuche</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>2 LP</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td>keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>keine</td>
</tr>
<tr>
<td>Modulziele / Angestrebte Lernergebnisse:</td>
<td>Nach erfolgreicher Absolvierung des Moduls besitzen die Studierenden die folgenden Kompetenzen:</td>
</tr>
<tr>
<td></td>
<td>* Herstellung von Hologrammen</td>
</tr>
<tr>
<td></td>
<td>* Eigenschaften und Verhalten von elektrischen Leitungen</td>
</tr>
<tr>
<td></td>
<td>* Durchführung und Bewertung von Frequenzbereichsanalysen</td>
</tr>
<tr>
<td></td>
<td>* Elementare Methoden des maschinellen Lernens</td>
</tr>
<tr>
<td></td>
<td>Die Studierenden lernen ausgewählte Themen aus dem Bereich der Elektro- und Informationstechnik kennen und erweitern damit ihr Wissen und ihre Kompetenz für ihr Berufsleben oder ein nachfolgenden Master-Studium.</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Das Modul "Laborpraktikum - Allgemeine Elektrotechnik" vermittelt praktische Fertigkeiten im Bereich der allgemeinen Elektrotechnik. In Gruppen von 3-4 Studierenden werden Versuche zu folgenden Themen durchgeführt:</td>
</tr>
<tr>
<td></td>
<td>* Holografie</td>
</tr>
<tr>
<td></td>
<td>* HF-Leitungen</td>
</tr>
<tr>
<td></td>
<td>* Frequenzbereichsanalyse</td>
</tr>
<tr>
<td></td>
<td>* Maschinelles Lernen</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen/Prüfungsformen:</td>
<td>Vollständiger, schriftlicher Laborbericht (je Versuch) mit Testat und Abgabegespräch</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Versuchsanleitungen werden per Download zur Verfügung gestellt</td>
</tr>
<tr>
<td>Literatur:</td>
<td>Weitergehende Literatur wird in den Versuchsanleitungen zur Verfügung gestellt.</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Laborpraktikum Automatisierungs- und Energietechniktechnik</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>AEnT-P</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Abhaltung:</td>
<td>SS, jährlich</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>ab 3. Studiensemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. G. Schröder</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. M. Pacas, Prof. Dr. M. Kizilcay, Prof. Dr. R. Mayr, Prof. Dr. H. Roth, Prof. Dr. G. Schröder, (Nachfolge Prof. Kramp)</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Master-Studiengang "Elektrotechnik"</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>Praktikum, 3 SWS</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzstudium 45 h; Vor- und Nachbereitung 105 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td>keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Pflichtmodule der Automatisierungstechnik</td>
</tr>
<tr>
<td>Modulziele / Angestrebte Lernergebnisse:</td>
<td>Die Studierenden experimentieren im praktischen Umgang mit typischen Fragestellungen aus allen schwerpunktmäßig in der Automatisierungstechnik tätigen Lehrstühlen</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Es sind Laborversuche zu absolvieren, die dass gesamte Spektrum der an den beteiligten Lehrstühlen behandelter Forschungsthemen repräsentieren.</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen/</td>
<td>Leistungsnachweis, Befragung am Versuchsstand, schriftliche testierte Ausarbeitung</td>
</tr>
<tr>
<td>Prüfungsformen:</td>
<td>P</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Versuchsanleitungen zu den jeweiligen Versuchen, verfügbar an den beteiligten Lehrstühlen bzw. in Moodle</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Laborpraktikum Bauelemente und Schaltungstechnik</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td>Bachelor</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>BeS-P</td>
</tr>
</tbody>
</table>

ggf. Untertitel	
ggf. Lehrveranstaltungen:	
Studiensemester:	ab 3. Studiensemester
Abhaltung:	SS, jährlich
Modulverantwortliche(r):	Prof. Dr. D. Ehrhardt
Dozent(in):	Prof. Dr. D. Ehrhardt
Sprache:	deutsch
Zuordnung zum Curriculum:	Bachelor-Studiengang "Elektrotechnik"
	Bachelor-Studiengang "Duales Studium Elektrotechnik"
Lehrform/SWS:	Laborpraktikum 2 SWS
Arbeitsaufwand:	Präsenzzeit: 30 h
	Selbststudium: 30 h
Kreditpunkte:	2 LP
Voraussetzungen nach Prüfungsordnung:	keine

| Empfohlene Voraussetzungen: | Bauelemente und Schaltungstechnik |

Modulziele / Angestrebte Lernergebnisse:	Nachdem die Studierenden das Modul absolviert haben, können sie
	* das Layout einer Platine entwickeln,
	* die Eigenkapazität einer Spule bestimmen
	* die Funkenlöschung am Relais ausführen
	* die charakteristischen Eigenschaften eines Kleintransformators ermitteln
	* linear geregelte Netzteile berechnen
	* Schaltungen mit bipolaren Transistoren berechnen und simulieren
	* die Kennlinien eines JFETs ermitteln

Inhalt:	* Platinentwurf
	* Spule und Schwingkreis
	* Messungen an Kleinrelais
	* Kleintransformator, Gleichrichter und Spannungsregler
	* Transistor als Schalter und Verstärker
	* Arbeitspunktstabilisierung
	* Sperrschicht-Feldeffekt-Transistoren
	* Simulieren mit SPICE

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen/</th>
<th>Schriftlicher Laborbericht</th>
</tr>
</thead>
</table>

| Prüfungsformen: | P |

| Medienformen: | Versuchsanleitung und Begleitmaterial auf kostenloser Daten-DVD vom Dozenten |

<p>| Literatur: | * E. Böhmer; Elemente der angewandten Elektronik; Vieweg Verlag |</p>
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Laborpraktikum Elektrische Messtechnik</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Bachelor</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>EMT-P</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td>Modulelement des Moduls "Elektrotechnisches Praktikum"</td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>ab 3. Studiensemester</td>
</tr>
<tr>
<td>Abhaltung:</td>
<td>WS, jährlich</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. E. Griese</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Dipl.-Ing. C. Dietrich, Dr. U. Schmidt</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Bachelor-Studiengang "Elektrotechnik"</td>
</tr>
<tr>
<td></td>
<td>Bachelor-Studiengang "Duales Studium Elektrotechnik"</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>Praktikum, 2 SWS</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzstudium: 30 h, Eigenstudium: 30 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>2 LP</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td>keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>* Mathematik für Elektrotechnik-Ingenieure I</td>
</tr>
<tr>
<td></td>
<td>* Elektrische Messtechnik</td>
</tr>
<tr>
<td></td>
<td>* Grundlagen der Elektrotechnik I und II</td>
</tr>
<tr>
<td>Modulziele / Angestrebte Lernergebnisse:</td>
<td>* Praktische Anwendung von Messgeräten und Messverfahren zur Bestimmung elektrischer Größen</td>
</tr>
<tr>
<td></td>
<td>* Erkennung und Vermeidung verschiedener Messfehler</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Das Modul "Praktikum Elektrische Messtechnik" vermittelt praktische Kenntnisse bei der Lösung messtechnischer Problemstellungen. Es werden folgende Versuche durchgeführt:</td>
</tr>
<tr>
<td></td>
<td>* Elektronenstrahloszilloskop</td>
</tr>
<tr>
<td></td>
<td>* Oszilloskop</td>
</tr>
<tr>
<td></td>
<td>* Kalibrieren</td>
</tr>
<tr>
<td></td>
<td>* Widerstandsbestimmung</td>
</tr>
<tr>
<td></td>
<td>* Gleichstrombrücken</td>
</tr>
<tr>
<td></td>
<td>* Wechselstrombrücken</td>
</tr>
<tr>
<td></td>
<td>* Gleichspannungsmessverstärker</td>
</tr>
<tr>
<td></td>
<td>* Wechselspannungsmessverstärker</td>
</tr>
<tr>
<td></td>
<td>Die Studierenden erlangen die Kompetenz, elektrische Größen messtechnisch zu erfassen.</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen/</td>
<td>Leistungsnachweis (LN), Vollständiger, schriftlicher Laborbericht (je Versuch) mit Testat und Abgabegespräch</td>
</tr>
<tr>
<td>Prüfungsformen:</td>
<td>P</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Versuchsanleitungen werden per Download zur Verfügung gestellt</td>
</tr>
<tr>
<td>Literatur:</td>
<td>* Stöckl-Winterling: Elektrische Messtechnik, B.G. Teubner Stuttgart</td>
</tr>
<tr>
<td></td>
<td>* W. Schmusch: Elektronische Messtechnik Vogel Verlag</td>
</tr>
<tr>
<td></td>
<td>* E. Schrüfer: Elektrische Messtechnik, Hanser Verlag</td>
</tr>
<tr>
<td></td>
<td>* Friedrich: Tabellenbuch Elektronik Elektrotechnik, Dümmler Verlag</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Laborpraktikum Elektrische Signalübertragung</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>ESÜ-P</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>ab 1. Studiensemester</td>
</tr>
<tr>
<td>Abhaltung:</td>
<td>SS, jährlich</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. E. Griese</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. E. Griese, wiss. Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Master-Studiengang "Elektrotechnik"</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>2 SWS Praktikum</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzstudium: 30 h, Eigenstudium: 60 h Vor- und Nachbereitung der Versuche</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>3 LP</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
<td>keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Teilnahme an der Lehrveranstaltung "Elektrische Signalübertragung"</td>
</tr>
<tr>
<td>Modulziele / Angestrebte Lernergebnisse:</td>
<td>Nach erfolgreicher Absolvierung des Moduls besitzen die Studierenden die folgenden Kompetenzen:</td>
</tr>
<tr>
<td>Inhaltkompetenzen:</td>
<td>* Kenntnis von Berechnungs- und Messverfahren für Signale auf Leitungen</td>
</tr>
<tr>
<td></td>
<td>* Kenntnis von Berechnungs- und Messverfahren zur Charakterisierung von Leitungen</td>
</tr>
<tr>
<td></td>
<td>* Kenntnis von grundlegenden Schaltungen zur Verbesserung der Signalintegrität</td>
</tr>
<tr>
<td>Methodenkompetenzen:</td>
<td>* Methoden zur Charakterisierung von Leitungen</td>
</tr>
<tr>
<td></td>
<td>* Methoden zur messtechnischen Ermittlung von Signalen auf elektrischen Leitungen</td>
</tr>
<tr>
<td>Bewertungskompetenzen:</td>
<td>Die durch dieses Modul vermittelten Bewertungskompetenzen beziehen sich ausschließlich auf fachliche Aspekte der Signal- und Informationsübertragung.</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Das Modul "Labor Elektrische Signalübertragung" vermittelt praktische Fertigkeiten auf dem Gebiet der elektrischen Signalübertragung. In Gruppen von ca. 4 Studierenden werden verschiedene Versuche zu folgenden Themen durchgeführt:</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>* Berechnung und messtechnische Bestimmung von Leitungsparametern</td>
</tr>
<tr>
<td></td>
<td>* Berechnung und Erstellung von Anpassungsschaltungen durch Stichleitungen</td>
</tr>
<tr>
<td></td>
<td>* Simulation und Messung sinusförmiger Vorgänge auf Leitungen</td>
</tr>
<tr>
<td></td>
<td>* Simulation und Messung transienter Vorgänge auf Leitungen</td>
</tr>
<tr>
<td></td>
<td>* TDR-Messungen auf Leitungen</td>
</tr>
<tr>
<td></td>
<td>* Anpassungsschaltungen für digitalen Verbindungsstrukturen</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen/</td>
<td>Vollständiger, schriftlicher Laborbericht (je Versuch) mit Testat und Abgabegespräch,</td>
</tr>
<tr>
<td>Prüfungsformen:</td>
<td>P</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Versuchsanleitungen werden per Download zur Verfügung gestellt</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Laborpraktikum Kommunikationstechnik</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>KT-P</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Abhaltung:</td>
<td>WS/SS, halbjährlich</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>ab 3. Studiensemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Ch. Ruland</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Ch. Ruland, Prof. Dr. O. Loffeld, Prof. Dr. P. Haring Bolivar, Prof. Dr. E. Griese, wiss. Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Master-Studiengang "Elektrotechnik"</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>Praktikum, 2 SWS</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenztudium: 30 h Versuchsdurchführung, Eigenstudium: 120 h Vor- und Nachbereitung der Versuche</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5 LP</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
<td>keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>* Photonik I und II (ggf. als Parallelveranstaltung) * Communications Engineering I und II (ggf. als Parallelveranstaltung) * Digitale Kommunikationstechnologie I und II (ggf. als Parallelveranstaltung)</td>
</tr>
<tr>
<td></td>
<td>Methodenkompetenzen: Methoden zur Charakterisierung von Komponenten und Systemen der Kommunikationstechnik</td>
</tr>
<tr>
<td></td>
<td>Bewertungskompetenzen: Die durch dieses Modul vermittelten Bewertungskompetenzen beziehen sich ausschließlich auf fachliche Aspekte der Kommunikationstechnik.</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Das Modul "Laborpraktikum Kommunikationstechnik" vermittelt praktische Fertigkeiten auf den grundlegenden Gebieten der Kommunikationstechnik. In Gruppen von ca. 4 Studierenden werden verschiedene Versuche zu den Themen * Allgemeine Nachrichtentechnik * Photonik * Digitale Kommunikationstechnologie durchgeführt.</td>
</tr>
<tr>
<td>Studien-</td>
<td>Vollständiger, schriftlicher Laborbericht (je Versuch) mit Testat</td>
</tr>
<tr>
<td>/Prüfungsleistungen/ und Abgabegespräch</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Prüfungsformen: P</td>
<td></td>
</tr>
<tr>
<td>Medienformen: Versuchsanleitungen werden per Download zur Verfügung gestellt</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>* Literatur und Vorlesungsskripte von DKT I, DKT II, CE I, CE II, PHO I, PHO II</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Laborpraktikum Leistungselektronik und Antriebstechnik</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td>Bachelor</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>LEA-P</td>
</tr>
</tbody>
</table>

| ggf. Untertitel | Modulelement im Modul Leistungselektronik und Antriebstechnik |

<table>
<thead>
<tr>
<th>ggf. Lehrveranstaltungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abhaltung:</td>
</tr>
<tr>
<td>Studiensemester:</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
</tr>
<tr>
<td>Dozent(in):</td>
</tr>
<tr>
<td>Sprache:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zuordnung zum Curriculum</th>
<th>Bachelor-Studiengang "Elektrotechnik"</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bachelor-Studiengang "Duales Studium Elektrotechnik"</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>Praktikum, 2 SWS</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzstudium: 30 h, Eigenstudium 30 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>2</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
<td>Keine</td>
</tr>
</tbody>
</table>

| Empfohlene Voraussetzungen: | Kenntnisse der Modulelemente: Leistungselektronik und Elektrische Maschinen und Antriebe |

<table>
<thead>
<tr>
<th>Modulziele / Angestrebte Lernergebnisse:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Studierenden experimentieren an typischen Aufgabenstellungen aus den Bereichen der elektrischen Maschinen und Leistungselektronik. Sie analysieren, berechnen und beschreiben das stationäres Verhalten der wichtigsten el. Maschinen und Schaltungen der Leistungselektronik</td>
</tr>
<tr>
<td>Sie können die grundlegenden Verfahren zur Messung der stationären Kennlinien zur Darstellung von ihren physikalischen Charakteristiken anwenden.</td>
</tr>
<tr>
<td>Die Studierenden erwerben die Fähigkeit, Laboraufgaben in einer Gruppe durchzuführen, Ergebnisse in technischen schriftlichen Berichten darzustellen sowie entsprechende Erklärungen abzufassen und in einem Kolloquium zu präsentieren.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalt:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laborversuche zu den Grundtypen der elektrischen Maschinen (Gleichstrom / Drehstrom-Asynchron / Drehstrom-Synchron) und Grundschaltungen der Leistungselektronik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen/Prüfungsformen:</th>
<th>Leistungsnachweis (LN)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td>Praktische Laborübungen</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td>Schriftliche Laboranleitungen, am Lehrstuhl erhältlich.</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Laborpraktikum Messsysteme</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------------------</td>
<td></td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
<td></td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>MS-P</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ggf. Untertitel</th>
<th>ggf. Lehrveranstaltungen:</th>
</tr>
</thead>
</table>

Abhaltung:	SS, jährlich
Studiensemester:	ab 1. Studiensemester
Modulverantwortliche(r):	Prof. Dr. E. Griese
Dozent(in):	Dipl.-Inform. C. Dietrich
Sprache:	deutsch

Zuordnung zum Curriculum	Master-Studiengang "Elektrotechnik"
Lehrform/SWS:	Praktikum, 2 SWS
Arbeitsaufwand:	Präsenzstudium: 30 h, Eigenstudium: 30 h
Kreditpunkte:	2 LP
Voraussetzungen nach Prüfungsordnung	keine

<table>
<thead>
<tr>
<th>Empfohlene Voraussetzungen:</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>* Erkennung und Vermeidung verschiedener Messfehler.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalt:</th>
<th>Das Modul "Laborpraktikum Messsysteme" vermittelt praktische Kenntnisse bei der Lösung messtechnischer Problemstellungen. Es werden folgende Versuche durchgeführt:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>* Temperaturmessung</td>
</tr>
<tr>
<td></td>
<td>* Längenmessung</td>
</tr>
<tr>
<td></td>
<td>* Schwingungsmessung</td>
</tr>
<tr>
<td></td>
<td>* Kraftmessung</td>
</tr>
<tr>
<td></td>
<td>* Messwertübertragung</td>
</tr>
<tr>
<td></td>
<td>* Spezialverstärker</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen/</th>
<th>Leistungsnachweis (LN), Vollständiger, schriftlicher Laborbericht (je Versuch) mit Testat und Abgabegespräch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsformen:</td>
<td>P</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Versuchs anleitungen werden per Download zur Verfügung gestellt</td>
</tr>
<tr>
<td>Literatur:</td>
<td>* W. Kaspers, H.-J- Küfner: Messen, Steuern, Regeln</td>
</tr>
<tr>
<td></td>
<td>* Profos: Handbuch der industriellen Messtechnik</td>
</tr>
<tr>
<td></td>
<td>* R. Grabowski: Sensoren und Aktoren</td>
</tr>
<tr>
<td></td>
<td>* A. Freudenberger: Prozessmesstechnik</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Laborpraktikum Mobile Robotik</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Abhaltung:</td>
<td>WS, jährlich</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>ab 1. Studiensemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. K.-D. Kuhnert</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. K.-D. Kuhnert / wiss. Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch/englisch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Master-Studiengang "Elektrotechnik"</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>2 SWS</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzstudium: 30 h, Eigenstudium: 60 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>3 LP</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td>keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>keine</td>
</tr>
</tbody>
</table>
| Modulziele / Angestrebte Lernergebnisse: | Fachliche Kompetenzen:
* können die grundlegenden Sensoren innerhalb der mobilen Robotik beschreiben
* können Sensordaten auswerten
* können ein minimales verhaltensbasiertes System synthetisieren
* können mit Hilfe objektorientierter Frameworks unter C++ Navigation programmieren
Soziale Kompetenzen:
Die Aufgaben werden in Kleingruppen bearbeitet und jeweils kurz präsentiert. Dadurch wird die Fähigkeit der Zusammenarbeit und die knappe, aussagekräftige Darstellung von Inhalten trainiert.
Fachliche Kompetenzen: 75 %
Soziale Kompetenzen: 25 % |
| Inhalt: | Anwendung der Vorlesungsinhalte von „Mobile Robotik“ auf die Simulation der institutseigenen Roboter. In kleinen Schritten wird das Verhalten des Roboters von relativ einfachen, hin zu komplexeren Handlungen aufgebaut
* Kommunikation mit den institutseigenen APIs der Roboter unter C++
* Einfache, statische Bewegungsabläufe implementieren
* Auswertung von Sensordaten
* Sensorgesteuerte Echtzeitprogrammierung |
<p>| Studien-/Prüfungsleistungen/ Leistungsnachweis (LN) |
| Prüfungsformen: | P |
| Medienformen: | Beamer, Computerdemonstrationen, Hand-outs |</p>
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Laborpraktikum Nachrichtentechnik</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Bachelor</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>NT-P</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Abhaltung:</td>
<td>WS oder SS, jährlich</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>ab 4. Studiensemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. Ch. Ruland</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. Ch. Ruland, wiss. Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Bachelor-Studiengang "Elektrotechnik"</td>
</tr>
<tr>
<td></td>
<td>Bachelor-Studiengang "Duales Studium Elektrotechnik"</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>2 SWS Praktikum</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzstudium: 30 h, Eigenstudium: 30 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>2</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td>keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Grundlagen der Nachrichtentechnik</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Einführung in Simulink und Mathlab</td>
</tr>
<tr>
<td></td>
<td>1. Einfache LeitungsCodes (NRZ-I, AMI, Manchester). Codierung und Decodierung, spektrale Eigenschaften (Gleichanteilsfreiheit, Taktgehalt, Bandbreitenbedarf)</td>
</tr>
<tr>
<td></td>
<td>2. Systematischer Hammingcode, Realisierung von Coder und Decoder mit XORs sowie einer Look-up-table zur Syndromdecodierung.</td>
</tr>
<tr>
<td></td>
<td>4. DS-CDMA. idealisierte CDMA Übertragung mit Walshfolge Orthogonalität der Codefolgen, spektrale Spreizung</td>
</tr>
<tr>
<td></td>
<td>5. Datenkompression, Auftrittswahrscheinlichkeiten, Codebaum (Shannon-Fano und/oder Huffman), Kompressionsgrad</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen/</td>
<td>Anwesenheit, Praktikumsberichte</td>
</tr>
<tr>
<td>Prüfungsformen:</td>
<td>P</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Simulink, Matlab</td>
</tr>
<tr>
<td>Literatur:</td>
<td>Wird in der Veranstaltung bekannt gegeben.</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Laborpraktikum Nichtlineare Regelungstechnik</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>NRT-P</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Abhaltung:</td>
<td>WS/SS, halbjährlich</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>ab 1. Studiensemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. H. Roth</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. H. Roth, wiss. Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Masterstudiengang "Elektrotechnik"</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>3 SWS Praktikum</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzstudium: 45 h, Eigenstudium: 75 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>4</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
<td>keine</td>
</tr>
<tr>
<td>Empfohlene</td>
<td>* Grundlagen der Regelungstechnik (Bachelor)</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>* Digitale Regelungstechnik (Bachelor)</td>
</tr>
<tr>
<td>* Nichtlineare Regelungstechnik</td>
<td></td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Praktische Vertiefung an Experimenten der in den Vorlesung "Digitale Regelungstechnik" und "Nichtlineare Regelungstechnik" erworbenen Kenntnisse zur nichtlinearen und digitalen Regelung.</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen/Leistungsnachweis</td>
<td>Leistungsnachweis</td>
</tr>
<tr>
<td>Prüfungsformen:</td>
<td>P</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>* Versuchsunterlagen</td>
</tr>
<tr>
<td>Literatur:</td>
<td>Roth, H.: Versuchsbeschreibung zum NRT-Praktikum</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Laborpraktikum Programmierung /Programmierpraktikum für Elektrotechniker</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td>Bachelor</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>PRO-P</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>ab 2. Studiensemester</td>
</tr>
<tr>
<td>Abhaltung:</td>
<td>SS, jährlich</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. E. Griese</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. E. Griese, Prof. Dr. H. Roth, Prof. Dr. G. Schröder, Prof. Dr. R. Obermaisser</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Bachelor-Studiengang "Elektrotechnik" Bachelor-Studiengang "Duales Studium Elektrotechnik"</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>2 SWS Praktikum</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzstudium: 30 h, Eigenstudium: 60 h Vor- und Nachbereitung der Versuche</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>3 LP</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
<td>keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Teilnahme an der Lehrveranstaltung "Algorithmen und Datenstrukturen"</td>
</tr>
<tr>
<td>Modulziele / Angestrebte Lernergebnisse:</td>
<td>Nach erfolgreicher Absolvierung des Moduls besitzen die Studierenden die folgenden Kompetenzen:</td>
</tr>
<tr>
<td>Inhaltsskompetenzen:</td>
<td>* Grundlegende Bestandteile von Algorithmen</td>
</tr>
<tr>
<td></td>
<td>* Elementarer Konstrukte für die Manipulation des Steuer- und Datenflusses</td>
</tr>
<tr>
<td></td>
<td>* Selbstdefinierter Datenstrukturen und Operationen</td>
</tr>
<tr>
<td></td>
<td>* Verschiedenen Datentypen und Operationen</td>
</tr>
<tr>
<td></td>
<td>* Modularer Aufbau von Programmen</td>
</tr>
<tr>
<td>Methodenkompetenzen:</td>
<td>* Entwicklung von Programmen in der Programmiersprache C für unterschiedliche Anwendungsgebiete</td>
</tr>
<tr>
<td></td>
<td>* Entwicklung von Matlab-Routinen</td>
</tr>
<tr>
<td>Bewertungskompetenzen:</td>
<td>Die Studierenden lernen anhand verschiedener Anwendungsbereiche die Arbeitsweise von Rechenanlagen kennen. Sie werden dadurch in die Lage versetzt, die grundlegenden Zusammenhänge von Informationssystemen kritisch zu bewerten.</td>
</tr>
</tbody>
</table>
Das Modul "Laborpraktikum - Programmierung" vermittelt praktische Fertigkeiten auf dem Gebiet Programmierung. In Gruppen von 3-4 Studierenden werden Versuche zu folgenden Themen durchgeführt:
* Mikroprozessorsteuerung mit der Programmiersprache C
* Grundlegende numerische Algorithmen mit der Programmiersprache C
* Grundlegende Berechnungen und Simulationen mit Matlab

Studien-/Prüfungsleistungen/
Vollständiger, schriftlicher Laborbericht (je Versuch) mit Testat und Abgabegespräch

Prüfungsformen:
P

Medienformen:
Versuchsanleitungen werden per Download zur Verfügung gestellt

Literatur:
Weitergehende Literatur wird in den Versuchsanleitungen zur Verfügung gestellt.
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Laborpraktikum Regelung elektrischer Antriebe</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>REA-P</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Abhaltung:</td>
<td>jedes Semester, jährlich</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>ab 1. Studiensemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. M. Pacas</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. M. Pacas, wiss. Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Master-Studiengang "Elektrotechnik"</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>Praktikum, 2 SWS</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzstudium: 30 h, Eigenstudium: 30 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>2</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
<td>Keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Kenntnisse der Module: "Regelung elektrischer Antriebe" und "Elektrische Antriebstechnik"</td>
</tr>
<tr>
<td>Modulziele / Angestrebte Lernergebnisse:</td>
<td>Die Studierenden experimentieren an typischen praktischen Aufgabenstellungen aus dem Bereich der geregelt elektrischen Antriebe:</td>
</tr>
<tr>
<td></td>
<td>Implementierung von Regelungsalgorithmen in Software und Realisierung in einer Mikrorechner-Umgebung,</td>
</tr>
<tr>
<td></td>
<td>Verfahren zur Messung der in der digitalen Regelung el. Antriebe und an dem Umgang mit "embedded control"-Systemen.</td>
</tr>
<tr>
<td></td>
<td>Die Studierenden erwerben die Fähigkeit, Laboraufgaben in einer Gruppe durchzuführen, Ergebnisse in technischen schriftlichen Berichten darzustellen sowie entsprechende Erklärungen abzufassen und in einem Kolloquium zu präsentieren.</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Entwicklung der Steuerung und Regelung eines Umrichters gespeisten Antriebs auf der Basis einer Mikrorechner Hardware</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen/</td>
<td>Präsentation der Ergebnisse, schriftlicher Bericht</td>
</tr>
<tr>
<td>Prüfungsformen:</td>
<td>P</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Praktische Laborübungen</td>
</tr>
<tr>
<td>Literatur:</td>
<td>Schriftliche Laboranleitungen, am Lehrstuhl erhältlich.</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Laborpraktikum Regelungstechnik</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td>Bachelor</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>RT-P</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>ab 5. Studiensemester</td>
</tr>
<tr>
<td>Abhaltung:</td>
<td>WS/SS halbjährlich</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. H. Roth</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. H. Roth, Prof. Dr. R. Mayr, wiss. Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Bachelor-Studiengang "Elektrotechnik"</td>
</tr>
<tr>
<td></td>
<td>Bachelor-Studiengang "Duales Studium Elektrotechnik"</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>Praktikum: 2 SWS</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzstudium: 30 h, Eigenstudium: 30 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>2</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td>keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>* Grundlagen der Regelungstechnik</td>
</tr>
<tr>
<td></td>
<td>* Digitale Regelungstechnik</td>
</tr>
<tr>
<td>Modulziele / Angestrebte Lernergebnisse:</td>
<td>Nachdem Studierende das Modul besucht haben, können sie</td>
</tr>
<tr>
<td></td>
<td>* selbstständig regelungstechnische Methoden der Grundlagen und der Digitalen Regelungstechnik umsetzen,</td>
</tr>
<tr>
<td></td>
<td>* die Software WinFACT/MATLAB für Reglerentwurf und -analyse einsetzen,</td>
</tr>
<tr>
<td></td>
<td>* regelungstechnische Methoden in moderne Regelungshardware (DSpace-/Quanser-System) integrieren und an Systemen anwenden.</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Praktische Vertiefung an Experimenten der in der Vorlesung "Grundlagen der Regelungstechnik" und "Digitale Regelungstechnik" erworbenen Kenntnisse zu den Techniken der klassischen und digitalen Regelungstechnik.</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen/</td>
<td>Leistungsnachweis (LN) (siehe Modul RT)</td>
</tr>
<tr>
<td>Prüfungsformen:</td>
<td>P</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td>Roth, H.: Versuchsbeschreibung zum Labor Grundlagen der Regelungstechnik</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Leistungselektronik</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td>Bachelor</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>LE</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td>Modulelement des Moduls Leistungselektronik und Antriebstechnik</td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Abhaltung:</td>
<td>WS, jährlich</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>ab 4. Studiensemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. M. Pacas</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. M. Pacas, wiss. Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Bachelor-Studiengang "Elektrotechnik"
Bachelor-Studiengang "Duales Studium Elektrotechnik"</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>3 SWS (2 SWS Vorlesung, 1 SWS Übungen)</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzstudium: 45 h, Eigenstudium: 45 h, Prüfungsvorbereitung: 30 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>4</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
<td>Keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Grundlagen der Elektrotechnik I-III</td>
</tr>
<tr>
<td>Modulziele / Angestrebte Lernergebnisse:</td>
<td>Die Studierenden
* entwickeln ein grundlegendes Verständnis für die Umformung elektrischer Energie durch leistungselektronische Schaltungen,
* differenzieren grundlegende Umrichtertopologien und können deren Funktionsweise analysieren,
* können die Grundgleichung zur Beschreibung leistungselektronischer Umrichter selbstständig anwenden,
* die Problematik der Netzrückwirkungen beschreiben.
* Sie können modifizierte Umrichterschaltungen selbstständig analysieren und mathematisch beschreiben,
* und die fundamentalen Steuerverfahren zur Erzeugung von Gleich- und Wechselstrom-Systemen mittels geeigneter leistungselektronischer Schaltungen entwickeln.
* Sie können auch die fundamentalen Methoden der Simulation leistungselektronischer Systeme anwenden.</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>* Leistungselektronische Bauelemente: PN-Übergang, Diode, Thyristor
* Abschaltbare Bauelemente der Leistungselektronik: GTO, IGCT, bipolärer Transistor, MOSFET, IGBT.
* Passive Komponenten. Schutz und Betrieb der Bauelemente.
* Netzgeführte Schaltungen einphasige Brückenschaltung, Drehstrombrückenschaltung
* Rückwirkungen auf das speisende Netz. Leistungsdefinitionen bei verzerrten Größen.
* Selbstgeführte Schaltungen: Tiefsetzsteller, Hochsetzsteller, 2Q-Steller, 4Q-Steller, Sperrwandler und Durchflusswandler
* Einphasiger und dreiphasiger Wechselrichter
* Modulationsverfahren
* Wechselrichter am Netz, PFC</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen/</td>
<td>Prüfungsleistung</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Prüfungsformen:</td>
<td>K3 (wird zusammen mit Modul „Elektrische Maschinen und Antriebe“ geprüft)</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Tafelanschrift, Präsentationsfolien, Skripte, Übungsaufgaben</td>
</tr>
<tr>
<td>Literatur:</td>
<td>* Vorlesungsmanuskript</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Leistungselektronik und Antriebstechnik</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td>Bachelor</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>LEA</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
</tbody>
</table>
| ggf. Lehrveranstaltungen: | Das Modul Leistungselektronik und Antriebstechnik besteht aus den Modulelementen
* Elektrische Maschinen und Antriebe (EMA)
* Leistungselektronik (LE)
* Laborpraktikum Leistungselektronik und Antriebstechnik (LEA-P) |
| Abhaltung: | WS/SS, jährlich |
| Studiensemester: | ab 3. Studiensemester |
| Modulverantwortliche®: | Prof. Dr. M. Pacas |
| Dozent(in): | Prof. Dr. M. Pacas, Prof. Dr. G. Schröder, wiss. Mitarbeiter |
| Sprache: | deutsch |
| Zuordnung zum Curriculum: | Bachelor-Studiengang „Elektrotechnik“
Bachelor-Studiengang „Duales Studium Elektrotechnik“ |
| Lehrform/SWS: | siehe Modulelementbeschreibungen |
| Arbeitsaufwand: | siehe Modulelementbeschreibungen |
| Kreditpunkte: | 10 |
| Voraussetzungen nach Prüfungsordnung: | Keine |
| Empfohlene Voraussetzungen: | Grundlagen der Elektrotechnik I-III |
| Modulziele / Angestrebte Lernergebnisse: | Nachdem Studierende das Modul besucht haben, können sie
- die wesentlichen Komponenten elektrischer Antriebe (elektrische Maschinen, leistungselektronische Schaltungen und mech. Antriebsstrang) in ihrem stationären Verhalten beschreiben, beurteilen und berechnen,
- einfache grundlegende Laborversuche mit diesen Komponenten und Systemen durchführen, analysieren und beurteile,
- Messergebnisse auswerten,
- die Ergebnisse den anderen Teilnehmern und dem Dozenten in einem Vortrag präsentieren. |
<p>| Inhalt: | siehe Modulelementbeschreibungen |
| Studien-/Prüfungsleistungen/ | Leistungsnachweis für LEA-P, Fachprüfung |
| Prüfungsformen: | Modulprüfung; K3 |
| Medienformen: | siehe Modulelementbeschreibungen |
| Literatur: | siehe Modulelementbeschreibungen |</p>
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Master-Arbeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>MA</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>ab 4. Studiensemster</td>
</tr>
<tr>
<td>Abhaltung:</td>
<td>WS und SS</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Department ETI</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Hochschullehrer und -lehrerinnen des Departments ETI</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Master-Studiengang "Elektrotechnik"</td>
</tr>
</tbody>
</table>

| Arbeitsaufwand: | Eigenstudium: 900 h |

| Kreditpunkte: | 30 |

| Voraussetzungen nach Prüfungsordnung | siehe aktuell gültige Prüfungsordnung sowie "Einheitliche Regelungen für Prüfungen in den Studiengängen des Departments Elektrotechnik und Informatik der Naturwissenschaftlich-Technischen Fakultät" §36 Abs. (4) |

| Empfohlene Voraussetzungen: | Kenntnisse im jeweiligen Fachgebiet gemäß der ersten 3 Fachsemester |

| Modulziele / Angestrebte Lernergebnisse: | Mit der Master-Arbeit hat die Absolventin bzw. der Absolvent gezeigt, dass sie bzw. er die Fähigkeit besitzt, innerhalb einer bestimmten Frist ein Problem der Elektrotechnik nach wissenschaftlichen Methoden auf Master-Niveau zu bearbeiten. In der Arbeit sind im Zuge des Studiums erworbene Kompetenzen, insbesondere fachlich-methodischer und fachübergreifender Art, von der Absolventin bzw. vom Absolventen eingesetzt worden. Darüber hinaus werden die folgenden Schlüsselqualifikationen erwogen: 1. Planerische und organisatorische Fähigkeiten für die erfolgreiche Durchführung der i.d.R. umfangreichen Entwicklungsarbeiten 2. Fähigkeit, anhand von Literaturdatenbanken und anderen Quellen vorhandenes Wissen und bereits durchgeführte Arbeiten zu einem vorgegebenen Thema zu erschließen, wobei auch anspruchsvolle Quellen in Fremdsprachen (i.d.R. Englisch) eingeschlossen sind |

128
3. Fähigkeit, vor einem Fachpublikum einen Vortrag zu einem nichttrivialen wissenschaftlichen Thema zu entwerfen, didaktisch richtig zu gestalten und ihn unter Einsatz üblicher Medien abzuhalten
4. Fähigkeit, wissenschaftliche Texte in hinreichendem Umfang zu verfassen, i.d.R. zur Erklärung wissenschaftlicher Inhalte

Inhalt:

Studien-/Prüfungsleistungen/
1. Lösung der fachlichen Fragestellung, i.d.R. verbunden mit umfangreichen Entwicklungsarbeiten
2. Erstellen eines Berichts über die Arbeit (Dokumentation)
3. Abhalten eines Vortrags über die Ergebnisse der Arbeit

Prüfungsformen:
Die Master-Arbeit wird von zwei Prüfenden entsprechend der gültigen Prüfungsordnung bewertet, wobei auch der Vortrag des bzw. der Studierenden berücksichtigt und bewertet wird.

Medienformen:

Literatur:
entsprechend dem ausgewählten Thema der Master-Arbeit
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Mathematik für Elektrotechnik-Ingenieure I</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Bachelor</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>MfET I</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Abhaltung:</td>
<td>WS, jährlich</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>ab 1. Semester im Bachelor</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. V. Michel</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. V. Michel, wiss. Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Bachelor-Studiengang "Elektrotechnik"</td>
</tr>
<tr>
<td></td>
<td>Bachelor-Studiengang "Informatik"</td>
</tr>
<tr>
<td></td>
<td>Bachelor-Studiengang "Duales Studium Informatik"</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>8 SWS (6V, 2Ü)</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzstudium: 120 h, Eigenstudium: 80 h, Prüfungsvorbereitung: 40 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>8</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td>keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Modulziele / Angestrebte Lernergebnisse:</td>
<td>Nach Abschluss dieses Moduls können die Studierenden</td>
</tr>
<tr>
<td></td>
<td>* die Grundlagen mathematischer Techniken verstehen</td>
</tr>
<tr>
<td></td>
<td>* die mathematische Formelsprache verstehen und anwenden</td>
</tr>
<tr>
<td></td>
<td>* Gleichungen und Ungleichungen lösen</td>
</tr>
<tr>
<td></td>
<td>* den Begriff der Konvergenz von Folgen, Reihen und Funktionen verstehen</td>
</tr>
<tr>
<td></td>
<td>* die Techniken der Differentialrechnung für Funktionen einer Veränderlichen beherrschen</td>
</tr>
<tr>
<td></td>
<td>* grundlegende Probleme der Linearen Algebra, wie lineare Gleichungssysteme und Eigenwertprobleme, lösen</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>* Grundlagen der reellen Zahlen</td>
</tr>
<tr>
<td></td>
<td>* Lösen von Gleichungen und Ungleichungen</td>
</tr>
<tr>
<td></td>
<td>* Konvergenzbegriff</td>
</tr>
<tr>
<td></td>
<td>* Folgen und Reihen</td>
</tr>
<tr>
<td></td>
<td>* Stetigkeit</td>
</tr>
<tr>
<td></td>
<td>* Zwischenwertsatz</td>
</tr>
<tr>
<td></td>
<td>* Differentialrechnung für eine Veränderliche</td>
</tr>
<tr>
<td></td>
<td>* Satz von Taylor und Extremwertaufgaben (univariat)</td>
</tr>
<tr>
<td></td>
<td>* Vektorräume</td>
</tr>
<tr>
<td></td>
<td>* Matrizenrechnung</td>
</tr>
<tr>
<td></td>
<td>* Gauß-Algorithmus</td>
</tr>
<tr>
<td></td>
<td>* Determinanten</td>
</tr>
<tr>
<td></td>
<td>* Eigenwerte</td>
</tr>
<tr>
<td></td>
<td>* Hauptachsentransformationssatz</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen/</td>
<td>Prüfungsleistung</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Prüfungsformen:</td>
<td>K3</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Tafel, Beamer</td>
</tr>
<tr>
<td>Literatur:</td>
<td>* A. Blickensdörfer-Ehlers, H. Neunzert: Analysis; * K. Meyberg, P. Vachenauer: Höhere Mathematik</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Mathematik für Elektrotechnik-Ingenieure II</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td>Bachelor</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>MfET II</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Abhaltung:</td>
<td>SS, jährlich</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>ab 2. Semester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. V. Michel</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. V. Michel, wiss. Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Bachelor-Studiengang "Elektrotechnik"</td>
</tr>
<tr>
<td></td>
<td>Bachelor-Studiengang "Duales Studium Elektrotechnik"</td>
</tr>
<tr>
<td></td>
<td>Bachelor-Studiengang "Informatik"</td>
</tr>
<tr>
<td></td>
<td>Bachelor-Studiengang "Duales Studium Informatik"</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>8 SWS (6V, 2Ü)</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzstudium: 120 h, Eigenstudium: 80 h, Prüfungsvorbereitung: 40 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>8</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
<td>keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Mathematik für Elektrotechnik-Ingenieure I</td>
</tr>
<tr>
<td>Modulziele / Angestrebte Lernergebnisse:</td>
<td>Nach Abschluss dieses Moduls können die Studierenden</td>
</tr>
<tr>
<td></td>
<td>* die Techniken der Integralrechnung für Funktionen einer Veränderlichen beherrschen</td>
</tr>
<tr>
<td></td>
<td>* Ableitungen von Funktionen mehrerer Veränderlicher berechnen</td>
</tr>
<tr>
<td></td>
<td>* Extremwertaufgaben mit und ohne Nebenbedingungen lösen</td>
</tr>
<tr>
<td></td>
<td>* Integrale über Kurven/Wege, ebene Flächen, Flächen im Raum und Volumina berechnen</td>
</tr>
<tr>
<td></td>
<td>* gewöhnliche Differentialgleichungen lösen</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>* Integralrechnung für Funktionen einer Veränderlichen</td>
</tr>
<tr>
<td></td>
<td>* Hauptsatz der Differential- und Integralrechnung</td>
</tr>
<tr>
<td></td>
<td>* Differentialrechnung für Funktionen mehrerer Veränderlicher (partielle und totale Ableitung, Jacobi- und Hessematrix, Satz von Taylor, Extremwertaufgaben)</td>
</tr>
<tr>
<td></td>
<td>* Kurven- und Wegintegrale (Wege und Kurven, Weglänge, Definition und Berechnung von Kurven- und Wegintegralen)</td>
</tr>
<tr>
<td></td>
<td>* Flächenintegrale (Integrale über ebene Flächen, Integrale über Flächen im Raum, Substitutionsregel, Oberflächenintegrale von Vektorfeldern)</td>
</tr>
<tr>
<td></td>
<td>* Volumenintegrale (Definition und Berechnung)</td>
</tr>
<tr>
<td></td>
<td>* Gewöhnliche Differentialgleichungen (Kategorisierung, lineare Differentialgleichungen 1. und 2. Ordnung, lineare Differentialgleichungssysteme, Laplace-Transformation, Besselgleichung)</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen/Prüfungsleistung</td>
<td>Prüfungsleistung</td>
</tr>
<tr>
<td>Prüfungsformen:</td>
<td>K3</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Tafel, Beamer</td>
</tr>
</tbody>
</table>
| Literatur: | * A. Blickensdörfer-Ehlers, H. Neunzert: Analysis;
* K. Meyberg, P. Vachenauer: Höhere Mathematik |
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Mathematik für Elektrotechnik-Ingenieure III</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Bachelor</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>MfET III</td>
</tr>
</tbody>
</table>

| ggf. Untertitel |

| ggf. Lehrveranstaltungen: | Mathematik für Elektrotechnik-Ingenieure IIIa und IIIb |

| Abhaltung: | WS, jährlich |

Studiensemester:	ab 3. Studiensemester
Modulverantwortliche(r):	Prof. Dr. V. Michel
Dozent(in):	Prof. Dr. V. Michel, wiss. Mitarbeiter
Sprache:	deutsch
Zuordnung zum Curriculum:	Bachelor-Studiengang "Elektrotechnik"
	Bachelor-Studiengang "Duales Studium Elektrotechnik"
Lehrform/SWS:	6 SWS (4V, 2Ü)
Arbeitsaufwand:	Präsentzstudium: 90 h, Eigenstudium: 110 h, Prüfungsvorbereitung: 40 h
Kreditpunkte:	8
Voraussetzungen nach Prüfungsordnung:	keine

| Empfohlene Voraussetzungen: | Mathematik für Elektrotechnik-Ingenieure I und II |

| Modulziele / Angestrebte Lernergebnisse: | Nach Abschluss dieses Moduls können die Studierenden * Grundlagen der Signalverarbeitung verstehen * komplexe Integrale berechnen sowie uneigentliche reelle Integrale mittels Residuensatz berechnen * ausgewählte einfache partielle Differentialgleichungen analytisch lösen * Grundprinzipien der Vektoranalysis verstehen und anwenden |

| Inhalt: | Teil IIIa: *
| | Grundlagen der Fouriertheorie (diskrete und kontinuierliche Fouriertransformation, Shannon'scher Abtastsatz) *
| | Grundlagen der Funktionentheorie (Hauptsatz über holomorphe Funktionen, Cauchy'scher Integralsatz, Cauchy'sche Integralformel, Taylor- und Laurent-Reihe, Residuensatz) |
| | Teil IIIb: *
| | Einführung in das Lösen partieller Differentialgleichungen (Kategorisierung, Randbedingungen, Wellengleichung (insbesondere schwingende Membran), Laplacegleichung, Poissongleichung) *
| | Vektoranalysis (Nabla-Kalküll, div, grad, rot, Potentialfelder, Satz von Gauß, Green'sche Formeln) |

| Studien-/Prüfungsleistungen/Prüfungsformen: | Fachprüfung |
| Medienformen: | K3 |
| Literatur: | * A. Blickensdörfer-Ehlers, H. Neunzert: Analysis;
* K. Meyberg, P. Vachenauer: Höhere Mathematik;
* F. Furlan: Das gelbe Rechenbuch 3 für Ingenieure, Naturwissenschaftler und Mathematiker;
* N. Hungerbühler: Einführung in partielle Differentialgleichungen;
* H. Heuser: Gewöhnliche Differentialgleichungen - Einführung in Lehre und Gebrauch |
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Mechatronic Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>MeSy</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Abhaltung:</td>
<td>WS, jährlich</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>3. Studiensemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. H. Roth</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. H. Roth, wiss. Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Englisch</td>
</tr>
</tbody>
</table>
| Zuordnung zum Curriculum | Master-Studiengang "Mechatronics"
| | Master-Studiengang "Elektrotechnik" |
| Lehrform/SWS: | 4SWS (2 SWS Lecture, 1 SWS Exercises und 1 SWS Laboratory) |
| Arbeitsaufwand: | Präsenz: 60 h (30 Vorlesung, 30 Übung / Labor), Selbststudium: 45 h, Prüfungsvorbereitung: 45 h |
| Kreditpunkte: | 5 |
| Voraussetzungen nach Prüfungsordnung | keine |
| Empfohlene Voraussetzungen: | Advanced Control II |
| **Modulziele / Angestrebte Lernergebnisse:** | The course "Mechatronic Systems" completes the studies by enhancing and deeping aspects of automatic control engineering, modelling. Main topics are modelling, linearization, discretization, order reduction techniques and system identification. The course also includes a group project for practical application of mechatronic knowledge. Purposes of the course are to enable students to
| | * design and analyse mechatronic systems as an optimal combination of mechanical, electrical and software components,
| | * know and understood the advantage of mechatronic systems in different application areas,
| | * apply and to evaluate the learned methods by performing different laboratory experiments with mechatronic systems. |
| Inhalt: | * Characteristics of mechatronic systems
| | * Sensors and actuators for mechatronic systems
| | * Modelling
| | * Identification
| | * Discretization
| | * Order Reduction
| | * Control concepts for mechatronic systems
| | * Typical examples of integrated mechanical - electrical systems |
| **Studien-/Prüfungsleistungen/Prüfungsformen:** | Fachprüfung
| Medienformen: | Beamer, Tafel, Skript (electronic, printed) |
* Craig: Robotics, Addison Wesley.
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Messwerterfassung und Verarbeitung</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>MEV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ggf. Untertitel</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Abhaltung:</th>
<th>SS, jährlich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studiensemester:</td>
<td>ab 1. Studiensemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. E. Griese</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Dipl.-Ing. C. Dietrich</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zuordnung zum Curriculum</th>
<th>Master-Studiengang "Elektrotechnik"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lehrform/SWS:</td>
<td>3 SWS (2 SWS Vorlesung, 1 SWS Übung)</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzstudium: 45 h, Eigenstudium: 45 h, Prüfungsvorbereitung 60 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
<td>keine</td>
</tr>
</tbody>
</table>

| Empfohlene Voraussetzungen: | Prozessmesstechnik |

<table>
<thead>
<tr>
<th>Modulziele / Angestrebte Lernergebnisse:</th>
<th>Nach erfolgreicher Absolvierung des Moduls besitzen die Studierenden die folgenden Kompetenzen:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inhaltskompetenzen:</td>
</tr>
<tr>
<td></td>
<td>Kenntnis innovativer Messprinzipien elektrischer und nichtelektrischer Größen, der verschiedenen Sensoren und der verwendeten Auswerteverfahren.</td>
</tr>
<tr>
<td></td>
<td>Methodenkompetenzen:</td>
</tr>
<tr>
<td></td>
<td>* Beurteilung von Sensoren und Messsystemen</td>
</tr>
<tr>
<td></td>
<td>* Abschätzung der Leistungsparameter</td>
</tr>
<tr>
<td></td>
<td>Bewertungskompetenzen:</td>
</tr>
<tr>
<td></td>
<td>* Sinnvolle Auswahl geeigneter Sensoren bei anspruchsvollen industriellen Messtaugenabgaben</td>
</tr>
<tr>
<td></td>
<td>* Verständnis neuartiger Messverfahren zur Erfassung und Verarbeitung elektrischer und nichtelektrischer Größen</td>
</tr>
<tr>
<td></td>
<td>* Einschätzung von realen Prozessen und Messgeräten.</td>
</tr>
<tr>
<td></td>
<td>Darüber hinaus verbessern die Studierenden ihr logisches Denken sowie ihre Strategie zum Wissenserwerb.</td>
</tr>
</tbody>
</table>

138
<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen</th>
<th>Fachprüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsformen:</td>
<td>M</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Beamer, Tafel</td>
</tr>
</tbody>
</table>
| Literatur: | * W. Kaspers, H.-J- Küfner: Messen, Steuern, Regeln
* Profos: Handbuch der industriellen Messtechnik
* R. Grabowski: Sensoren und Aktoren
* A. Freudenberger: Prozessmesstechnik
* H. Ahlers, J. Waldmann: Mikroelektronische Sensoren |
Modulbezeichnung: **Mikroelektronik I**

<table>
<thead>
<tr>
<th>ggf. Modulniveau</th>
<th>Master</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Kürzel</td>
<td>ME I</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ggf. Untertitel</th>
<th>ggf. Lehrveranstaltungen:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Studiensemester:</th>
<th>ab 1. Studiensemester</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Abhaltung:</th>
<th>WS, jährlich</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche(r):</th>
<th>Prof. Dr. M. Böhm</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Dozent(in):</th>
<th>Prof. Dr. M. Böhm, wiss. Mitarbeiter</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Sprache:</th>
<th>deutsch</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Zuordnung zum Curriculum</th>
<th>Master-Studiengang "Elektrotechnik"</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Lehrform/SWS:</th>
<th>4 SWS (2 SWS Vorlesung, 1 SWS Übung, 1 SWS Praktikum)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Arbeitsaufwand:</th>
<th>Präsenzstudium: 60 h, Eigenstudium: 60 h, Prüfungsvorbereitung: 30 h</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Kreditpunkte:</th>
<th>5</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Voraussetzungen nach Prüfungsordnung</th>
<th>keine</th>
</tr>
</thead>
</table>

Empfohlene Voraussetzungen:

Die Lehrveranstaltung erfordert Vorkenntnisse der Mathematik für Elektrotechnik-Ingenieure I und II sowie Grundkenntnisse auf dem Gebiet der Bauelemente und der Schaltungstechnik.

Modulziele / Angestrebte Lernergebnisse:

Inhalt:

In der Lehrveranstaltung Mikroelektronik werden die Grundlagen der analogen und digitalen Schaltungstechnik und die technologische Realisierung integrierter Schaltungen vom Entwurf und der Simulation über die Fertigung bis zur Charakterisierung vermittelt. Zur Veranstaltung gehört weiterhin ein Laborpraktikum, in dem verschiedene digitale und analoge integrierte Schaltungen mit Spice simuliert bzw. vermessen werden.

Inhalte:

<table>
<thead>
<tr>
<th>Fachprüfung</th>
</tr>
</thead>
</table>

140
<table>
<thead>
<tr>
<th>Prüfungsformen:</th>
<th>K2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen:</td>
<td>Beamer (Vorlesungsskript mit Folien ist vorhanden), Tafel</td>
</tr>
<tr>
<td>Literatur:</td>
<td>* Böhm, M.: Mikroelektronik; Skript</td>
</tr>
</tbody>
</table>
Modulbezeichnung: Mikroelektronik II

ggf. Modulniveau: Master

ggf. Kürzel: ME II

ggf. Untertitel:

ggf. Lehrveranstaltungen:

Studiensemester: ab 1. Studiensemester

Abhaltung: SS, jährlich

Modulverantwortliche(r): Prof. Dr. M. Böhm

Dozent(in): Prof. Dr. M. Böhm, wiss. Mitarbeiter

Sprache: deutsch

Zuordnung zum Curriculum: Master-Studiengang "Elektrotechnik"

Lehrform/SWS: 4 SWS (2 SWS Vorlesung, 1 SWS Übung, 1 SWS Praktikum)

Arbeitsaufwand: Präsenzstudium: 60 h, Eigenstudium: 60 h, Prüfungsvorbereitung: 30 h

Kreditpunkte: 5

Voraussetzungen nach Prüfungsordnung: keine

Empfohlene Voraussetzungen: Die Lehrveranstaltung erfordert Vorkenntnisse der Mathematik für Elektrotechnik-Ingenieure I und II sowie Grundkenntnisse auf dem Gebiet der Bauelemente und der Schaltungstechnik.

Inhalt: In der Lehrveranstaltung Mikroelektronik erlernen die Studenten die Grundlagen der analogen und digitalen Schaltungstechnik und die technologische Realisierung integrierter Schaltungen vom Entwurf und der Simulation über die Fertigung bis zur Charakterisierung. Zur Veranstaltung gehört weiterhin ein Laborpraktikum, in dem verschiedene digitale und analoge integrierte Schaltungen mit Spice simuliert bzw. vermessen werden.

Studien- Fachprüfung
<table>
<thead>
<tr>
<th>/Prüfungsleistungen/</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsformen:</td>
<td>K2</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Beamer (Vorlesungsskript mit Folien ist vorhanden), Tafel</td>
</tr>
<tr>
<td>Literatur:</td>
<td>* Böhm, M.: Mikroelektronik; Skript</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Mikrosystementwurf - Fertigung</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>MSE-F</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td>Grundlagen der Mikrosystemtechnik</td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td>Modulelement 1: Vorlesung (mit zwei Vorlesungsterminen wöchentlich in der ersten Semesterhälfte); Modulelement 2: Praxisseminar (nach Vereinbarung in der zweiten Semesterhälfte)</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>Bachelor: ab 5. Studiensemester; Master: ab 1. Studiensemester</td>
</tr>
<tr>
<td>Abhaltung:</td>
<td>SS, jährlich</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. R. Brück</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. R. Brück</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
</tbody>
</table>
| Zuordnung zum Curriculum | Bachelor-Studiengang "Informatik - Vertiefung Technische Informatik"
 | Bachelor "Duales Studium Informatik"
 | Master-Studiengang "Informatik - Vertiefung Technische Informatik"
<pre><code> | Master-Studiengang "Elektrotechnik - Studienmodell Mikrosystemtechnik" |
</code></pre>
<p>| Lehrform/SWS: | 4 SWS (2 SWS Vorlesung, 2 SWS Praktikum) |
| Arbeitsaufwand: | Präsenz Vorlesung 25 h; Nachbereitung und Eigenstudium 30 h; Praxisseminar 80 h; Prüfungsvorbereitung 15 h; |
| Kreditpunkte: | 5 |
| Voraussetzungen nach Prüfungsordnung: | keine |
| Empfohlene Voraussetzungen: | Grundkenntnisse über die Funktionsweise und Herstellung integrierter CMOS-Schaltkreise |
| Modulziele / Angestrebte Lernergebnisse: | Die Studierenden kennen die vielfältigen Technologien zur Fertigung mikrotechnischer Bauteile und Systeme. Sie sind in der Lage aus einer gegebenen Spezifikation für ein mikrotechnisches Bauteil eine geeignete Fertigungstechnologie auszuwählen und die Grenzen der technischen Möglichkeiten (Präzision, Fertigungstoleranzen, etc.) abzuschätzen. Die können aus einer gegebenen Systemspezifikation einen konkreten Vorschlag für die technische Realisierung generieren. |</p>
<table>
<thead>
<tr>
<th>Inhalt:</th>
<th>Modulelement Vorlesung:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. Mikrosysteme und Mikrostrukturen:</td>
</tr>
<tr>
<td></td>
<td>* Beispiele, Anwendungsfelder, Märkte, Technologieprognosen</td>
</tr>
<tr>
<td></td>
<td>2. Silizium-basierte Mikrotechnik:</td>
</tr>
<tr>
<td></td>
<td>* Lithographische Strukturübertragung (Photolithographie, Elektronenstrahlolithographie, Röntgenlithographie)</td>
</tr>
<tr>
<td></td>
<td>* Ätzverfahren (Kristallographische Ätzverfahren, Trockenätzverfahren, Ätzsimulation)</td>
</tr>
<tr>
<td></td>
<td>* Beschichtungsverfahren (PCD, CVD)</td>
</tr>
<tr>
<td></td>
<td>* Reinraumtechnik</td>
</tr>
<tr>
<td></td>
<td>3. Klassische Fertigungsverfahren in der Mikrotechnik:</td>
</tr>
<tr>
<td></td>
<td>* Funkenerosion,</td>
</tr>
<tr>
<td></td>
<td>* Spanende Fertigungsverfahren,</td>
</tr>
<tr>
<td></td>
<td>* Laser-basierte Mikrotechnik,</td>
</tr>
<tr>
<td></td>
<td>* Kunststoffabformtechniken,</td>
</tr>
<tr>
<td></td>
<td>* Galvanoformung</td>
</tr>
<tr>
<td></td>
<td>4. Spezielle Mikrostrukturierungsverfahren:</td>
</tr>
<tr>
<td></td>
<td>* LIGA-Technik,</td>
</tr>
<tr>
<td></td>
<td>* Mikrostrukturierung von Glas</td>
</tr>
<tr>
<td></td>
<td>5. Nanotechnik:</td>
</tr>
<tr>
<td></td>
<td>* Grundlagen</td>
</tr>
<tr>
<td></td>
<td>* Top-Down-Techniken</td>
</tr>
<tr>
<td></td>
<td>* Bottom-Up-Techniken</td>
</tr>
<tr>
<td></td>
<td>* Perspektiven</td>
</tr>
<tr>
<td></td>
<td>6. Mikrosystemtechnik am Lehrstuhl Mikrosystementwurf:</td>
</tr>
<tr>
<td></td>
<td>* Entwurfsmethodik</td>
</tr>
<tr>
<td></td>
<td>* Prozessentwurf</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen/</th>
<th>Teilnahmenachweis für das Praxisseminar als Vorleistung für die mündliche Prüfung, Mündliche Prüfung über den Inhalt des Modulelements Vorlesung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsformen:</td>
<td>M</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Power Point Präsentationen, aktuelle Technologieinformationen aus Internet-Recherchen</td>
</tr>
</tbody>
</table>

<p>| | * Wolfgang Ehrfeld: Handbuch der Mikrotechnik Carl Hanser Verlag, 2001 |
| | * Wolfgang Menz, Jürgen Mohr, Oliver Paul: Mikrosystemtechnik für Ingenieure, 3. Aufl. WILEY-VCH, 2005 |
| | * Jan Albers: Kontaminationen in der Mikrostrukturierung, Carl Hanser Verlag, 2005 |
| | * Gerald Gerlach, Wolfram Dötzel: Einführung in die Mikrosystemtechnik, Ein Kursbuch für Studierende, Carl Hanser Verlag, 2006 |</p>
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Mikrosystementwurf - Geometrie</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>MSE - G</td>
</tr>
</tbody>
</table>

ggf. Untertitel: Methoden, Werkzeuge und Algorithmen für den fertigungsnahen Entwurf elektronischer und nicht-elektronischer Mikro- und Nanosyste

ggf. Lehrveranstaltungen: Modulelement 1: Vorlesung (mit zwei Vorlesungsterminen wöchentlich in der ersten Semesterhälfte); Modulelement 2: Praktikum Mikrosystementwurf (nach Vereinbarung in der zweiten Semesterhälfte)

Studiensemester: Bachelor: ab 5. Studiensemester; Master: ab 1. Studiensemester

Abhaltung: WS, jährlich

Modulverantwortliche(r): Prof. Dr. R. Brück

Dozent(in): Prof. Dr. R. Brück

Sprache: deutsch

Zuordnung zum Curriculum
- Bachelor Informatik - Vertiefung Technische Informatik;
- Bachelor "Duales Studium Informatik" Vertiefung
- Master Informatik - Vertiefung Technische Informatik;
- Master Elektrotechnik - Studienmodell Mikrosystemtechnik

Lehrform/SWS: 4 SWS (2 SWS Vorlesung, 2 SWS Praktikum)

Arbeitsaufwand: Präsenz Vorlesung 30 h; Nachbereitung und Selbststudium 20 h, Praktikum - Einweisung und Vorbereitung 15 h, Praktikum - Entwurfsdurchführung 70 h; Prüfungsvorbereitung 15 h;

Kreditpunkte: 5

Voraussetzungen nach Prüfungsordnung: keine

Empfohlene Voraussetzungen: * Grundlegende Kenntnisse in Algorithmen, Datenstrukturen und Programmierung
* Grundlegende Kenntnisse in Aufbau, Funktion und Fertigung integrierter Systeme

Modulziele / Angestrebte Lernergebnisse:
* Die Studierenden kennen den Aufbau und die Funktionsweise von Werkzeugen für den Layoutentwurf integrierter Systeme.
* Sie verstehen die diesen Werkzeugen zugrundeliegenden Algorithmen und sind in der Lage, diese Kenntnis beim Einsatz der Werkzeuge für konkrete Entwurfsaufgaben zu nutzen.
* Die Studierenden sind in der Lage, eine komplexe Entwurfsaufgabe zu verstehen, im Team zu analysieren und ein Entwurfsprojekt zu organisieren.
* Sie sind in der Lage, ein integriertes System unter Nutzung professioneller Entwurfssoftware im Team zu entwerfen und für die Fertigung durch einen Halbleiterhersteller vorzubereiten.
* Die Studierenden können ein einfaches Entwicklungsprojekt im Team selbständig organisieren und durchführen.
Inhalt:

Modulelement Vorlesung:

1. Grundlagen des fertigungsnahen Mikrosystementwurfs
 - a. Einführung: Beispiele und Anwendungen elektronischer und nicht-elektronischer Mikrosysteme
 - b. Entwurfsmodelle und –methoden
 - c. Verhaltensnaher vs. fertigungsnaher Entwurf
 - d. Modelle und Design Flows für den fertigungsnahen Entwurf
 - e. Abhängigkeit von der Fertigung: PDKs und Design Rules

2. Grundtechniken und Design Flows für den Layoutentwurf
 - a. Partitionierung
 - b. Floorplanning
 - c. Layoutverifikation: DRC, ERC, Extraktion, LVS
 - d. Kompaktierung
 - e. Platzierung
 - f. Verdrahtung

3. Werkzeuge und Algorithmen für den Layoutentwurf
 - a. Chipranddesign
 - b. Spezialverdrahtung
 - c. Spezielle Eigenschaften des Layouts analoger Schaltungen

4. Spezielle Layouttechniken
 - a. Chipranddesign
 - b. Spezialverdrahtung
 - c. Spezielle Eigenschaften des Layouts analoger Schaltungen

5. Entwurfstechniken mit Fertigungsbezug
 - a. Einführung: Yield, Design for Manufacturability, Design for Yield
 - b. Post-Layout-Techniken: OPC, RET
 - c. Statistische Entwurfstechniken
 - d. Entwurfstechniken für Robustheit und Zuverlässigkeit
 - e. TCAD und PDES

6. Perspektiven, Ausblick, Zusammenfassung

Modulelement Praktikum:

* Fertigungsnaher Entwurf eines einfachen gemischt analog-digitalen Schaltkreises unter Verwendung professioneller Entwurfswerkzeuge.
* Vorbereitung eines "Tape-out", eines Übergabepaketes, mit dem eine fertig entworfene Schaltung an einen Halbleiterhersteller zur Fertigung übergeben werden kann.
* Übergabe des Entwurfs an einen Halbleiterfertiger.

Die Studierenden haben dann auf Wunsch die Gelegenheit, die gefertigte Schaltung im folgenden Semester auf ihre Funktionsfähigkeit zu untersuchen. Dieser Teil des Praktikums ist freiwillig und nicht Bestandteil des Moduls (Dies lässt sich nicht anders organisieren, da die Durchlaufzeit für MPWs, an denen sich Universitäten beteiligen können, in der Regel 3 Monate beträgt).

Studien-/Prüfungsleistungen/

Teilnahmenachweis für das Entwurfspraktikum als Vorleistung für die mündliche Prüfung, Mündliche Prüfung über den Inhalt des Modulelements Vorlesung

Prüfungsformen:

M

Medienformen:

Power Point, Schulungsmaterialien zu professionellen Entwurfsframeworks
| Literatur: | * Rainer Brück: Entwurfswerkzeuge für VLSI-Layout, Hanser Verlag, 1993
* Jens Lienig: Entwurfsautomatisierung in der Elektrotechnik, Springer Verlag, 2005
* Dan Klein: CMOS IC Layout, Newnes Press, 2000
* Alan Hastings: The Art of Analog Layout, Prentice Hall 2005
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Mikrosystementwurf - Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td></td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Abhaltung:</td>
<td>WS, jährlich</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>ab dem 1. Studiensemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. R. Brück</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Dr. M. Wahl</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Master Elektrotechnik Pflichtmodul Mikrosystemtechnik</td>
</tr>
<tr>
<td></td>
<td>Master Informatik Vertiefung</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>4 SWS (2 SWS Vorlesung, 2 SWS Übung)</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzstudium: 60 h, Eigenstudium: 60 h, Prüfungsvorbereitung: 30 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
<td>Keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Digitaltechnik, Rechnerarchitekturen I</td>
</tr>
<tr>
<td>Modulziele / Angestrebte Lernergebnisse:</td>
<td>nach Abschluss des Moduls</td>
</tr>
<tr>
<td></td>
<td>* kennen die Studierenden die Speicherpyramide von Register, Cache, Hauptspeicher und Massenspeicher bis hin zu Archivsystemen,</td>
</tr>
<tr>
<td></td>
<td>* haben eine Übersicht über die verschiedenen Methoden zur Speicherung auf rotierenden Medien gewonnen, wobei auch der Blick in die Zukunft wesentlich ist,</td>
</tr>
<tr>
<td></td>
<td>* haben verstanden, wo die Grenzen der Specherdichte auf Festplatten liegen,</td>
</tr>
<tr>
<td></td>
<td>* sind in der Lage, flüchtige und nicht flüchtige Speicher zu erklären und die Technologien zu erläutern und</td>
</tr>
<tr>
<td></td>
<td>* haben gelernt, gut zwischen den im Idealfall möglichen und in der Praxis auftretenden Wertzen zu unterscheiden, z.B. bei den Interfaces.</td>
</tr>
</tbody>
</table>
Hierarchie von Leseverstärkern. Den Abschluss bilden die Interfaces, die für die tatsächlich erreichbare Performance von extremer Wichtigkeit sind.

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen/</th>
<th>Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsformen:</td>
<td>M</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Powerpoint, Tafel, Beamer</td>
</tr>
</tbody>
</table>

Literatur:
- *Alberto Bosio, Luigi Dilillo, Patrick Girard, Serge Pravoossooudiwitch, Arnaud Virazel: Advanced Test Methods for SRAMs. Springer, 2010*
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Mikrosystementwurf - Verhalten</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>MSE-V</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td>Methoden, Werkzeuge und Algorithmen für den verhaltensnahen Entwurf eingebetteter Mikro- und Nanosysteme</td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td>Modulelement 1: Vorlesung (mit zwei Vorlesungsterminen wöchentlich in der ersten Semesterhälfte); Modulelement 2: Praktikum Mikrosystementwurf (nach Vereinbarung in der zweiten Semesterhälfte)</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>Bachelor: ab 5. Studiensemester; Master: ab 1. Studiensemester</td>
</tr>
<tr>
<td>Abhaltung:</td>
<td>SS, jährlich</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. R. Brück</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. R. Brück</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Bachelor Informatik - Vertiefung Technische Informatik; Bachelor "Duales Studium Informatik" Vertiefung Master Informatik - Vertiefung Technische Informatik; Master Elektrotechnik - Studienmodell Mikrosystemtechnik</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>4 SWS (2 SWS Vorlesung, 2 SWS Praktikum)</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenz Vorlesung 30 h; Nachbereitung und Eigenstudium 40 h; Praktikum - Einweisung und Vorbereitung: 15 h, Praktikum - Entwurfsdurchführung: 50 h; Prüfungsvorbereitung 15 h;</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
<td>keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>* Grundlegende Kenntnisse in Algorithmen, Datenstrukturen und Programmierung</td>
</tr>
<tr>
<td></td>
<td>* Grundlegende Kenntnisse in diskreter Mathematik und theoretischer Informatik</td>
</tr>
<tr>
<td>Modulziele / Angestrebte Lernergebnisse:</td>
<td>* Die Studierenden kennen die grundlegenden Modelle und Methoden für den Entwurf komplexer integrierter Systeme.</td>
</tr>
<tr>
<td></td>
<td>* Sie kennen unterschiedliche Design Flows und ihre praktischen Einsatzmöglichkeiten.</td>
</tr>
<tr>
<td></td>
<td>* Sie kennen die Grundlagen der Theorie des Logikentwurfs und die darauf basierenden Methoden zur Synthese und Verifikation von Schaltungen.</td>
</tr>
<tr>
<td></td>
<td>* Die Studierenden verstehen den grundlegenden Unterschied zwischen idealisierenden mathematischen Schaltungsmodellvorstellungen und der praktischen Realisierung in mikroelektronischen Schaltkreisen.</td>
</tr>
<tr>
<td></td>
<td>* Sie können zwischen validierenden und verifizierenden Verfahren zur Überprüfung der Korrektheit von Systementwürfen unterscheiden.</td>
</tr>
<tr>
<td></td>
<td>* Die Studierenden sind in der Lage, mathematisch/theoretische Grundlagen in industriell relevanten praktischen Problemstellungen zum Einsatz zu bringen.</td>
</tr>
<tr>
<td></td>
<td>* Sie verstehen den Einsatz von Hardwarebeschreibungssprachen zur</td>
</tr>
</tbody>
</table>
Modellierung des Systemverhaltens und können diese zur Lösung konkreter Systementwurfsaufgaben einsetzen.
* Sie können die Korrektheit von Schaltungsentwürfen durch praktischen Einsatz industrieller Simulations- und Verifikationswerkzeuge überprüfen.
* Die Studierenden sind in der Lage, eine komplexe Systementwurfsaufgabe zu analysieren und im Team zu lösen.

<table>
<thead>
<tr>
<th>Inhalt:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Grundlagen des verhaltensnahen Mikrosystementwurfs</td>
</tr>
<tr>
<td>a. Einführung: Beispiele und Anwendungen elektronischer und nicht-elektronischer Mikrosysteme</td>
</tr>
<tr>
<td>b. EMNS – Eingebettete Mikro- und Nanosysteme</td>
</tr>
<tr>
<td>c. Entwurfsmodelle und –methoden</td>
</tr>
<tr>
<td>d. Verhaltensnaher vs. fertigungsnaher Entwurf</td>
</tr>
<tr>
<td>e. Modelle und Design Flows für den verhaltensnahen Entwurf</td>
</tr>
<tr>
<td>2. Entwurfsmodellierung auf hohen Ebenen</td>
</tr>
<tr>
<td>a. Konzepte und semantische Modelle von Sprachen für den Entwurf eingebetteter Mikro- und Nanosysteme</td>
</tr>
<tr>
<td>b. Systementwurfssprachen (SysML, SystemC)</td>
</tr>
<tr>
<td>c. Hardwarebeschreibungssprachen (VHDL, VHDL-AMS)</td>
</tr>
<tr>
<td>3. Generierende Aktivitäten beim verhaltensnahen Entwurf</td>
</tr>
<tr>
<td>a. IP-basierte Syntheseverfahren</td>
</tr>
<tr>
<td>b. Relevante Aspekte aus der Theorie des Logikentwurfs</td>
</tr>
<tr>
<td>c. Logiksynthese</td>
</tr>
<tr>
<td>4. Überprüfende Aktivitäten beim verhaltensnahen Entwurf</td>
</tr>
<tr>
<td>a. Entwurfsvalidierung durch Simulation</td>
</tr>
<tr>
<td>b. Formale Verifikation digitaler Schaltungen</td>
</tr>
<tr>
<td>5. Perspektiven, Ausblick, Zusammenfassung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen/</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teilnahmenachweis für das Entwurfspraktikum als Vorleistung für die mündliche Prüfung, Mündliche Prüfung über den Inhalt des Modulelements Vorlesung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsformen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Medienformen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Point, Schulungsmaterialien für professionelle Entwurfsframeworks</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur:</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Thomas Kropf: Introduction to Formal Hardware Verification, Springer Verlag 2010</td>
</tr>
<tr>
<td>* William K. Lam: Hardware Design Verification, Prentice Hall, 2005</td>
</tr>
<tr>
<td>* Franz J. Rammig: Systematischer Entwurf digitaler Systeme, Teubner Verlag, 1989</td>
</tr>
<tr>
<td>* Peter Ashenden: The Designer’s Guide to VHDL, Morgan Kaufmann, 2006</td>
</tr>
<tr>
<td>* Thorsten Grötker, Stuart Swan, Grant Martin, Stan Liao: System Design with SystemC, Springer Verlag 2010</td>
</tr>
<tr>
<td>Modulbezeichnung</td>
</tr>
<tr>
<td>--------------------------</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
</tr>
<tr>
<td>Abhaltung</td>
</tr>
<tr>
<td>Studiensemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r)</td>
</tr>
<tr>
<td>Dozent(in)</td>
</tr>
<tr>
<td>Sprache</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
</tr>
<tr>
<td>Lehrform/SWS</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
</tr>
<tr>
<td>Kreditpunkte</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
</tr>
<tr>
<td>Modulziele / Angestrebte Lernergebnisse:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Inhalt</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen/</td>
</tr>
<tr>
<td>Prüfungsformen</td>
</tr>
<tr>
<td>Medienformen</td>
</tr>
<tr>
<td>Literatur</td>
</tr>
<tr>
<td>Modulbezeichnung</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
</tr>
<tr>
<td>Abhaltung:</td>
</tr>
<tr>
<td>Studiensemester</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
</tr>
<tr>
<td>Dozent(in)</td>
</tr>
<tr>
<td>Sprache</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
</tr>
<tr>
<td>Lehrform/SWS</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
</tr>
<tr>
<td>Kreditpunkte</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
</tr>
</tbody>
</table>

Modulziele / Angestrebte Lernergebnisse

The course content is an exhaustive treatment of nano- and microdevice fabrication and characterisation through theory and practical exercises. Applications in medicine, biotechnology and molecular electronics.

After the course, the student should be able to explain
- the fabrication paradigms top down and bottom up
- which process steps are needed for each method respectively
- how the main process steps work
- which physical principles are limiting for fabrication and scaling of a nano- or microdevice
- should understand environmental effects of semiconductor production and be aware of relevant energy savings and efficiency technologies

After the lab course, the student should have
- fabricated a simple nanostructure
- characterized this structure
- measured electrical properties of a submicron semiconductor device in the research environment offered by the KTH nano and microelectronics lab in Kista, Electrum Laboratory.

Inhalt

A survey of nanotechnology and applications in medicine, biotechnology and molecular electronics. The fabrication paradigms: top down (starting from established microdevice fabrication) and bottom up (starting from molecules that are arrange to self-assemble). The important steps in the process of modern microelectronic technology. Characterization methods: electrical, optical, physical, chemical. Overview of nanophysics and simulation methods.

Studien-/Prüfungsleistungen

Oral exam, 30 Minutes
<table>
<thead>
<tr>
<th>Prüfungsformen</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen</td>
<td>PPT</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Netzwerke, Signale, Systeme I</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td>Bachelor</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>NSS I</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>ab 5. Semester</td>
</tr>
<tr>
<td>Abhaltung:</td>
<td>WS, jährlich</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. H. Bessai</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. H. Bessai</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Bachelor-Studiengang "Elektrotechnik"</td>
</tr>
<tr>
<td></td>
<td>Bachelor-Studiengang "Duales Studium Elektrotechnik"</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>4 SWS (2 SWS Vorlesung + 2 SWS Seminar)</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzstudium: 30 Std. Vorlesung + 30 Std. Seminar</td>
</tr>
<tr>
<td></td>
<td>Eigenstudium: 30 Std. Übungsvor- und -nachbereitung, Klausurvorbereitung: 60 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
<td>kein</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Matrix-/Vektorrechnung, Komplexe Rechnung aus "Mathematik für Elektrotechnik-Ingenieure"</td>
</tr>
<tr>
<td></td>
<td>NSS II kann unabhängig von NSS I gehört werden!</td>
</tr>
<tr>
<td>Modulziele / Angestrebte Lernergebnisse:</td>
<td>Die Lehrveranstaltung soll die Studierenden in die Lage versetzen, folgende ET-Ingenieuraufgaben selbstständig und wissenschaftlich korrekt zu bewältigen:</td>
</tr>
<tr>
<td></td>
<td>* Analyse, Spezifikation und Synthese sowohl passiver RLC-Netzwerke als auch aktiver Schaltungen mit Transistoren und Operationsverstärkern.</td>
</tr>
<tr>
<td></td>
<td>* Graphentheoretische Erfassung und Vektor/MatrixBeschreibung von beliebig vermaschten Mehrtorien, insbesondere allgemeiner Vierpolstrukturen und Frequenzfilter.</td>
</tr>
<tr>
<td></td>
<td>* Erweiterung der Schaltungsanalyse um die Verfahren der Wirkleistungs-Streuvariablen-Beschreibung.</td>
</tr>
<tr>
<td></td>
<td>* Beherrschung gängiger Simulationswerkzeuge, wobei zumeist MATLAB- bzw. SIMULINK als Grundlage dient.</td>
</tr>
<tr>
<td></td>
<td>* Zielgenaue Anwendung mathematischer Formeln und Gesetzmäßigkeiten zur Erfassung von Signalverläufen und Gewinnung der zugehörigen Frequenzspektren.</td>
</tr>
<tr>
<td></td>
<td>NSS I umfasst im Wesentlichen die erste dieser beiden Klassen. Die beiden Module können unabhängig voneinander belegt und</td>
</tr>
</tbody>
</table>

156

<table>
<thead>
<tr>
<th>Inhalt:</th>
<th>Fachprüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Analyse passiver und aktiver Vierpolnetzwerke (20 %)</td>
<td></td>
</tr>
<tr>
<td>* Knotenleitwertanalyse und KL-Reduktionsverfahren (20 %)</td>
<td></td>
</tr>
<tr>
<td>* Einführung in MATLAB- und SIMULINK-basierte NSS-Simulationswerkzeuge und Toolboxes (10 %)</td>
<td></td>
</tr>
<tr>
<td>* Beschreibung von Mehrtornetzwerken mit Wirkleistungsstreuvariablen und Streumatrizen (20 %)</td>
<td></td>
</tr>
<tr>
<td>* Modellierung und Synthese aktiver analoger Frequenzfilter (10 %)</td>
<td></td>
</tr>
<tr>
<td>* Simulation von determinierten und stochastischen zeitkontinuierlicher Signalen sowie LTI-Systemen (20 %)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen/</th>
<th>K2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsformen:</td>
<td>Tafel (hauptsächlich), Overhead-Projektor, Beamer, inhaltlich angepasste Formelsammlungen + Tabellen, Hinweise auf spezielle Internet-Seiten</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Literatur:</td>
</tr>
<tr>
<td>* Oppenheim, A.V., Schafer, R.W.: "Zeitdiskrete Signalverarbeitung", Oldenbourg</td>
<td></td>
</tr>
</tbody>
</table>

157
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Netzwerke, Signale, Systeme II</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Bachelor</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>NSS II</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>ab 6. Studiensemester</td>
</tr>
<tr>
<td>Abhaltung:</td>
<td>SS, jährlich</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. H. Bessai</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. H. Bessai</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Bachelor-Studiengang "Elektrotechnik"</td>
</tr>
<tr>
<td></td>
<td>Bachelor-Studiengang "Duales Studium Elektrotechnik"</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>4 SWS (2 SWS Vorlesung + 2 SWS Seminar)</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzstudium: 30 Std. Vorlesung + 30 Std. Seminar</td>
</tr>
<tr>
<td></td>
<td>Eigenstudium: 30 Std. Übungsvor- und -nachbereitung, Klausurvorbereitung: 60 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td>kein</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Matrix-/Vektorrechnung, Komplexe Rechnung aus "Mathematik für Elektrotechnik-Ingenieure"</td>
</tr>
<tr>
<td></td>
<td>NSS II kann unabhängig von NSS I gehört werden!</td>
</tr>
<tr>
<td>Modulziele / Angestrebte Lernergebnisse:</td>
<td>Die Lehrveranstaltung soll die Studierenden in die Lage versetzen, folgende ET-Ingenieursaufgaben selbstständig und wissenschaftlich korrekt zu bewältigen:</td>
</tr>
<tr>
<td></td>
<td>* Analyse, Spezifikation und Synthese klassischer Digitalfilter hinsichtlich kanonischer Formen, der Frequenzgänge, der Stabilität und des Verhaltens im Zeitbereich.</td>
</tr>
<tr>
<td></td>
<td>* Systemtheoretischer Übergang aus zeitkontinuierlichen in zeitdiskreten Prozesse.</td>
</tr>
<tr>
<td></td>
<td>* Implementierungsaspekte (Digitale Signalprozessoren)</td>
</tr>
<tr>
<td></td>
<td>* Wie bei NSS_I Beherrschung gängiger Simulationswerkzeuge, wobei zumeist MATLAB- bzw. SIMULINK als Grundlage dienen.</td>
</tr>
<tr>
<td></td>
<td>* Zusätzlich zur FFT Einsatz weiterer Transformationsverfahren auf der Basis orthogonalen Funktionenfamilien (DCT, Wavelets).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalt:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>* Übergang von kontinuierlichen zu diskreten Systembeschreibungen (BIL, IIV usw.) (10 %)</td>
<td></td>
</tr>
<tr>
<td>* Diskrete Signale und Systeme im Zeit- und Frequenzbereich (20 %)</td>
<td></td>
</tr>
<tr>
<td>* Analyse und Synthese von Digitalfiltern (20 %)</td>
<td></td>
</tr>
<tr>
<td>* Approximationsarten und kanonische Grundstrukturen von Digitalfiltern (10 %)</td>
<td></td>
</tr>
<tr>
<td>* Realisierungsaspekte und DSP-Beispiele (10 %)</td>
<td></td>
</tr>
<tr>
<td>* Diskrete Blocktransformationen inkl. DCT (20 %)</td>
<td></td>
</tr>
<tr>
<td>* Wavelet-Analyse und -Synthese, Haar-Wavelet-Filterbänke (10 %)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen/</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2-stündiges Seminar mit MATLAB-Übungen wöchentlich,</td>
<td></td>
</tr>
<tr>
<td>Fachprüfung</td>
<td></td>
</tr>
</tbody>
</table>

Prüfungsformen:	K2
Medienformen:	
Tafel (hauptsächlich), Overhead-Projektor, Beamer, inhaltlich	
angepasste Formelsammlungen + Tabellen, Hinweise auf spezielle	
Internet-Seiten	

<table>
<thead>
<tr>
<th>Literatur:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>* Schüßler, H.W.: "Netzwerke, Signale, Systeme II", Springer</td>
<td></td>
</tr>
<tr>
<td>Vieweg / Teubner</td>
<td></td>
</tr>
<tr>
<td>* Bessai, H.: "MIMO Signals and Systems", Springer</td>
<td></td>
</tr>
<tr>
<td>* Unbehauen, R.: "Systemtheorie 1", Oldenbourg</td>
<td></td>
</tr>
<tr>
<td>* Oppenheim, A.V., Schafer, R.W.: "Zeitdiskrete Signalverarbeitung", Oldenbourg</td>
<td></td>
</tr>
<tr>
<td>* Meyer, M.: "Signalverarbeitung, Analoge und digitale Signale,</td>
<td></td>
</tr>
<tr>
<td>Systeme und Filter", Vieweg / Teubner</td>
<td></td>
</tr>
<tr>
<td>Teubner</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Nichtlineare Regelungstechnik</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>NRT</td>
</tr>
</tbody>
</table>

ggf. Untertitel

ggf. Lehrveranstaltungen:

<table>
<thead>
<tr>
<th>Abhaltung:</th>
<th>WS, jährlich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studiensemester:</td>
<td>ab 1. Studiensemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. H. Roth</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. H. Roth, wiss. Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
</tbody>
</table>

Zuordnung zum Curriculum

Master-Studiengang "Elektrotechnik"

Lehrform/SWS:

4 SWS (2 SWS Vorlesung + 2 SWS Übung)

Arbeitsaufwand:

Präsenzstudium: 60 h, Eigenstudium: 45 h, Prüfungsvorbereitung: 45 h

Kreditpunkte:

5

Voraussetzungen nach Prüfungsordnung

keine

Empfohlene Voraussetzungen:

Grundlagen der Regelungstechnik (Bachelor)

Modulziele / Angestrebte Lernergebnisse:

Nach dem Besuch der Veranstaltung 'Nichtlineare Regelungstechnik' können die Studierenden
* den Unterschied zwischen linearen und nichtlinearen System definieren und klassifizieren,
* die Methoden des Reglerdesigns in der Phasenebene transferieren, untersuchen und validieren,
* Stabilitätsuntersuchungen von nichtlinearen Systemen durchführen, beurteilen und verwerten.

Inhalt:

Studien-/Prüfungsleistungen/

Fachprüfung

Prüfungsformen:

K2

Medienformen:
<table>
<thead>
<tr>
<th>Literatur:</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Roth, H.: Skript zur Vorlesung Nichtlineare Regelungstechnik.</td>
</tr>
<tr>
<td>* Richard C. Dorf; Robert H. Bishop: Modern Control Systems.</td>
</tr>
<tr>
<td>* Holger Lutz; Wolfgang Wendt: Taschenbuch der Regelungstechnik.</td>
</tr>
<tr>
<td>* Martin Horn; Nicolas Dourdoumas: Regelungstechnik.</td>
</tr>
<tr>
<td>* Adami, Jürgen; Nichtlineare Regelungen; Springer-Verlag</td>
</tr>
<tr>
<td>* Böcker, Joachim; Hartmann, Irmfried; Zwanzig, Christian; Nichtlineare und Adaptive Regelungssysteme; Springer</td>
</tr>
<tr>
<td>* Föllinger, Otto; Nichtlineare Regelungen 1 - Grundbegriffe, Anwendungen der Zustandsebene, direkte Methode; Oldenburg</td>
</tr>
<tr>
<td>* Föllinger, Otto; Nichtlineare Regelungen 2 - Harmonische Balance, Popow- und Kreiskriterium, Hyperstabilität, Synthese im Zustandsraum; Oldenburg</td>
</tr>
<tr>
<td>* Isidori, A.; Nonlinear Control Systems I; Springer</td>
</tr>
<tr>
<td>* Isidori, A.; Nonlinear Control Systems II; Springer</td>
</tr>
<tr>
<td>* Leigh, J.R.; Essentials Of Nonlinear Control Theory; Peter Peregrimus</td>
</tr>
<tr>
<td>* Mohler, Ronald R.; Nonlinear Systems: Volume I, Dynamics and Control; Prentice-Hall</td>
</tr>
<tr>
<td>* Nijmeier, Henk; Schauf, Arjan van der; Nonlinear Dynamical Control Systems; Springer</td>
</tr>
<tr>
<td>* Slotine, Jean Jaques E.; Li, Weiping; Applied Nonlinear Control; Prentice-Hall</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
</tr>
<tr>
<td>Studiensemester:</td>
</tr>
<tr>
<td>Abhaltung:</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
</tr>
<tr>
<td>Dozent(in):</td>
</tr>
<tr>
<td>Sprache:</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
</tr>
<tr>
<td>Modulziele / Angestrebte Lernergebnisse:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Inhalt:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Studien-Fachprüfung:</td>
</tr>
<tr>
<td>/Prüfungsleistungen/</td>
</tr>
<tr>
<td>----------------------</td>
</tr>
<tr>
<td>Prüfungsformen:</td>
</tr>
<tr>
<td>Medienformen:</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
</tr>
<tr>
<td>Abhaltung:</td>
</tr>
<tr>
<td>Studiensemester:</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
</tr>
<tr>
<td>Dozent(in):</td>
</tr>
<tr>
<td>Sprache:</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
</tr>
</tbody>
</table>

Empfohlene Voraussetzungen:
- Grundlagen der Regelungstechnik (Bachelor)
- Nichtlineare Regelungstechnik

Modulziele / Angestrebte Lernergebnisse:
- Interpretieren verschiedener Gütekriterien
- Differenzieren der Aufgabenstellungen für statische und dynamische Optimierungsaufgaben
- Anwenden der wesentlichen Lösungsansätze für dynamische Optimierungen
- Entwerfen von sowohl zeit- als auch energieoptimalen Regelungen
- Analysieren und Bewerten der Strukturen adaptiver Regler
- Vergleichen der Entwurfsverfahren in der adaptiven Regelung

Inhalt:

Literatur:
- Roth, H.: Skript zur Vorlesung Optimale Regelungstechnik.
- Föllinger, Otto: Optimale Regelung und Steuerung.
- Holger Lutz; Wolfgang Wendt: Taschenbuch der Regelungstechnik.
| *Martin Horn; Nicolas Dourdoumas: Regelungstechnik.
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Photonik I</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>PHO I</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>ab 1. Studiensemester</td>
</tr>
<tr>
<td>Abhaltung:</td>
<td>WS, jährlich</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. E. Griese</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. E. Griese, wiss. Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Master-Studiengang "Elektrotechnik"</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>4 SWS (3 SWS Vorlesung, 1 SWS Übung)</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzstudium: 60 h, Eigenstudium: 45 h, Prüfungsvorbereitung: 45 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
<td>keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>keine</td>
</tr>
<tr>
<td>Modulziele / Angestrebte Lernergebnisse:</td>
<td>Nach erfolgreicher Absolvierung des Moduls besitzen die Studierenden die folgenden Kompetenzen:</td>
</tr>
</tbody>
</table>

Inhaltskompetenzen:
* Grundlegende Kenntnisse über Komponenten und Systeme der Optoelektronik und der optischen Nachrichtenübertragung

Methodenkompetenzen:
* Simulation linearer und nichtlinearer Systeme im Bereich der Optik und der Elektronik
* Technologie integriert-optischer Sensoren

Bewertungskompetenzen:
Komponenten und Systeme der Photonik werden in vielen Anwendungsgebieten benötigt. Ihre Entwicklung erfordert zunehmend Wissen aus mehreren Disziplinen bzw. Spezialgebieten. Die selbständige Aneignung dieses Wissens fördert bei den Studierenden die Fähigkeit, auch in anderen interdisziplinären Gebieten das Wesentliche zu erfassen und zu erarbeiten. Weiterhin erlangen die Studierenden die Fähigkeit, die Funktion und das Verhalten komplexer technischer Systeme und deren Einbindung in das gesellschaftliche Umfeld unter ethischen Gesichtspunkten zu beurteilen und kritisch zu bewerten.
<table>
<thead>
<tr>
<th>Inhalt:</th>
<th>Das Modul "Photonik I" vermittelt einer kurzen Einführung zunächst die theoretischen Grundlagen der optischen Nachrichtentechnik. Im weiteren Verlauf werden Eigenschaften und Herstellung optischer Wellenleiter behandelt. Vertieft werden dann aktive optische Komponenten wie Laserdioden, Photodioden sowie Faserverstärker behandelt. Der dritte inhaltliche Schwerpunkt beschäftigt sich mit optischen Überragungssystemen. Die Inhalte gliedern sich in:</th>
</tr>
</thead>
</table>
| 1. Einführung | * Photonische Systeme: Übersicht und Anwendungen
* Licht als elektromagnetische Welle
* Führung und netzwerktheoretische Beschreibung von Wellen |
| 2. Optische Wellenleiter | * Reflexion und Brechung ebener Wellen an dielektrischen Grenzschichten
* Dielektrischer Filmwellenleiter
* Zirkulärsymmetrische Wellenleiter
* Ausführungen, Eigenschaften und Kenngrößen optischer Wellenleiter
* Dispersion, Dispersionskompensation
* Kopplung optischer Wellenleiter
* Herstellung optischer Wellenleiter |
| 3. Optische Sende- und Empfangskomponenten, optische Verstärker | * LED und Laserdioden
* Photodioden
* Faserverstärker |
| 4. Optische Übertragungssysteme | * Aufbau eines optischen Übertragungssystems
* Systemtheoretische Beschreibung eines optischen Übertragungskanals
* Optische Übertragungssysteme mit Faserverstärkern
* Multiplexverfahren |

| Studien-/Prüfungsleistungen/ Prüfungsformen: Medienformen: | Fachprüfung
M
Beamer (Vorlesungsskript ist vorhanden), Tafel, Versuche |

<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Photonik II</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>PHO II</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>ab 2. Studiensemester</td>
</tr>
<tr>
<td>Abhaltung:</td>
<td>SS, jährlich</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. P. Haring Bolivar</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. P. Haring Bolivar, wiss. Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Master-Studiengang "Elektrotechnik"</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>3 SWS (2 SWS Vorlesung, 1 SWS Übung)</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzstudium: 45 h, Eigenstudium: 65 h, Prüfungsvorbereitung: 40 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
<td>keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Photonik I</td>
</tr>
<tr>
<td>Modulziele / Angestrebte Lernergebnisse:</td>
<td>Inhaltskompetenzen (Verbenniveaus "W" Wissen; "V"Verstehen; "AW"Anwenden; "AN"; "E" Evaluieren):</td>
</tr>
<tr>
<td></td>
<td>* Einführung, Literatur (W, V)</td>
</tr>
<tr>
<td></td>
<td>* Grundlagen: Lichtmaterie Wechselwirkung verstehen, Quantenmechanische Beschreibung vergleichen mit der klassischen Mechanik (W, V)</td>
</tr>
<tr>
<td></td>
<td>* Optische Absorption: Klassifizierung optischer Absorbtionsvorgänge, beschreiben der Übergangsraten (W, V)</td>
</tr>
<tr>
<td></td>
<td>* Optische Emission: Klassifizierung optischer Emisionsvorgänge, beschreiben der Übergangsraten (W, V)</td>
</tr>
<tr>
<td></td>
<td>* Prinzip Halbleiterlaser (W, V)</td>
</tr>
<tr>
<td></td>
<td>* Halbleiter-Lasermoden (W, V)</td>
</tr>
<tr>
<td></td>
<td>* Modulatoren, Elektrooptik in Bulk (W, V)</td>
</tr>
<tr>
<td></td>
<td>* Optische Modulatoren (W, V)</td>
</tr>
<tr>
<td></td>
<td>* Grundlagen der Photoleitung (W, V)</td>
</tr>
<tr>
<td></td>
<td>* Photodioden (W, V)</td>
</tr>
<tr>
<td></td>
<td>* Nichtlineare Optik (W, V)</td>
</tr>
<tr>
<td></td>
<td>* Photonic switching and computing (W, V)</td>
</tr>
<tr>
<td></td>
<td>* Optische Datenspeicher (W, V)</td>
</tr>
<tr>
<td></td>
<td>* Optoelektronik in der Kommunikationstechnik (W, V)</td>
</tr>
<tr>
<td></td>
<td>Methodenkompetenzen (Verbenniveaus "W" Wissen; "V"Verstehen; "AW"Anwenden; "AN"; "E" Evaluieren):</td>
</tr>
<tr>
<td></td>
<td>* Beschreibung der optoelektronischen Vorgänge in Halbleiterbauelementen (AW, AN)</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Das Modul "Photonik II" vermittelt einen detaillierten Einblick in die Funktion optischer Komponenten, um Bauelemente und Systeme bewerten, modellieren und realisieren zu können. Ansätze zur Systemintegration werden diskutiert. Die theoretischen Darstellungen werden anhand von anwendungsrelevanten Beispielen erläutert, um einen vertieften Einblick in die Thematik zu gewähren und auch aktuelle Fragestellungen überblicken und verstehen zu können.</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen/</td>
<td>Fachprüfung</td>
</tr>
<tr>
<td>Prüfungsformen:</td>
<td>K2</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Beamer (Vorlesungsskript mit Folien ist vorhanden), Tafel, Versuche</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Physik für Elektrotechnik-Ingenieure</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td>Bachelor</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>PhfET</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
</tbody>
</table>
| ggf. Lehrveranstaltungen: | * Physik I für Studierende der Elektrotechnik im SS
* Physik II für Studierende der Elektrotechnik im WS |
| Abhaltung: | WS/SS, jährlich |
| Studiensemester: | ab 1. Studiensemester |
| Modulverantwortliche(r): | Prof. Dr. M. Risse |
| Dozent(in): | Prof. Dr. M. Risse, M.Sc. M. Niechcio |
| Sprache: | deutsch |
| Zuordnung zum Curriculum: | Bachelor-Studiengang Elektrotechnik
Bachelor-Studiengang "Duales Studium Elektrotechnik" |
| Lehrform/SWS: | 2 * 4 SWS (2 * 2 SWS Vorlesung, 2 * 2 SWS Übung) |
| Arbeitsaufwand: | Präsenzstudium: 2 * 60 h=120 h, Eigenstudium: 80 h, Prüfungsvorbereitung: 40 h |
| Kreditpunkte: | 8 |
| Voraussetzungen nach Prüfungsordnung: | keine |
| Empfohlene Voraussetzungen: | keine |
| Modulziele / Angestrebte Lernergebnisse: | Inhaltskompetenzen:
* Grundverständnis mechanischer Fragestellungen
* Grundverständnis thermodynamischer Fragestellungen
* Grundverständnis optischer Fragestellungen
Methodenkompetenzen:
* Selbständige Berechnung mechanischer Problemstellungen
* Selbständige Berechnung thermodynamischer Problemstellungen
* Selbständige Berechnung optischer Problemstellungen
Bewertungskompetenzen:
Die durch dieses Modul vermittelten Bewertungskompetenzen beziehen sich ausschließlich auf fachliche Aspekte der Physik. |
<table>
<thead>
<tr>
<th>Inhalt:</th>
<th>Mechanik:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>* Newtonsche Gesetze, Bewegungsgleichungen, Kinetische und potentielle Energie</td>
</tr>
<tr>
<td></td>
<td>* Bewegung starrer Körper</td>
</tr>
<tr>
<td></td>
<td>* Arbeit und Leistung</td>
</tr>
<tr>
<td></td>
<td>* Stoßprozesse</td>
</tr>
<tr>
<td></td>
<td>* Rotation</td>
</tr>
<tr>
<td></td>
<td>* Gravitationsgesetz, Planetenbewegung, Keplersche Gesetze</td>
</tr>
<tr>
<td></td>
<td>* Schwingungen</td>
</tr>
<tr>
<td></td>
<td>* Wellen</td>
</tr>
<tr>
<td>Thermodynamik:</td>
<td>* Temperatur, Wärme</td>
</tr>
<tr>
<td></td>
<td>* Druck</td>
</tr>
<tr>
<td></td>
<td>* Erster Hauptsatz der Thermodynamik, Innere Energie</td>
</tr>
<tr>
<td></td>
<td>* Ideales Gas</td>
</tr>
<tr>
<td></td>
<td>* Wärmekapazität</td>
</tr>
<tr>
<td></td>
<td>* Zweiter und dritter HS der Thermodynamik</td>
</tr>
<tr>
<td></td>
<td>* Reale Gase</td>
</tr>
<tr>
<td></td>
<td>* Thermodynamische Phasen</td>
</tr>
<tr>
<td>Optik:</td>
<td>* Linsen, Spiegel</td>
</tr>
<tr>
<td></td>
<td>* Reflexion und Brechung</td>
</tr>
<tr>
<td></td>
<td>* Beugung und Interferenz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen/</th>
<th>Prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsformen:</td>
<td>K2</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Tafel, Beamer</td>
</tr>
</tbody>
</table>
Modulbezeichnung: Praktische Schaltungstechnik
ggf. Modulniveau: Bachelor
ggf. Kürzel: PST

ggf. Untertitel
ggf. Lehrveranstaltungen:
Studiensemester: ab 2. Studiensemester
Abhaltung: WS, jährlich
Modulverantwortliche(r): Prof. Dr. M. Böhm
Dozent(in): Prof. Dr. M. Böhm, wiss. Mitarbeiter
Sprache: deutsch

Zuordnung zum Curriculum
Bachelor-Studiengang "Elektrotechnik"
Bachelor-Studiengang "Duales Studium Elektrotechnik"

Lehrform/SWS: 3 SWS Praktikum
Arbeitsaufwand: Präsenzstudium: 45 h, Eigenstudium: 105 h

Kreditpunkte: 5

Voraussetzungen nach Prüfungsordnung
keine

Empfohlene Voraussetzungen: Die Lehrveranstaltung erfordert Vorkenntnisse auf dem Gebiet der Bauelemente und der Schaltungstechnik (BeS).

Modulziele / Angestrebte Lernergebnisse:

Inhalt: Praktische Realisierung eines Schaltungsprojektes höherer Komplexität.
Studien-/Prüfungsleistungen: Schaltungsprojekt umsetzen und präsentieren
Prüfungsformen: P
Medienformen:

Literatur:
* E. Böhmer, D. Ehrhardt, W. Oberschelp: Elemente der angewandten Elektronik, Kompendium für Ausbildung und Beruf.
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Projektmanagement Grundlagen I</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Bachelor</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>PMG I</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Abhaltung:</td>
<td>WS, jährlich</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>ab 1. Studiensemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. G. Adlbrecht</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. G. Adlbrecht, Dipl.-Ing. P. Littau</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Bachelor-Studiengang Elektrotechnik</td>
</tr>
<tr>
<td></td>
<td>Bachelor-Studiengang "Duales Studium Elektrotechnik"</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>2 SWS Vorlesung</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzstudium: 30 h, Eigenstudium: 45 h, Prüfungsvorbereitung: 15 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>3</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td>keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>keine</td>
</tr>
</tbody>
</table>

Modulziele / Angestrebte Lernergebnisse:

Inhalt:

Der Kurs umfasst Vorlesungen und Gruppenarbeit und bietet zu Beginn eine systemische Betrachtungsweise des Projektmanagements, fokussiert dann aber auf ingenieurmäßige Vorgehensweise in Anlehnung an Systemtheorie und Kybernetik:

* Systemtheorie und Kybernetik
* Projektdefinition und Projektstrukturierung
* Ablauf- und Kapazitätsplanung
* Integriertes Projectcontrolling und Projektfortschrittsbermittlung
* Computer based Project-Management Support

Studien-/Prüfungsleistungen/Leistungsnachweis (LN):

Leistungsnachweis (LN)

Prüfungsformen:

K2

Medienformen:
<table>
<thead>
<tr>
<th>Literatur:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung:</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
</tr>
<tr>
<td>Abhaltung:</td>
</tr>
<tr>
<td>Studiensemester:</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
</tr>
<tr>
<td>Dozent(in):</td>
</tr>
<tr>
<td>Sprache:</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
</tr>
</tbody>
</table>

Empfohlene Voraussetzungen:
- Kenntnisse in Boolescher Logik, Microcontroller-Programmierung,
- Bereitschaft zur Bearbeitung mechanischer und fluidtechnischer Fragestellungen

Modulziele / Angestrebte Lernergebnisse:
- Analyse von IEC1131-konformer Programmierung, der Struktur und der Möglichkeiten moderner Automatisierungsgeräte
- Experimentieren mit den Hardwarekomponenten von Automatisierungsgeräten
- Sensibilisierung für EMV-gerechtes Hardwaredesign
- Kennenlernen der Möglichkeiten und Grenzen hydraulischer und pneumatischer Stellglieder

Inhalt:
- Einführung in die Grundlagen industrieller Automatisierung
- Software von SPS-Geräten
- Schnittstellen zwischen Automatisierungsgerät und Prozess
- EMV in der Verkabelung
- Software für die Automatisierungstechnik
- Nichtelektrische Stellglieder

Studien-/Prüfungsleistungen/Prüfungsformen:
- Fachprüfung
- M

Medienformen:

Literatur:
Günter Schröder: Prozessautomatisierung (Teil I+II), In Moodle verfügbar
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Prozessmesstechnik</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>PMT</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Abhaltung:</td>
<td>WS, jährlich</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>ab 1. Studiensemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. E. Griese</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Dr. U. Schmidt</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Master-Studiengang "Elektrotechnik"</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>3 SWS (2 SWS Vorlesung, 1 SWS Übung)</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzstudium: 45 h, Eigenstudium: 60 h, Prüfungsvorbereitung: 45 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
<td>keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>Modulziele / Angestrebte Lernergebnisse:</td>
<td>Nach erfolgreicher Absolvierung des Moduls besitzen die Studierenden die folgenden Kompetenzen:</td>
</tr>
<tr>
<td></td>
<td>Inhaltskompetenzen:</td>
</tr>
<tr>
<td></td>
<td>Kenntnis der wichtigsten Messprinzipien nichtelektrischer Größen und der verwendeten industriellen Geräte.</td>
</tr>
<tr>
<td></td>
<td>Methodenkompetenzen:</td>
</tr>
<tr>
<td></td>
<td>Dimensionierungs- und Berechnungsverfahren der Messanlagen für nichtelektrische Größen</td>
</tr>
<tr>
<td></td>
<td>Bewertungskompetenzen:</td>
</tr>
<tr>
<td></td>
<td>* Sinnvolle Auswahl geeigneter Messverfahren bei industriellen Messaufgaben</td>
</tr>
<tr>
<td></td>
<td>* Verständnis von Messverfahren zur Bestimmung nichtelektrischer Größen</td>
</tr>
<tr>
<td></td>
<td>* Einschätzung von realen Prozessen und Messgeräten.</td>
</tr>
<tr>
<td></td>
<td>Darüber hinaus verbessern die Studierenden ihr logisches Denken sowie ihre Strategie zum Wissenserwerb.</td>
</tr>
</tbody>
</table>
Inhalt:
Das Modul "Prozessmesstechnik" vermittelt die Grundlagen zur Beschreibung und zum Verständnis industrieller messtechnischer Problemstellungen. Die Veranstaltung vermittelt Kenntnisse des Messens nichtelektrischer Größen und das Einschätzung von Sensoren und Messverfahren. Vorgestellt werden:
- Prozessmesstechnische Grundlagen
- Sensor Kenngrößen
- Resistive Sensoren (z.B. PT100, DMS)
- Kapazitive Sensoren
- Induktive Sensoren
- Aktive Sensoren (Tehermoelemente, Pieszosensoren)
- Radiometrische und optische Messverfahren

Studien-/Prüfungsleistungen/
Fachprüfung

Prüfungsformen:
M

Medienformen:
Beamer, Tafel

Literatur:
- W. Kaspers, H.-J. Küfner: Messen, Steuern, Regeln
- Profos: Handbuch der industriellen Messtechnik
- R. Grabowski: Sensoren und Aktoren
- A. Freudenberger: Prozessmesstechnik
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Rechnerarchitekturen I</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Bachelor</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>RA I</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Abhaltung:</td>
<td>SS, jährlich</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>ab 3. Studiensemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. R. Brück</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Dr. M. Wahl</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Bachelor Elektrotechnik WPF</td>
</tr>
<tr>
<td></td>
<td>Bachelor „Duales Studium Elektrotechnik“ WPF</td>
</tr>
<tr>
<td></td>
<td>Bachelor Informatik Kernfach</td>
</tr>
<tr>
<td></td>
<td>Bachelor „Duales Studium Informatik“ Kernfach</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>3 SWS (2 SWS Vorlesung, 1 SWS Übung)</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzstudium: 45 h, Eigenstudium: 75 h, Prüfungsvorbereitung: 30 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td>keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Grundlegende Kenntnisse in der Digitaltechnik (Schaltwerke, Schaltnetze), Vorlesung: Digitaltechnik</td>
</tr>
</tbody>
</table>
Weitere Themen sind Interrupts und deren Behandlung auf der Hardware-Ebene sowie Ein- und Ausgabe.

In der Vorlesung wird auch der Bezug zu aktuellen Rechnern hergestellt, in denen alle diese Techniken natürlich zur Anwendung kommen.

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen/</th>
<th>Fachprüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsformen:</td>
<td>M</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td>* David A. Patterson, John L. Hennessy: Computer Organization & Design: The Hardware-Software Interface. 3. Auflage, Morgan Kaufmann, 2005</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Rechnerarchitekturen II</td>
</tr>
<tr>
<td>-----------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>RA II</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Abhaltung:</td>
<td>WS, jährlich</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>ab dem 1. Studiensemster</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. R. Brück</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Dr. M. Wahl</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Master Elektrotechnik Wahlpflichtmodul Kommunikationstechnik Master Elektrotechnik Wahlpflichtmodul Mikrosystemtechnik Master Informatik Kernfach</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>3 SWS (2 SWS Vorlesung, 1 SWS Übung)</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzstudium: 45 h, Eigenstudium: 75 h, Prüfungsvorbereitung: 30 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
<td>keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Digitaltechnik, Rechnerarchitekturen I</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>In der Vorlesung Rechnerarchitekturen II werden die Konzepte aus Rechnerarchitekturen I erweitert und vertieft. Im Wesentlichen geht es um die nächsten Schritte in Richtung auf Prozessoren mit höherer Leistung hin. Schwerpunkte bei der Leistungsoptimierung sind dynamisches Scheduling und die effiziente Speicherverwaltung. An einem konkreten Beispiel (Power/PowerPC) wird die Speicherverwaltung erläutert. Um einen Bezug zur aktuellen Prozessorwelt herzustellen, werden die Unterschiede zwischen verschiedenen Architekturen dargestellt, also einer historischen Maschine (VAX), der MIPS aus Rechnerarchitekturen I, dem Beispiel, sowie Sparc, Intel IA32/64 und dem Itanium. Der letzte Teil der Vorlesung behandelt spezielle Prozessoren, die auf ganz bestimmt Anwendungen hin entwickelt werden, insbesondere die Digitalen Signalprozessoren und die</td>
</tr>
</tbody>
</table>
Grafikprozessoren. Abgerundet wird die Vorlesung mit einem Blick auf Rechnersysteme mit extrem hoher Zuverlässigkeit.

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen/</th>
<th>Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsformen:</td>
<td>M</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Powerpoint, Tafel, Beamer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur:</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Andrew S. Tanenbaum: Computerarchitektur. 5. Auflage, Pearson, 2005</td>
</tr>
<tr>
<td>* Publikationen von Intel und IBM</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
</tr>
<tr>
<td>Inhalt:</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>* Allgemeine Systemgleichungen der Drehstrommaschinen mit</td>
</tr>
<tr>
<td>verschiedenen Beispielen</td>
</tr>
<tr>
<td>* Systemgleichungen der Asynchronmaschine</td>
</tr>
<tr>
<td>* Der komplexe Raumzeiger</td>
</tr>
<tr>
<td>* Bezugssysteme</td>
</tr>
<tr>
<td>* Systemgleichungen der Synchronmaschine</td>
</tr>
<tr>
<td>* Steuerung und Regelung der Drehstromasynchronmaschine</td>
</tr>
<tr>
<td>* Spannungs-Frequenzsteuerung der Asynchronmaschine</td>
</tr>
<tr>
<td>* Feldorientierte (Vektor-) Regelung der Asynchronmaschine</td>
</tr>
<tr>
<td>* Koordinatentransformationen und Beschaffung des</td>
</tr>
<tr>
<td>Orientierungswinkels</td>
</tr>
<tr>
<td>* Geberlose Regelverfahren</td>
</tr>
<tr>
<td>* Direkte Fluss- und Drehmoment-Regelung der Asynchronmaschine</td>
</tr>
<tr>
<td>* Steuerung und Regelung der Synchronmaschine</td>
</tr>
<tr>
<td>* Regelung einer permanent erregten Synchronmaschine ohne</td>
</tr>
<tr>
<td>Dämpferwicklung</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen/</td>
</tr>
<tr>
<td>Fachprüfung</td>
</tr>
<tr>
<td>Prüfungsformen:</td>
</tr>
<tr>
<td>M</td>
</tr>
<tr>
<td>Medienformen:</td>
</tr>
<tr>
<td>Tafelanschrift, Präsentationsfolien, Skripte, Übungsaufgaben für</td>
</tr>
<tr>
<td>SIMULINK</td>
</tr>
<tr>
<td>Literatur:</td>
</tr>
<tr>
<td>* Leonhard, W.: Regelung in der elektrischen Antriebstechnik.</td>
</tr>
<tr>
<td>Springer, Berlin</td>
</tr>
<tr>
<td>* Späth, H.: Steuerverfahren für Drehstrommaschinen:</td>
</tr>
<tr>
<td>Theoretische Grundlagen.</td>
</tr>
<tr>
<td>* Nguyen Phung Quang, Jörg-Andreas Dittrich, Praxis der</td>
</tr>
<tr>
<td>feldorientierten Drehstromantriebsregelungen. Expert-Verlag</td>
</tr>
<tr>
<td>(Januar 1999)</td>
</tr>
<tr>
<td>* Ulrich Riefenstahl, Elektrische Antriebstechnik, Teubner</td>
</tr>
<tr>
<td>* Schröder, D.: Elektrische Antriebe , Grundlagen. Springer-Verlag</td>
</tr>
<tr>
<td>* Schröder, D.: Elektrische Antriebe - Grundlagen: Mit</td>
</tr>
<tr>
<td>durchgerechneten Übungs- und Prüfungsaufgaben, Springer Verlag</td>
</tr>
<tr>
<td>* Schröder, D.: Elektrische Antriebe - Regelung von</td>
</tr>
<tr>
<td>Antriebssystemen, Springer Verlag</td>
</tr>
<tr>
<td>* Schulze, M: Elektrische Servoantriebe: Baugruppen</td>
</tr>
<tr>
<td>mechatronischer Systeme , Carl Hanser Verlag GmbH & CO. KG</td>
</tr>
<tr>
<td>* Probst, U.: Servoantriebe der Automatisierungstechnik:</td>
</tr>
<tr>
<td>Komponenten, Aufbau und Regelverfahren , Vieweg+Teubner</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
</tr>
<tr>
<td>Abhaltung:</td>
</tr>
<tr>
<td>Studiensemester:</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
</tr>
<tr>
<td>Dozent(in):</td>
</tr>
<tr>
<td>Sprache:</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen/</td>
</tr>
<tr>
<td>-----------------------------</td>
</tr>
<tr>
<td>Prüfungsformen:</td>
</tr>
<tr>
<td>Medienformen:</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
</tr>
<tr>
<td>Dozent(in):</td>
</tr>
<tr>
<td>Sprache:</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
| Modulziele / Angestrebte Lernergebnisse: | Modulelement: GRT
Kenntnisse:
* Verständnis der Zusammenhänge zwischen Signalen im Zeit- und im Frequenzbereich,
* Verständnis der Zusammenhänge zwischen linearen Differentialgleichungen und komplexen Übertragungsfunktionen,
* Verständnis für die Architektur und Wirkungsweise von regelungstechnischen Algorithmen
Fertigkeiten:
* Behandlung von linearen zeittinvarianten Systemen,
* Analyse von technischen Systemen im Frequenzbereich,
* Synthese von Regelalgorithmen,
* Anwendung von analytischen sowie graphischen Methoden,
Kompetenzen:
* Anwendung der Methoden der klassischen Regelungstechnik |
|-------------------------------|-------------------------------|
| Modulzüle: GRT
Kenntnisse:
* Verständnis der Zusammenhänge zwischen Signalen im Zeit- und im Frequenzbereich,
* Verständnis der Zusammenhänge zwischen linearen Differentialgleichungen und komplexen Übertragungsfunktionen,
* Verständnis für die Architektur und Wirkungsweise von regelungstechnischen Algorithmen
Fertigkeiten:
* Behandlung von linearen zeittinvarianten Systemen,
* Analyse von technischen Systemen im Frequenzbereich,
* Synthese von Regelalgorithmen,
* Anwendung von analytischen sowie graphischen Methoden,
Kompetenzen:
* Anwendung der Methoden der klassischen Regelungstechnik |
|-------------------------------|-------------------------------|
| Modulelement: DRT
* Erklären der Strukturunterschiede zwischen analogen und digitalen Regelsystemen.
* Anwenden der z-Transformation (Erstellen von Vor- und Rückwärtstransformationen, arbeiten mit den Rechenregeln).
* Analysieren wesentlicher Eigenschaften geschlossener digitaler Regelkreise (Stabilität, Einschwingverhalten).
* Gegenüberstellen grundlegender Entwurfsverfahren für kontinuierliche, quasi-kontinuierliche und digitale Regelsysteme.
* Entwerfen von digitalen Reglern, insbesondere auch Deadbeat-Reglern.
* Analysieren digitaler Regelsysteme im Zustandsraum. |
|-------------------------------|-------------------------------|
| Modulelement: RT-P
Nachdem Studierende das Modul besucht haben, können sie
* selbstständig regelungstechnische Methoden der Grundlagen und der Digitalen Regelungstechnik umsetzen,
* die Software WinFACT/MATLAB für Reglerentwurf und -analyse einsetzen,
* regelungstechnische Methoden in moderne Regelungshardware (DSpace-/Quanser-System) integrieren und an Systemen anwenden. |
|-------------------------------|-------------------------------|
| Inhalt:
Inhalt des Moduls sind die Grundlagen der Regelungstechnik, sowie die Digitale Regelungstechnik. Beide Module werden zusätzlich durch ein Praktikum vertieft, um den Studierenden auch die Anwendung der gelernten Methoden zu vermitteln. |
|-------------------------------|-------------------------------|
| Studien-/Prüfungsleistungen/ Prüfungsformen:
Leistungsnachweis für RT-P, Fachprüfung
K3 |
|-------------------------------|-------------------------------|
| Medienformen:
siehe Modulelementbeschreibungen der einzelnen Modulelementen |
|-------------------------------|-------------------------------|
| Literatur:
siehe Modulelementbeschreibungen der einzelnen Modulelementen |
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Robotik I</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>Rob I</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Abhaltung:</td>
<td>WS, jährlich</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>ab 1. Studiensemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. H. Roth</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Dr. J. Wahrburg</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch - Vorlesungsskript in deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Master-Studiengänge Elektrotechnik und Informatik (Wahlpflichtmodul) Master-Studiengang Mechatronics (Modulelement für technische Anwendungen)</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>3 SWS (2 SWS Vorlesung + 2 SWS Übung/Praktikum)</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td>keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>keine</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Vorstellung von Industrierobotern als komplexe mechanische, Regelungstechnische und Informationstechnische Systeme, die nicht nur in der industriellen Fertigung, sondern auch in weiteren Bereichen (Servicerobot, Medizinroboter) eingesetzt werden. Es werden die theoretischen Grundlagen behandelt, um die Kinematik und Dynamik von Manipulatoren zu beschreiben. Ebenso erfolgt eine Einführung in fundamentale Aspekte zur Trajektorienplanung und Regelung. Darauf aufbauend werden Technologie und Aufbau der wichtigsten Komponenten realer Robotersysteme vorgestellt.</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen/Prüfungsformen:</td>
<td>Fachprüfung</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Präsentation, Versuche mit Simulationssoftware, Versuche am realen Roboter</td>
</tr>
</tbody>
</table>
| Literatur: | * Vorlesungsskript
<p>| | * Craig: Introduction to Robotics, Addison Wesley |</p>
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Robotik II</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>Rob II</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Abhaltung:</td>
<td>SS, jährlich</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>ab 1. Studiensemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. H. Roth</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. H. Roth, wiss. Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>englisch - Vorlesungsmaterial teilweise in deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Masterstudiengang "Elektrotechnik" (Wahlpflichtmodul), Masterstudiengang "Mechatronics" (Modulelement für technische Anwendungen)</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>4 SWS (2 SWS Vorlesung, 1 SWS Übung, 1 SWS Praktikum)</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzstudium: 60 h, Eigenstudium: 45 h, Prüfungsvorbereitung: 45 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
<td>keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Robotik I</td>
</tr>
</tbody>
</table>
| Modulziele / Angestrebte Lernergebnisse: | * Beurteilen und Anwenden von Simulationssystemen zur Planung und Programmierung von Robotersystemen
* Analysieren von Kollisionserkennungsverfahren
* Beurteilen und Kategorisieren von Fortbewegungsprinzipien mobiler Roboter
* Differenzieren und Klassifizieren von Sensoren zur Lokalisation von autonomen Robotern
* Bewerten von Algorithmen zur Pfadplanung
* Evaluierung von Sensoren zur Navigation |
| Studien-/Prüfungsleistungen/ | Fachprüfung |
| Prüfungsformen: | M |
| Medienformen: | |
| Literatur: | * Skript zur Vorlesung
* Handbücher zu den vorgestellten Simulationssystemen
* R. Siegwart, I. R. Nourbakhsh: Autonomous Mobile Robots
* A. Nüchter: 3D Robotic Mapping
* J. L. Jones, A.M. Flynn: Mobile Roboter
* J. Altenburg, U. Altenburg: Mobile Roboter |
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Seminar Elektrotechnik</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Bachelor</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>ET-S</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ggf. Untertitel</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>ggf. Lehrveranstaltungen:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Studiensemester:</th>
<th>ab 1. Studiensemester</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Abhaltung:</th>
<th>WS und SS</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche(r):</th>
<th>Department ETI</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Dozent(in):</th>
<th>Professoren des Departments ETI</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Sprache:</th>
<th>deutsch</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Zuordnung zum Curriculum</th>
<th>Bachelor-Studiengang "Elektrotechnik"</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bachelor-Studiengang "Duales Studium Elektrotechnik"</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform/SWS:</th>
<th>2 SWS</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Arbeitsaufwand:</th>
<th>Präsenzstudium: 30 h, Eigenstudium: 120 h</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Kreditpunkte:</th>
<th>5</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Voraussetzungen nach Prüfungsordnung</th>
<th>keine</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Empfohlene Voraussetzungen:</th>
<th>keine</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Modulziele / Angestrebte Lernergebnisse:</th>
<th>Nach erfolgreicher Absolvierung des Moduls besitzen die Studierenden die folgenden Kompetenzen:</th>
</tr>
</thead>
</table>

Inhaltskompetenzen:
Die fachlichen Inhalte sind gegenüber den angestrebten Methodenkompetenzen und Schlüsselqualifikationen sekundär und können ggf. einen Schwerpunkt, der im Wahlbereich gewählt wird, ergänzen.* Darstellung von Vektorfeldern in orthogonalen Koordinatensystemen
* Kenntnis der Maxwellschen Gleichungen zur Beschreibung von elektrischen und magnetischen Feldern
* Kenntnis der Eigenschaften elektrischer und magnetischer Felder
* Stromverdrängung in elektrischen Leitern
* Grundlagen der Ausbreitung elektromagnetischer Wellen (ebene Welle)

Methodenkompetenzen:
* Vektoranalytische Beschreibung von elektrischen und magnetischen Feldern
* Darstellung und Berechnung von elektrischen und magnetischen Feldern von bekannten Ladungen und Strömen
* Lösung einfacher partieller Differentialgleichungen
* Beschreibung des Energietransports durch des Poyntingschen Vektor

Bewertungskompetenzen:
Die zu erlernenden Methoden in diesem Modul sind aus Gründen
* Probleme mit einem hohen Abstraktionsniveau zu erfassen und zu lösen. Darüber hinaus verbessern die Studierenden ihr logisches Denken sowie ihre Strategie zum Wissenserwerb.

Inhalt:

Das Modul "Grundlagen der Feldtheorie" vermittelt die Grundlagen zur Beschreibung und zum Verständnis elektromagnetischer Felder. Nach der Einführung der Maxwellschen Gleichungen wird das allgemeine Verhalten der Feldstärken an Grenzflächen behandelt. Der Schwerpunkt des Moduls liegt dann auf den elektrostatischen Feld und dem magnetischen Feld zeitlich konstanter Ströme, deren Beschreibungsformen und Eigenschaften intensiv behandelt werden. Abschließend werden einfache zeitveränderliche elektromagnetische Felder behandelt. Die Inhalte gliedern sich wie folgt:

1. Einführung
 * Die Maxwellschen Gleichungen
 * Verhalten der Feldgrößen an Grenzschichten (Randbedingungen)
 * Übersicht und Einteilung der Felder

2. Das elektrostatische Feld
 * Felder von Punkte-, Linien-, Flächen- und Raumladungen
 * Felder von elektrostatischen Dipolen und Dipolverteilungen
 * Das komplexe elektrostatische Potential
 * Das elektrostatische Feld in Gegenwart leitender Körper
 * Das elektrostatische Feld in Gegenwart dielektrischer Körper
 * Grundlagen der Potential- und Ladungsspiegelung
 * Energie und Kraft im elektrostatischen Feld

3. Das magnetische Feld zeitlich konstanter Ströme
 * Das magnetische Vektorpotential
 * Das magnetische Skalarpotential
 * Strombelag und magnetisches Feld
 * Das komplexe magnetische Potential
 * Halbräume unterschiedlicher Permeabilität
 * Energie des magnetischen Feldes
 * Induktivitäten im System massiver Leiter
 * Kraft auf Strom durchflossene Leiter

4. Das zeitveränderliche elektromagnetische Feld (Einführung)
 * Die elektrodynamischen Potentiale
<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen/</th>
<th>Seminar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsformen:</td>
<td>S</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Beamer (Vorlesungsskript ist vorhanden), Tafel, Versuche</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Seminar und Praktikum zur elektrischen Energieversorgung</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>EEV-SP</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td>- Seminar Aktuelle Themen der elektrischen Energieversorgung</td>
</tr>
<tr>
<td></td>
<td>- Praktikum - Elektrische Energieversorgung</td>
</tr>
<tr>
<td>Abhaltung:</td>
<td>SS, jährlich</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>2 oder 4</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. M. Kizilcay</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. M. Kizilcay</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Masterstudiengang Elektrotechnik, Studienmodell</td>
</tr>
<tr>
<td></td>
<td>"Automatisierungstechnik" - Wahlpflichtmodul -</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>Seminar: 1 SWS VO + 1 SWS S</td>
</tr>
<tr>
<td></td>
<td>Praktikum: 2 SWS P</td>
</tr>
<tr>
<td></td>
<td>S: Anleitung und Betreuung der Seminararbeit</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>- Seminar: Vorlesung: 6 h, Seminararbeitsbetreuung: 1 h * 14 W = 14 h,</td>
</tr>
<tr>
<td></td>
<td>Eigenstudium: 2 h * 15 W = 30 h, Verfassung der Arbeit und des Vortrags: 40 h, Summe: 90 h</td>
</tr>
<tr>
<td></td>
<td>- Praktikum (Labor):</td>
</tr>
<tr>
<td></td>
<td>Praktikum: 2 h * 15 W = 30 h, Vorbereitung und Ausarbeitung: 2h * 15 W = 30 h, Summe: 60 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
<td>keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Vorkenntnisse aus dem Modul "Grundlagen der Energietechnik"</td>
</tr>
<tr>
<td></td>
<td>(Bachelor-Studiengang Elektrotechnik)</td>
</tr>
<tr>
<td></td>
<td>und dem Master-Modul "Regelung und Berechnung elektrischer Netze"</td>
</tr>
<tr>
<td>Modulziele / Angestrebte Lernergebnisse:</td>
<td>Nachdem Studierende dieses Modul besucht haben, können sie</td>
</tr>
<tr>
<td></td>
<td>- praxisbezogene und aktuelle Aufgaben der elektrischen Energieversorgung erkennen, selbstständig damit beschäftigen und Lösungsvorschläge auszuarbeiten</td>
</tr>
<tr>
<td></td>
<td>- Messapparaturen selbstständig aufbauen</td>
</tr>
<tr>
<td></td>
<td>- Mess- und Berechnungsergebnisse auswerten</td>
</tr>
<tr>
<td></td>
<td>- selbständig ein bestimmtes Thema erarbeiten und die Ergebnisse in einem Bericht zusammenfassen</td>
</tr>
<tr>
<td></td>
<td>- die Ergebnisse der bearbeiteten Aufgabe vor einer Gruppe präsentieren und diskutieren</td>
</tr>
<tr>
<td></td>
<td>- in die einschlägige Fachliteratur einarbeiten.</td>
</tr>
</tbody>
</table>
Inhalt:

Seminar:

Praktikum:
Das Praktikum behandelt praxisnah ausgewählte wichtige Themen der elektrischen Energieversorgung. Das Praktikum setzt sich zusammen aus folgenden Versuchen:
- Schutzmaßnahmen gegen gefährliche Körperströme, VDE 0100 (Netzmodell)
- Symmetrisches und unsymmetrisches Verhalten eines Drehstromtransformators
- Selektivschutz in einem Mittelspannungsnetz mit Schutzrelais
- Simulation und Analyse eines Mittelspannungsnetzes
- Leistungsflussberechnungen mit einem Netzberechnungsprogramm
- Kurzschlussberechnungen mit einem Netzberechnungsprogramm
- Übertragungsverhalten einer Drehstromleitung
- Photovoltaik - Labormessung und Projektierung von Anlagen

Studien-/Prüfungsleistungen/
Ausarbeitung der Praktikumsversuche, Verfassung und Präsentation der Seminararbeit und mündliche Prüfung

Prüfungsformen:
M

Medienformen:
Präsentation, Tablet-PC, Moodle (E-Learning)

Literatur:
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Signal- und Systemtheorie I</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>SST I</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>ab 1. Studiensemester</td>
</tr>
<tr>
<td>Abhaltung:</td>
<td>WS, jährlich</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. H. Bessai</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. H. Bessai</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Master-Studiengang Elektrotechnik, Wahlpflichtmodul Kommunikationstechnik</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>4 SWS (2 SWS Vorlesung + 2 SWS Seminar)</td>
</tr>
</tbody>
</table>
| Arbeitsaufwand: | Präsenzstudium: 30 Std. Vorlesung + 30 Std. Seminar
<p>| | Eigenstudium: 30 Std. Übungsvor- und -nachbereitung, Klausurvorbereitung: 60 h |
| Kreditpunkte: | 5 |
| Voraussetzungen nach Prüfungsordnung | keine |
| Empfohlene Voraussetzungen: | Grundlagen der Signal- und Systemtheorie (GSS) aus Bachelor-Studiengang Elektrotechnik sowie gute Mathematikkenntnisse |</p>
<table>
<thead>
<tr>
<th>Inhalt:</th>
<th>Fachprüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Signale und Signalräume (20 %)</td>
<td></td>
</tr>
<tr>
<td>* Distributionen und zeitdiskrete Prozesse (10 %)</td>
<td></td>
</tr>
<tr>
<td>* Prinzipien der diskreten und integralen</td>
<td></td>
</tr>
<tr>
<td>* Signaltransformationen (20 %)</td>
<td></td>
</tr>
<tr>
<td>* Orthonormalisierungsverfahren (20 %)</td>
<td></td>
</tr>
<tr>
<td>* Hauptkomponentenanalyse (10 %)</td>
<td></td>
</tr>
<tr>
<td>* Systemdarstellung im Zustandsbereich (20 %)</td>
<td></td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen/</td>
<td>K2</td>
</tr>
<tr>
<td>Prüfungsformen:</td>
<td></td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Tafel (hauptsächlich), Overhead-Projektor, Beamer, inhaltlich angepasste Formelsammlungen + Tabellen, Hinweise auf spezielle Internet-Seiten</td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>* Bessai, H.: "MIMO Signals and Systems", Springer</td>
<td></td>
</tr>
<tr>
<td>* Unbehauen, R.: "Systemtheorie 1", Oldenbourg</td>
<td></td>
</tr>
<tr>
<td>* Oppenheim, A.V., Schafer, R.W.: "Zeitdiskrete Signalverarbeitung", Oldenbourg</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Signal- und Systemtheorie II</td>
</tr>
<tr>
<td>-----------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>SST II</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>ab 1. Studiensemester</td>
</tr>
<tr>
<td>Abhaltung:</td>
<td>SS, jährlich</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. H. Bessai</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. H. Bessai</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Master-Studiengang Elektrotechnik, Wahlpflichtmodul Kommunikationstechnik</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>4 SWS (2 SWS Vorlesung + 2 SWS Seminar)</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzstudium: 30 Std. Vorlesung + 30 Std. Seminar Eigenstudium: 30 Std. Übungsvor- und -nachbereitung, Klausurvorbereitung: 60 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td>keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>* Grundlagen der Signal- und Systemtheorie (GSS) aus Bachelor-Studiengang Elektrotechnik empfohlen. * SST II kann unabhängig von SST I gehört werden!</td>
</tr>
</tbody>
</table>
Inhalt:

<table>
<thead>
<tr>
<th>Fachgebietsbereich</th>
<th>Gliederungsnummer</th>
<th>Anteil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charakterisierung zeitkontinuierlicher und zeitdiskreter Zufallsprozesse</td>
<td>20%</td>
<td>20%</td>
</tr>
<tr>
<td>Theorie mehrdimensionaler Signale und Systeme</td>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td>Analyse zeitvarianter Systeme</td>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td>Kurzzeit-Spektralanalyse</td>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td>Zeit-Frequenz-Verteilungen</td>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td>Adaptive Systeme</td>
<td>20%</td>
<td>20%</td>
</tr>
<tr>
<td>Nichtlineare Polynomsysteme</td>
<td>20%</td>
<td>20%</td>
</tr>
</tbody>
</table>

Studien-/Prüfungsleistungen:

- Fachprüfung

Prüfungsformen:

- K2

Medienformen:

- Tafel (hauptsächlich), Overhead-Projektor, Beamer, inhaltlich angepasste Formelsammlungen + Tabellen, Hinweise auf spezielle Internet-Seiten

Literatur:

- Davenport, W.B., Root, W.L., "Random Signals and Noise", McGraw Hill
- Unbehauen, R.: "Systemtheorie 1", Oldenbourg
- Unbehauen, R.: "Systemtheorie 2", Oldenbourg
- Oppenheim, A.V., Schafer, R.W.: "Zeitdiskrete Signalverarbeitung", Oldenbourg
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Speichertechnologien</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>SPTE</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Abhaltung:</td>
<td>SS, jährlich</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>ab dem 1. Studiensemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. R. Brück</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Dr. M. Wahl</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td></td>
</tr>
<tr>
<td>Master Informatik Vertiefungsmodul</td>
<td></td>
</tr>
<tr>
<td>Bachelor Informatik Vertiefung</td>
<td></td>
</tr>
<tr>
<td>Bachelor „Duales Studium Informatik“ Vertiefung</td>
<td></td>
</tr>
<tr>
<td>Master Elektrotechnik WPF Mikrosystemtechnik</td>
<td></td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>4 SWS (2 SWS Vorlesung, 2 SWS Übung)</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzstudium: 60 h, Eigenstudium: 60 h, Prüfungsvorbereitung: 30 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td>Keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Digitaltechnik, Rechnerarchitekturen I</td>
</tr>
<tr>
<td>Modulziele / Angestrebte Lernergebnisse:</td>
<td>nach Abschluss des Moduls</td>
</tr>
<tr>
<td></td>
<td>* kennen die Studierenden die Speicherpyramide von Register, Cache, Hauptspeicher und Massenspeicher bis hin zu Archivsystemen,</td>
</tr>
<tr>
<td></td>
<td>* haben eine Übersicht über die verschiedenen Methoden zur Speicherung auf rotierenden Medien gewonnen, wobei auch der Blick in die Zukunft wesentlich ist,</td>
</tr>
<tr>
<td></td>
<td>* haben verstanden, wo die Grenzen der Speicherdichte auf Festplatten liegen,</td>
</tr>
<tr>
<td></td>
<td>* sind in der Lage, flüchtige und nicht flüchtige Speicher zu erklären und die Technologien zu erläutern und</td>
</tr>
<tr>
<td></td>
<td>* haben gelernt, gut zwischen den im Idealfall möglichen und in der Praxis auftretenden Werten zu unterscheiden, z.B. bei den Interfaces.</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>Die Vorlesung gliedert sich in zwei Teile. Der erste Teil der Vorlesung behandelt die rotierenden Speichermedien, also zum einen die verschiedenen Typen Polycarbonat-Medien (CD, DVD, BluRay), zum anderen die Festplatten. Die zugrunde liegende Technologie wird vorgestellt und die Grenzen, welche derzeit absehbar sind. Auch neue Technologien, wie Patterned Media, Shingled Writing oder Heat Assied Writing lernen die Studierenden kennen. Der zweite Teil behandelt Halbleiterspeicher. Dabei geht es vor allem um die Technologien, mit denen ein Bit gespeichert werden kann. Klassische Zellen sind SRAM und DRAM sowie EEPROM für den nicht flüchtigen Speicher. Darüber gibt es eine ganze Reihe von Technologien, die auf unterschiedlichen physikalischen...</td>
</tr>
</tbody>
</table>
Prinzipien beruhen. Auf der Basis der Zellen wird dann die Architektur eines Speichers entwickelt mit seiner Hierarchie von Leseverstärkern. Den Abschluss bilden die Interfaces, die für die tatsächlich erreichbare Performance von extremer Wichtigkeit sind.

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen/</th>
<th>Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsformen:</td>
<td>M</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Powerpoint, Tafel, Beamer</td>
</tr>
</tbody>
</table>
* Alan B. Marchant: Optical recording. Addison Wesley, 1990
* Ulf Troppens, Rainer Erkens, Wolfgang Müller: Speichernetze. dpunkt, 2008
* Aktuelle Publikationen zum Thema |
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Stochastic Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>StM</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Abhaltung:</td>
<td>WS, jährlich</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>ab 2. Studiensemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. O. Loffeld</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. O. Loffeld, wiss. Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>English</td>
</tr>
</tbody>
</table>
| Zuordnung zum Curriculum | Master-Studiengang "Elektrotechnik"
 | Master-Studiengang "Informatik" |
| Lehrform/SWS: | 2 SWS Vorlesung + 2 SWS Seminar |
| Arbeitsaufwand: | Präsenzstudium: 60 h, Eigenstudium: 55 h, Prüfungsvorbereitung: 35 h |
| Kreditpunkte: | 5 |
| Voraussetzungen nach Prüfungsordnung | keine |
| Empfohlene Voraussetzungen: | * Communications Engineering (dringend empfohlen), Grundlagen der Regelungstechnik (GRT)
 * Inhaltlich: Basics of modern control theory, state space techniques, basics and foundations of communication and signal theory |
| Modulziele / Angestrebte Lernergebnisse: | Bereitstellung mathematischer und estimationstheoretischer Grundlagen, Fertigkeiten und Fähigkeiten
 Kenntnisse:
 * Dynamic Linear Models and State Space Description
 * Probability and Random Variables
 Fertigkeiten:
 * Modeling linear dynamic systems in state space
 * Solution of state space differential equations
 * Formulation of discrete time equivalent systems
 * Optimal estimation for static stochastic problems
 * Bayesian estimation
 * Conditional mean estimation
 * Maximum likelihood estimation
 * Recurisve minimum varaince estimation
 * Static Kalman filter
 Kompetenzen:
 Given a stochastic observation problem of an static unknown state, find the optimal estimation solution to determine the unknown state from the noisy observations.
<table>
<thead>
<tr>
<th>Inhalt:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Linear dynamic state space descriptions:</td>
</tr>
<tr>
<td>Differential and difference equation systems, vectorial formulations, observability, reachability, controllability, stability issues</td>
</tr>
<tr>
<td>2. Probability and Static Models:</td>
</tr>
<tr>
<td>Probability and relative frequency, event space, events, elementary events, sigma algebra, Borel fields, probability axioms, random variables and random vectors, probability distribution and probability distribution density, probability distribution and density of random vectors, multivariate distributions and densities, joint densities, relations between random vectors and variables, mapping of random variables and vectors, joint densities and conditional densities, induced densities, moments and expectations of random vectors and functions of random vectors, mean, correlation and covariance, Gaussian distributions, central limit theorem, conditional expectations of jointly normal random vectors,</td>
</tr>
<tr>
<td>3. Optimal Estimation Principles:</td>
</tr>
<tr>
<td>Conditional mean estimation, minimum variance estimation, Bayesian estimation, Kalman Filter for Static Problems, Relations between estimation principles</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen/</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teilnahme am Seminar bzw. Übung, Fachprüfung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsformen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Medienformen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung mit Powerpoint-Folien und Lifeannotierung in der Vorlesung unter Verwendung einer aktiven Tafel, Vorlesungsskript als pdf in Deutsch,</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur:</th>
</tr>
</thead>
<tbody>
<tr>
<td>* O. Loffeld, Estimationstheorie I, Oldenbourg Verlag München,</td>
</tr>
<tr>
<td>* W.B. Davenport, Probability and Random Variables, Mc Graw-Hill,</td>
</tr>
<tr>
<td>* P.S. Maybeck, Stochastic Models Estimation and Control, Academic Press,</td>
</tr>
<tr>
<td>* Aufzeichnung und Archivierung der Vorlesung als Real Media Stream</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
</tr>
<tr>
<td>Abhaltung:</td>
</tr>
<tr>
<td>Studiensemester:</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
</tr>
<tr>
<td>Dozent(in):</td>
</tr>
<tr>
<td>Sprache:</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
</tr>
<tr>
<td>Modulziele / Angestrebte Lernergebnisse:</td>
</tr>
<tr>
<td>Kenntnisse:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Fertigkeiten:</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Kompetenzen:</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
| Inhalt: | 1. Introduction to SAR:
* Applications of SAR Imaging
* The principle of SAR and SAR Interferometry
* SAR missions and sensors
* SAR modes
* Bistatic SAR experiments
2. Basics of signal processing:
* Basics of Radar
* Signals in low pass and band pass domain
* Special features of signals with a quadratical phase (Chirps)
* Processing of band pass signals
* Doppler effect
3. Imaging with SAR:
* From to sensor the raw data (SAR geometry)
* Cell resolution
* Matched filtering
* Range cell migration
* Azimuth matched filtering (azimuth compression)
* Point target reference spectrum
4. Processing of scenes:
* Range-Doppler processor
* Derivation of the SIFT processor
* Features of SAR images
* Speckle effect
5. SAR interferometry:
* Principle of SAR interferometry
* Properties of an interferogramm
* Coherence
* Phase noise, coregistration, phase unwrapping, phase to height conversion
6. Bistatic SAR:
* Advantages and challenges of bistatic SAR
* Bistatic resolution cells
* Geometrics model of a bistatic sensor
* Bistatic point target reference spectrum
* Focussing of bistatic data
* Loffeld’s Approach
* Seismic techniques (Rocca’s smile and Dip Move Out)
* Experiments at ZESS |

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen/</th>
<th>Teilnahme am Seminar bzw. Übung, Fachprüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsformen:</td>
<td>M</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Vorlesung mit Powerpoint-Folien und Lifeannotierung in der Vorlesung unter Verwendung einer aktiven Tafel, Vorlesungsskript als pdf in Deutsch,</td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td></td>
</tr>
<tr>
<td>* Aufzeichnung und Archivierung der Vorlesung als Real Media Stream</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung</td>
<td>Systeme mit Kontrollern I</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td>Informatik: Bachelor</td>
</tr>
<tr>
<td></td>
<td>Elektrotechnik: Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>SMK1</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Abhaltung:</td>
<td>WS, jährlich</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>ab 1. Studiensemester</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. R. Obermaisser</td>
</tr>
<tr>
<td>Dozent(in)</td>
<td>Dr. W. Lang</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum</td>
<td>Bachelor-Studiengang Informatik Vertiefung</td>
</tr>
<tr>
<td>Curriculum</td>
<td>Bachelor "Duales Studium Informatik" Vertiefung</td>
</tr>
<tr>
<td></td>
<td>Master-Studiengang Elektrotechnik Wahlpflichtmodule</td>
</tr>
<tr>
<td></td>
<td>Automatisierungs- und Energietechnik</td>
</tr>
<tr>
<td>Lehrform/SWS</td>
<td>4 SWS (2 SWS Vorlesung, 1 SWS Übungen, 1 SWS Seminarteil)</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>Präsenzstudium: 60 h, Eigenstudium 60 h Prüfungsvorbereitung 30 h,</td>
</tr>
<tr>
<td>Kreditpunkte</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
<td>keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>keine</td>
</tr>
<tr>
<td>Modulziele / Angestrebte Lernergebnisse</td>
<td>Nachdem Studierende die Veranstaltung besucht haben, können sie passive Bauelemente zur Anschaltung einfacher Sensoren an digitale Ein- bzw. Ausgänge des Mikrocontrollers berechnen und kennen auch das physikalische bzw. elektrische Verhalten von ausgewählten Sensoren. Studierende können einen für die Problemstellung geeigneten Feldbus (Seminarteil) auswählen und die passende Mikrocontroller-Architektur bestimmen und klassifizieren. Im Rahmen der Bewertungskompetenzen sind die Studierenden in der Lage die unterschiedlichen Peripherie-Einheiten von Mikrocontrollern zu untersuchen und die Eignung für die Lösung der gestellten Entwurfsaufgabe zu erkennen. Die Gruppendifynamik des Seminaranteils der Veranstaltung verbessert die Teamfähigkeit, die Strategien des Wissenserwerbs (Feldbus-Recherche) und auch die Präsentation der Ergebnisse.</td>
</tr>
<tr>
<td>Inhalt</td>
<td>Systeme mit Kontrollern I</td>
</tr>
<tr>
<td></td>
<td>*Einführung des Begriffes Kommunikation</td>
</tr>
<tr>
<td></td>
<td>*Prozess-Automatisierung und -Hierarchie</td>
</tr>
<tr>
<td></td>
<td>*Sensoren und Aktoren</td>
</tr>
<tr>
<td></td>
<td>*Schnittstellen und Busstrukturen der Steuerungsebene</td>
</tr>
<tr>
<td></td>
<td>*Steuerungs-Architekturen</td>
</tr>
<tr>
<td></td>
<td>*Mikrocontroller-Architekturen</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen</td>
<td>Zulassung zur Prüfung durch erfolgreiche Teilnahme am Seminarteil (Feldbus-Vortrag), Fachprüfung</td>
</tr>
<tr>
<td>Prüfungsformen</td>
<td>K2</td>
</tr>
<tr>
<td>Medienformen</td>
<td>moodle, Tafelanschrieb, Overhead-Folien und Beamer</td>
</tr>
<tr>
<td>Autor</td>
<td>Titel</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Wojtkowiak, Hans</td>
<td>Test und Testbarkeit digitaler Schaltungen.**</td>
</tr>
<tr>
<td>Böhm, Werner</td>
<td>Elektrische Antriebe.**</td>
</tr>
<tr>
<td>Myklebust, Dr. Gaute</td>
<td>The AVR Microcontroller and C Compiler Co-Design ATMEL Cooperation, ATMEL Development Center.**</td>
</tr>
<tr>
<td>Fraser, Christopher W., Hanson, David R.</td>
<td>A retargetable C compiler: design and implementation. ***</td>
</tr>
<tr>
<td>Farschtschi, Ali</td>
<td>Elektromaschinen in Theorie und Praxis.**</td>
</tr>
<tr>
<td>Busse, Robert</td>
<td>Feldbussysteme im Vergleich.**</td>
</tr>
<tr>
<td>Modulbezeichnung</td>
<td>Systeme mit Kontrollern II</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td>Informatik: Bachelor
Elektrotechnik: Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>SMK2</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td>Wird nicht genannt</td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen</td>
<td></td>
</tr>
<tr>
<td>Abhaltung:</td>
<td>SS, jährlich</td>
</tr>
<tr>
<td>Studiensemester</td>
<td>ab 2. Studiensemester</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. R. Obermaisser</td>
</tr>
<tr>
<td>Dozent(in)</td>
<td>Dr. W. Lang</td>
</tr>
<tr>
<td>Sprache</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td></td>
</tr>
<tr>
<td>Bachelor-Studiengang Informatik Vertiefung</td>
<td></td>
</tr>
<tr>
<td>Bachelor "Duales Studium Informatik" Vertiefung</td>
<td></td>
</tr>
<tr>
<td>Master-Studiengang Elektrotechnik Wahlpflichtmodule</td>
<td></td>
</tr>
<tr>
<td>Automatisierungs- und Energietechnik</td>
<td></td>
</tr>
<tr>
<td>Lehrform/SWS</td>
<td>3 SWS (2 SWS Vorlesung, 1 SWS Übungen)</td>
</tr>
<tr>
<td>Arbeitsaufwand</td>
<td>Präsenzstudium: 45 h, Eigenstudium 75 h, Prüfungsvorbereitung 30 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
<td>keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>Systeme mit Kontrollern I</td>
</tr>
<tr>
<td>Modulziele / Angestrebte Lernergebnisse</td>
<td></td>
</tr>
<tr>
<td>Nachdem Studierende die Veranstaltung besucht haben, können sie die Architektur, die Peripherie und die Nutzung eines Mikrocontrollers nennen und beschreiben. Sie können einen mikrocontroller-basierten Entwurf (Prototyp) erstellen und die dazugehörige Software auf Basis von Embedded-C eigenständig entwickeln und programmieren. Studierende kennen die Entwurfswerkzeuge und sind in der Lage die programmierte Software zu testen und erfolgreich in Betrieb zu nehmen. Im Rahmen der praktischen Programmier-Übungen sind die Studierenden in der Lage unterschiedliche Software-Lösung für bestimmte technische Probleme zu analysieren und zu bewerten. Die Möglichkeit eigene Lösungen für die gestellten Aufgaben zu erproben, verbessern zusätzlich die Strategien des Wissenserwerbs, das logische Denken, die Fähigkeit der Synthese und auch den Umgang mit Misserfolgen.</td>
<td></td>
</tr>
<tr>
<td>Inhalt</td>
<td>Systeme mit Kontrollern II
 * AVR-Mikrocontroller-Architektur
 * Befehlssatz
 * Peripherie-Komponenten
 * Werkzeuge-1: Assembler und Simulator
 * Die Programmiersprache Embedded-C
 * Werkzeuge-2: Embedded-C-Compiler (WinAVR), Debugger (JTAG)
 * Programmierbeispiele in Assembler und Embedded-C
 * Entwurf und Test von Mikrocontroller-Anwendungen</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen</td>
<td></td>
</tr>
<tr>
<td>Zulassung zur Prüfung durch erfolgreiche Teilnahme an Programmierübungen, Fachprüfung</td>
<td></td>
</tr>
</tbody>
</table>

210
<table>
<thead>
<tr>
<th>Prüfungsformen</th>
<th>K2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medienformen</td>
<td>moodle, Tafelanschrieb, Overhead-Folien und Beamer</td>
</tr>
</tbody>
</table>
| Literatur | *Datenblätter der Firma Atmel zu den AVR Mikrocontrollern
 *diverse Bücher zur Programmiersprache C (Kernighan & Ritchie)
 *Empfehlung: Dausmann, Bröckl, Goll. C als erste Programmiersprache (deutsches PDF aus unserer Bibliothek) |
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Technische Mechanik für Elektrotechnik-Ingenieure</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Bachelor</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>TMfET</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td>* Technische Mechanik für Elektrotechnik-Ingenieure I (WS)</td>
</tr>
<tr>
<td></td>
<td>* Technische Mechanik für Elektrotechnik-Ingenieure II (SS)</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>ab 1. Studiensemester</td>
</tr>
<tr>
<td>Abhaltung:</td>
<td>SS/WS, jährlich</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Jun.-Prof. Dr. R. Seifried</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Jun.-Prof. Dr. R. Seifried</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Bachelor-Studiengang Elektrotechnik</td>
</tr>
<tr>
<td></td>
<td>Bachelor-Studiengang "Duales Studium Elektrotechnik"</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>2 * 4 SWS (2 * 2 SWS Vorlesung, 2 * 2 SWS Übung)</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzstudium: 120 h, Eigenstudium: 90 h, Prüfungsvorbereitung: 30 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>8</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
<td>keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>keine</td>
</tr>
<tr>
<td>Inhalt:</td>
<td>technische Mechanik 1: Statik</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>* Kraft, Wirkungslinie, Schnittprinzip</td>
</tr>
<tr>
<td></td>
<td>* Kräfte- systeme und Gleichgewicht</td>
</tr>
<tr>
<td></td>
<td>* Lagerungen und Bindungen</td>
</tr>
<tr>
<td></td>
<td>* Statische und kinematische Bestimmtheit</td>
</tr>
<tr>
<td></td>
<td>* Innere Kräfte und Momente</td>
</tr>
<tr>
<td></td>
<td>* Gewichtskraft, Schwerpunkt</td>
</tr>
<tr>
<td></td>
<td>* Reibung</td>
</tr>
<tr>
<td></td>
<td>* Spannung, Dehnung, Stoffgesetz</td>
</tr>
<tr>
<td></td>
<td>* Zug und Druck im Stab</td>
</tr>
<tr>
<td></td>
<td>* Einachsige Balkenbiegung, Flächenträgheitsmomente</td>
</tr>
<tr>
<td>Technische Mechanik 2: Dynamik</td>
<td></td>
</tr>
<tr>
<td>Massenpunktbewegung</td>
<td></td>
</tr>
<tr>
<td></td>
<td>* Kinematik</td>
</tr>
<tr>
<td></td>
<td>* Kinetik, Bewegungsgleichungen</td>
</tr>
<tr>
<td></td>
<td>* Bilanzsätze</td>
</tr>
<tr>
<td>Starrkörpertibewegung</td>
<td></td>
</tr>
<tr>
<td></td>
<td>* Kinematik</td>
</tr>
<tr>
<td></td>
<td>* Kinetik, Bewegungsgleichungen</td>
</tr>
<tr>
<td></td>
<td>* Bilanzsätze</td>
</tr>
<tr>
<td>Lineare Schwingungslehre für einen Freiheitsgrad</td>
<td></td>
</tr>
<tr>
<td></td>
<td>* Freie Schwingungen</td>
</tr>
<tr>
<td></td>
<td>* Gedämpfte Schwingungen</td>
</tr>
<tr>
<td></td>
<td>* Erzwungene Schwingungen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen/</th>
<th>Prüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsformen:</td>
<td>K2</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Tafel, Tablet, Beamer</td>
</tr>
<tr>
<td>Literatur:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>* C. Hibbeler: Kurzlehrbuch Technische Mechanik 1 - Statik, Pearson, 2011.</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Technisches Englisch</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td>Bachelor</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>TEng</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Abhaltung:</td>
<td>n.a.</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>ab 1. Studiensemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>N.N.</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>N.N.</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Bachelor-Studiengang Elektrotechnik</td>
</tr>
<tr>
<td></td>
<td>Bachelor-Studiengang "Duales Studium Elektrotechnik"</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>2 SWS (Seminar)</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzstudium: 30 h</td>
</tr>
<tr>
<td></td>
<td>Eigenstudium: 60 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>3</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td>keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Allgemeinkenntnisse der englischen Sprache</td>
</tr>
<tr>
<td>Modulziele / Angestrebte Lernergebnisse:</td>
<td>Fähigkeit, technische Sachverhalte in der englischen Sprache auszudrücken</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen/</td>
<td>Leistungsnachweis (LN)</td>
</tr>
<tr>
<td>Prüfungsformen:</td>
<td>S</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td>wird in der Veranstaltung bekannt gegeben.</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Technisches Französisch</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td>Bachelor</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>TFra</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>ab 1. Studiensemester</td>
</tr>
<tr>
<td>Abhaltung:</td>
<td>n.a.</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>N.N.</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>N.N.</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Bachelor-Studiengang Elektrotechnik</td>
</tr>
<tr>
<td></td>
<td>Bachelor-Studiengang "Duales Studium Elektrotechnik"</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>2 SWS (Seminar)</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzstudium: 30 h</td>
</tr>
<tr>
<td></td>
<td>Eigenstudium: 60 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>3</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
<td>keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Allgemeinkenntnisse der französischen Sprache</td>
</tr>
<tr>
<td>Modulziele / Angestrebte Lernergebnisse:</td>
<td>Fähigkeit, technische Sachverhalte in der französischen Sprache auszudrücken</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen/</td>
<td>Leistungsnachweis (LN)</td>
</tr>
<tr>
<td>Prüfungsformen:</td>
<td>S</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td>Wird in der Veranstaltung bekannt gegeben</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Technisches Spanisch</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td>Bachelor</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>TSpa</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>ab 1. Studiensemester</td>
</tr>
<tr>
<td>Abhaltung:</td>
<td>n.a.</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>N.N.</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>N.N.</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum:</td>
<td>Bachelor-Studiengang Elektrotechnik</td>
</tr>
<tr>
<td></td>
<td>Bachelor-Studiengang "Duales Studium Elektrotechnik"</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>2 SWS (Seminar)</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzstudium: 2 * 15 h Seminar = 30 h</td>
</tr>
<tr>
<td></td>
<td>Eigenstudium: Vor- und Nachbereitung 60 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>3</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung:</td>
<td>keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>Allgemein kenntnisse der spanischen Sprache</td>
</tr>
<tr>
<td>Modulziele / Angestrebte Lernergebnisse:</td>
<td>Fähigkeit, technische Sachverhalte in der spanischen Sprache auszudrücken</td>
</tr>
<tr>
<td>Studien-/Prüfungsleistungen/Leistungsnachweis (LN):</td>
<td>Leistungsnachweis (LN)</td>
</tr>
<tr>
<td>Prüfungsformen:</td>
<td>S</td>
</tr>
<tr>
<td>Medienformen:</td>
<td></td>
</tr>
<tr>
<td>Literatur:</td>
<td>wird in der Veranstaltung bekannt gegeben</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Telematik - Multimedia</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>TE-MM</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>ab 1. Studiensemester</td>
</tr>
<tr>
<td>Abhaltung:</td>
<td>WS, jährlich</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. R. Brück</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Dr. K. Hahn</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Master-Studiengang "Informatik"</td>
</tr>
<tr>
<td></td>
<td>Master-Studiengang "Elektrotechnik"</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>4 SWS (2 SWS Vorlesung, 2 SWS Übung)</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenz: 60 h, Eigenstudium: 60 h, Prüfungsvorbereitung: 30 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
<td>keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>* Grundlegende Kenntnisse in der Netzwerktechnik (Rechnernetze) und Digitaltechnik (Schaltwerke, Schaltnetze)</td>
</tr>
<tr>
<td></td>
<td>* Digitaltechnik</td>
</tr>
<tr>
<td>Modulziele / Angestrebte Lernergebnisse:</td>
<td>Nach dem Besuch der Veranstaltung Telematik-Multimedia sind die Studierenden in der Lage:</td>
</tr>
<tr>
<td></td>
<td>+ die grundlegenden Multimedia-Technologien und Datenformate zu beschreiben und zu erklären</td>
</tr>
<tr>
<td></td>
<td>+ die psychologischen und physiologischen Voraussetzungen für die Multimediawahrnehmung aufzuzeigen</td>
</tr>
<tr>
<td></td>
<td>+ Multimediaverfahren zu klassifizieren und miteinander in Beziehung zu setzen</td>
</tr>
<tr>
<td></td>
<td>+ den Status-quo der Multimediaverfahren von ihrer Historie her herleiten zu können</td>
</tr>
<tr>
<td></td>
<td>+ neue multimediale Datenformate zu verstehen und ihre Bedeutung einzuschätzen</td>
</tr>
<tr>
<td></td>
<td>+ erlerntes Wissen auf neue Multimediaverfahren anzuwenden</td>
</tr>
<tr>
<td></td>
<td>+ Technologiefolgeabschätzungen anwendungsspezifisch durchzuführen und zu beurteilen</td>
</tr>
</tbody>
</table>

Die Studierenden werden zudem in die Lage versetzt Telematikverfahren im Multimediabereich mit den psychologischen und physiologischen menschlichen Fähigkeiten zu erklären und zu beurteilen.

Die Veranstaltungsinhalte beschäftigen zunächst sich mit den physiologischen und psychologischen Fähigkeiten des Menschen und den daraus erwachsenen Randbedingungen für die Kodierung der Multimediaten.

Zu Beginn erfolgt eine Zusammenfassung der Kommunikationsgrundlagen.

Die Inhalte werden sowohl in der Vorlesung als auch in den Übungen erarbeitet.

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen</th>
<th>Fachprüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsformen:</td>
<td>M</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Beamer, Powerpoint, Tafel</td>
</tr>
<tr>
<td>Literatur:</td>
<td>* Peter Henning, Taschenbuch Multimedia, Hanser-Verlag, 2007</td>
</tr>
<tr>
<td>Modulbezeichnung:</td>
<td>Telematik - Technologie und Anwendungen</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>ggf. Modulniveau</td>
<td>Bachelor und Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>TE-TA</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>ab 1. Studiensemester</td>
</tr>
<tr>
<td>Abhaltung:</td>
<td>SS, jährlich</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. R. Brück</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Dr. K. Hahn</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td></td>
</tr>
<tr>
<td>Bachelor-</td>
<td>Bachelor-Studiengang "Informatik"</td>
</tr>
<tr>
<td></td>
<td>Bachelor-Studiengang „Duales Studium Informatik“</td>
</tr>
<tr>
<td>Master-</td>
<td>Master-Studiengang "Informatik"</td>
</tr>
<tr>
<td></td>
<td>Master-Studiengang "Elektrotechnik"</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>4 SWS (2 SWS Vorlesung, 2 SWS Übung)</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenz: 60 h, Eigenstudium: 60h, Prüfungsvorbereitung 30 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
<td>keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>* Grundlegende Kenntnisse in der Netzwerktechnik (Rechnernetze) und Digitaltechnik (Schaltwerke, Schaltnetze) * Digitaltechnik</td>
</tr>
<tr>
<td>Modulziele / Angestrebte Lernergebnisse:</td>
<td>Nach dem Besuch der Veranstaltung Telematik-Technologie und Anwendungen sind die Studierenden in der Lage:</td>
</tr>
<tr>
<td></td>
<td>+ die grundlegenden Technologien und Anwendungen der Telematik zu beschreiben und zu erklären</td>
</tr>
<tr>
<td></td>
<td>+ Technologieberäte wie drahtgebundene bzw. drahtlose Kommunikation oder Anwendungsberichte wie E-Commerce zu klassifizieren und miteinander in Beziehung zu setzen</td>
</tr>
<tr>
<td></td>
<td>+ den Status-quo der Technologien und Anwendungen von seiner Historie her herleiten zu können</td>
</tr>
<tr>
<td></td>
<td>+ Telematik-Technologien auch in neuen Anwendungsfeldern zu erkennen</td>
</tr>
<tr>
<td></td>
<td>+ erlerntes Wissen auf neue Telematik-Applikationen anzuwenden</td>
</tr>
<tr>
<td></td>
<td>+ Technologiefolgeschätzungen anwendungsspezifisch durchzuführen und zu beurteilen</td>
</tr>
</tbody>
</table>
Inhalt:

In der Veranstaltung Telematik-Technologie und Anwendungen werden detaillierte Kenntnisse über die grundlegenden Telematik-Technologie und ihre Anwendungen vermittelt. Das in den anderen Veranstaltungen (Rechnernetze, Digitaltechnik) erworbenen Fachwissen wird für die Telematik verwendet und erweitert. Dabei wird insbesondere darauf Wert gelegt, dass die Kenntnisse gleichermaßen über die Vorlesung und die sie begleitenden Übungen vermittelt werden. In den Übungen werden praktische Anwendungen diskutiert.

Telematik-Technologien umfassen:
* Modellierung von Telekommunikationssystemen
* Internet, Mobilkommunikation, Satellitendienste
* Öffentliche Telekommunikationsnetze, Normierungsverfahren
* Telematik-Hardware, Medizin-Sensorik
* Physiologische und psychologische Grundlagen

Darauf basierende Anwendungen umfassen:
* Elektronische Märkte/Marketing, Technische Infrastrukturen, M-Commerce, Zahlungssysteme, Security, Rechtliche Rahmenbedingungen, Logistik - RFID im Handel,
* Multimediale Lernsysteme,
* Verkehrstelematik, Anwendungen MIV, Technologien (GPS, DAB ..)
* Telechirurgie, Krankenhausinformationssysteme, Elektronische Patientenkarte
* Multimediale Elektronische Patientenakte, Datenkarten im Gesundheitswesen, Netzbasierte Dienste
* Telemedizin in der medizinischen Versorgung, Öffentliche Gesundheitsinformationen für Bürger und Patienten
* Kosten/Nutzen Relationen für Arzt und Patienten,
* Technologische Rahmenbedingungen, Rechtliche Rahmenbedingungen

Die Inhalte werden über die Vorlesung und über Übungen erarbeitet.

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen/</th>
<th>Fachprüfung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsformen:</td>
<td>M</td>
</tr>
<tr>
<td>Medienformen:</td>
<td>Beamer, Powerpoint, Tafel</td>
</tr>
</tbody>
</table>
| Literatur: | * Lehr- und Übungsbuch Telematik: Netze, Dienste, Protokolle
* Gerhard Krüger (Herausgeber), Dietrich Reschke (Herausgeber), Hanser, 2004 |
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Theoretische Elektrotechnik</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>TET</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>ab 1. Studiensemester</td>
</tr>
<tr>
<td>Abhaltung:</td>
<td>WS/SS, jährlich</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. E. Griese</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. E. Griese, wiss. Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Master-Studiengang "Elektrotechnik"</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>8 SWS (6 SWS Vorlesung, 2 SWS Übung)</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzstudium: 120 h, Eigenstudium: 90 h, Prüfungsvorbereitung: 90 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>10</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
<td>keine</td>
</tr>
<tr>
<td>Empfohlene Voraussetzungen:</td>
<td>keine</td>
</tr>
</tbody>
</table>

Modulziele / Angestrebte Lernergebnisse:

Nach erfolgreicher Absolvierung des Moduls besitzen die Studierenden die folgenden Kompetenzen:

Inhaltskompetenzen:
* Kenntnis aller physikalischen Grundlagen der Elektrotechnik
* Kenntnis von Verfahren zur Lösung partieller Differentialgleichungen
* Kenntnis quasistationärer und schnell veränderlicher Felder
* Kenntnis elektromagnetischer Wellen und deren mathematischer Beschreibung
* Kenntnis von Modellierungs- und Berechnungsmethoden elektromagnetischer Felder

Methodenkompetenzen:
* Mathematische Methoden zur Beschreibung und Berechnung elektromagnetischer Felder und Wellen

Bewertungskompetenzen:
Die grundlegenden Methoden zur Beschreibung und Berechnung von elektromagnetischen Feldern und Wellen lassen sich auf viele andere technische Gebiete übertragen, wie z.B. die Wärmeleitung oder die Ausbreitung von Schallwellen in Gasen und Festkörpern. Dies gilt in besonderem Maße für die Fähigkeit, derartige Problemstellungen umfassend theoretisch zu überblicken und mit modernen Methoden der Computersimulation auch für komplizierte technische Anordnungen zu behandeln bzw. zu lösen.
Inhalt:

Das Modul "Theoretische Elektrotechnik" vermittelt in zwei Semestern die auf der MAXWELLSchen Theorie basierende Beschreibung und Berechnung elektromagnetischer Felder. Aufbauend auf den im Bachelor-Studium vermittelten statischen Feldern werden zunächst die Potentialtheorie sowie stationäre Strömungsfelder behandelt. Im weiteren Verlauf wird das quasistationäre Feld für sinusförmige und auch beliebige Zeitabhängigkeit behandelt. Im zweiten Teil des zweiseitigen Moduls wird das zeitlich schnell veränderliche Feld behandelt.

Die Inhalte gliedern sich in:

1. Einführung in die Potentialtheorie
 * Definition des Randwertproblems der Elektrostatik
 * Lösung von Randwertproblemen durch Separation der Feldgleichungen in kartesischem, Zylinder- und Kugelkoordinatensystemen

2. Das quasistationäre Feld
 * Der Skineffekt bei sinusförmiger Zeitabhängigkeit
 * Transienter Skineffekt

3. Das zeitlich schnell veränderliche elektromagnetische Feld - Elektromagnetische Wellen
 * Freie Wellenausbreitung: Separation der Wellengleichung, Ebene Wellen, Dipole und Antennen
 * Geführte Wellenausbreitung: Hohlleiter, Resonatoren, Dielektrische Wellenleiter

Studien-/Prüfungsleistungen/ Prüfungsformen:*

Fachprüfung

Medienformen:

Beamer (Vorlesungsskript ist vorhanden), Tafel

Literatur:

<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Übertragungs- und Vermittlungstechnik I</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Bachelor</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>UEV I</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>ab 5. Studiensemester</td>
</tr>
<tr>
<td>Abhaltung:</td>
<td>WS, jährlich</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. H. Bessai</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. H. Bessai</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Bachelor-Studiengang "Elektrotechnik"</td>
</tr>
<tr>
<td></td>
<td>Bachelor-Studiengang "Duales Studium Elektrotechnik"</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>4 SWS (2 SWS Vorlesung + 2 SWS Seminar)</td>
</tr>
</tbody>
</table>
| Arbeitsaufwand: | "Präsenzstudium: 30 Std. Vorlesung + 30 Std. Seminar
| | Eigenstudium: 30 Std. Übungsvor- und -nachbereitung,
| | Klausurvorbereitung: 60 h |
| Kreditpunkte: | 5 |
| Voraussetzungen nach Prüfungsordnung | kein |
| Empfohlene Voraussetzungen: | Grundlagen der Nachrichtentechnik (GNT) aus Bachelor-Studiengang Elektrotechnik empfohlen. |
| Inhalt: | * Grundlagen: Signale und Übertragungssysteme (10 %)
* Analoge und digitale Basisbandsignalübertragung (10 %)
* Funksignalübertragung (20 %)
* Additive Signalstörungen, Rauschen, Störsender (10 %)
* Lineare Verzerrungen (10 %)
* Konstruktion und Interpretation von Augendiagrammen zur Signalqualitätsbewertung (10 %)
* Spezifikation und Performance-Abschätzung kompletter Übertragungssysteme, Pegeldiagramme, S/N (20 %)
* Nachrichtenmesstechnik und spezielle Messgeräte (10 %) |
| Studien-/Prüfungsleistungen/ | 2-stündiges Seminar mit MATLAB-Übungen wöchentlich, Fachprüfung |
| Prüfungsformen: | K2 |
| Medienformen: | Tafel (hauptsächlich), Overhead-Projektor, Beamer, inhaltlich angepasste Formelsammlungen + Tabellen, Hinweise auf spezielle Internet-Seiten |
| Literatur: | * Kammeyer, K.D.: "Nachrichtenübertragung", Vieweg / Teubner
* Blanchard, A.: "Phase-locked Loops, Application to Coherent Receiver Design", Wiley
* Bessai, H.: "MIMO Signals and Systems", Springer |
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Übertragungs- und Vermittlungstechnik II</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Bachelor</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>UEV II</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ggf. Untertitel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ggf. Lehrveranstaltungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester:</th>
<th>ab 6. Studiensemester</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Abhaltung:</th>
<th>SS, jährlich</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche(r):</th>
<th>Prof. Dr. H. Bessai</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Dozent(in):</th>
<th>Prof. Dr. H. Bessai</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Sprache:</th>
<th>deutsch</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Zuordnung zum Curriculum</th>
<th>Bachelor-Studiengang "Elektrotechnik"</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bachelor-Studiengang "Duales Studium Elektrotechnik"</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform/SWS:</th>
<th>4 SWS (2 SWS Vorlesung + 2 SWS Seminar)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Arbeitsaufwand:</th>
<th>"Präsenzstudium: 30 Std. Vorlesung + 30 Std. Seminar</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eigenstudium: 30 Std. Übungsvor- und -nachbereitung, Klausurvorbereitung: 60 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kreditpunkte:</th>
<th>5</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Voraussetzungen nach Prüfungsordnung</th>
<th>kein</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Empfohlene Voraussetzungen:</th>
<th>Grundlagen der Nachrichtentechnik (GNT) aus Bachelor-Studiengang Elektrotechnik empfohlen. UEV II kann unabhängig von UEV I gehört werden!</th>
</tr>
</thead>
</table>

|-----------------|--|

225
Inhalt:

- Vielfachzugriff, Verkehrs- und Bedientheorie (20 %)
- Aufbau, Funktionsblöcke und Qualitätsbewertung von Modems (20 %)
- Synchronisation von Takt- und Trägersignalen (20 %)
- Entzerrertechnik (10 %)
- ML-Schätzung von Datenfolgen, Viterbi, Trellis (20 %)
- Mehrantennen-Systeme (MIMO, Space-Time Codes) (10 %)

Studien-/Prüfungsleistungen:

2-stündiges Seminar mit MATLAB-Übungen wöchentlich, Fachprüfung

Prüfungsformen:

K2

Medienformen:

Tafel (hauptsächlich), Overhead-Projektor, Beamer, inhaltlich angepasste Formelsammlungen + Tabellen, Hinweise auf spezielle Internet-Seiten

Literatur:

- Kammeyer, K.D.: "Nachrichtenübertragung", Vieweg / Teubner
- Bessai, H.: "MIMO Signals and Systems", Springer
<table>
<thead>
<tr>
<th>Modulbezeichnung:</th>
<th>Zustandsraumtheorie</th>
</tr>
</thead>
<tbody>
<tr>
<td>ggf. Modulniveau</td>
<td>Master</td>
</tr>
<tr>
<td>ggf. Kürzel</td>
<td>ZRT</td>
</tr>
<tr>
<td>ggf. Untertitel</td>
<td></td>
</tr>
<tr>
<td>ggf. Lehrveranstaltungen:</td>
<td></td>
</tr>
<tr>
<td>Abhaltung:</td>
<td>SS, jährlich</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>ab dem 1. Studiensemester</td>
</tr>
<tr>
<td>Modulverantwortliche(r):</td>
<td>Prof. Dr. R. Mayr</td>
</tr>
<tr>
<td>Dozent(in):</td>
<td>Prof. Dr. R. Mayr, wiss. Mitarbeiter</td>
</tr>
<tr>
<td>Sprache:</td>
<td>deutsch</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum</td>
<td>Master-Studiengang "Elektrotechnik"</td>
</tr>
<tr>
<td>Lehrform/SWS:</td>
<td>5 SWS (2 SWS Vorlesung + 2 SWS Übung + 1 SWS simulationstechnische Verifikation)</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Präsenzstudium: 75 h, Eigenstudium: 45 h, Prüfungsvorbereitung: 30 h</td>
</tr>
<tr>
<td>Kreditpunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Voraussetzungen nach Prüfungsordnung</td>
<td>keine</td>
</tr>
</tbody>
</table>

Empfohlene Voraussetzungen:

- * Grundlagen der Regelungstechnik (Bachelor Elektrotechnik)
- * Mathematik für Elektrotechnik-Ingenieure I-III (Bachelor Elektrotechnik)

Modulziele / Angestrebte Lernergebnisse:

Kenntnisse:

- Verständnis der Systemdarstellung im Zeitbereich
- Verständnis der Theorie geregelter Systeme im Zustandsraum
- Verständnis der Dynamik nichtlinearer Systeme und Grundlagen von Simulationsverfahren

Fertigkeiten:

- Analyse und Synthese der Zustandsgleichungen für ein System
- Lösung der Zustandsgleichungen
- Berechnung und Synthese von Reglern und Beobachtern innerhalb der Zustandsdarstellung
- Herleitung nichtlinearer Kompensationsregler
- Erstellung rekursiver Simulationsalgorithmen

Kompetenzen:

- Anwendung moderner Methoden der Regelungstechnik im Zustandsraum
<table>
<thead>
<tr>
<th>Inhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Darstellungsart eines Systems im Zustandsraum</td>
</tr>
<tr>
<td>* Komplexe Übertragungsmatrix</td>
</tr>
<tr>
<td>* Steuerbarkeit und Beobachtbarkeit</td>
</tr>
<tr>
<td>* Die Normalformen</td>
</tr>
<tr>
<td>* Eigenwerte, Eigenvektoren</td>
</tr>
<tr>
<td>* Die äquivalente Systemtransformation</td>
</tr>
<tr>
<td>* Lösung der Zustandsgleichungen:</td>
</tr>
<tr>
<td>* Theoretische Entwürfsverfahren von Zustandsreglern und Beobachtern</td>
</tr>
<tr>
<td>* Theorie der Entkopplung von Mehrgrößensystemen</td>
</tr>
<tr>
<td>* Theoretische Entwürfsverfahren für nichtlineare Systeme durch</td>
</tr>
<tr>
<td>Feedback-Linearisierung</td>
</tr>
<tr>
<td>* Grundlagen von Simulationsverfahren</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien-/Prüfungsleistungen/</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fachprüfung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfungsformen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Medienformen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsentation, Demonstration mit Simulationssoftware (Kopierlizenz</td>
</tr>
<tr>
<td>zur Weitergabe der Simulationssoftware an die Studierenden vorhanden)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur:</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Vorlesungsskript,</td>
</tr>
<tr>
<td>* O. Föllinger: Regelungstechnik, Hüthig Verlag Heidelberg, ISBN</td>
</tr>
<tr>
<td>3-7785-2336-8</td>
</tr>
</tbody>
</table>