NQC Programmer's Guide

Version 3.1 r5

by Dave Baum & John Hansen



Contents

I INETOAUCTION c.tieiiiie ettt e ettt e et e bbbt e et e e 1
2 The NQC LanGUAZE........ceeeriuriieeeiiiieeeeiiieeeesiteeeeeeiteeeeeebeeeesssraeeeesnsseeesesnsseeesannnns 2
2.1 LeXiCal RUIES ...ccouiiiiiiiiiiieeee e 2
2.1.1 COMMENES ...ttt e et e e e e e e 2
2.1.2 WRIEESPACE .....tiiee ettt et e ettt e e ettt e e e et ee e ennreaeeens 3
2.1.3 Numerical CONSTANES .......covveiiriiiiiiiieiiiee e 3
2.1.4 Identifiers and Keywords...........cccuvieeiiiiiiiiiniiiieeeiieeeee e 3
2.2 Pro@ram StrUCLUTE........cciiitiiiiiiiiiiieteee e e ettt eee e e e e ettt eeeeeeeessebbareeeeeeeeennnees 4
2.2.1 TASKS .ttt 4
2.2.2 FUNCHIONS ..eiitiiiiiie ittt e e 5
223 SUDTOULINES ...eevveeeiiiieeiiieeeite ettt 8
2.2.4 VaTIaADIES ..o 9
2.2.5 ATTAYS ettt ettt e e e e e ettt e e e e e e et e eeeeeeeeennnaes 11
2.3 STALEIMENTS .....eeeiiiiiiieieite e e e e e e e e 11
2.3.1 Variable Declaration ...........ccoccueeeriiiiniiiiniieenieeeeeeee e 11
2.3.2 F N e 1101153 1 LSS RPPPR 12
2.3.3 CoNtrol STIUCLUIES ......eeeiiiiiiiie et 13
234 Access Control and EVEnts .........ccoceeiviiiiiiiiiniieiniiceieececeeee e 16
2.3.5 Other StatemMENTS ........eeeiiiieiriiieeiiie et 18
2.4 EXPIESSIONS . .eeieeeiiiieeeeiiiteeeeiiteeeeeetteeeeeatreeeeasntreeesannsseeesannsseeesanssseeesannsseeeeans 18
2.4.1 CONAIEIONS 1.ttt s s it e e e e 20
2.5 The PreprOCESSOT. ... .uviiiiiiiiiiee ettt ettt e e et e e e stbee e e e ibaeeeeeasees 21
2.5.1 FNCIUAE ..o 21



252 FEAETINE .o e 21

2.5.3 Conditional Compilation .............ceeeeriiiiieiiiiiiie e 22
254 Program Initialization.............coeeviiiiiiiiiiiiiee e 22
2.5.5 RESETVING StOTAZE ....vvviieeeeiiiiiie et 22
NQEC APttt ettt et et e 24
3.1 SEIISOTS ettt ettt e ettt e et e e et e e e eaneee s 24
3.1.1 Types and Modes RCX, CM, SPY...cccuiiiiiiiiiiieeiiiieeeeiieeeeeieee e 25
3.1.2 Sensor INformation...........coovveeiiiiiiiiiiii e 27
3.1.3 Scout Light SenSor SCOUL ........vviiiiiiiiiieeiiiie et 28
3.1.4 SPYDOLICS SENSOTS SPY..evviiieiiiiiiieeiiiiie ettt ettt eeeiareee e 29
3.2 OULPULS ettt e e e ettt e e e e e e ettt e e e e e e e e s s naabbbaeeeeeeeesnnnnns 30
3.2.1 Primitive Calls ......oooviiiiiiiiiiiii e 30
322 Convenience CallS.........cceiiriiiiniiiiriieiriie e 31
323 Global Control RCX2, Scout, SPy.......uvveeeiiiieeeiiiieeeiiiee e 33
324 SPYDOLICS OULPULS ..eeeeeiiiiieeeeiiiieeeeiiiee et ettt e e et e e e et eeeenareeeeenes 35
33 SOUNA ..ttt ettt e 35
34  LCD Display RCX ......oiiiiioiiiieeie ettt ettt aaee e 37
3.5 COMMUNICALION. ...eeeuitieeiiie ettt ettt e et e st e e st e e st e e sabeeesaaeees 38
3.5.1 Messages RCX, SCOUL.....cooviiiiiiiiiiieiieeiiieeeee e 38
352 Serial RCX2, SPY .uiiiiiiiiiiiieeiiiiie ettt et e e e e eiraee e e 40
353 VLL SCOUL, SPY ittt ettt e et e e e e e e e e 49
3.6 THIMIETS ueeeeeniiie ettt ettt ettt e e sa e e ettt e st e st e e sabaeeeas 49
3.7 Counters RCX2, SCOUL, SPY -.uvviriiiiiieiiiiiiiiiiieeee ettt e e e 50
3.8 Access Control RCX2, SCOUL, SPY wvvvreeriiiiieeiiiiieeeriitee ettt e eieee e 51



39 Events RCX2, SCOUL ....ciivuniiiiiiec e 51

3.9.1 Configurable Events RCX2, SPY ....cocouviiiiiiiiiiieieiiiee et 52

39.2 Scout EVENnts SCOUL.........uiiiiiiiiiiiiiiiieeee e 57
3.10  Data Log@ing RCX .......ooiiiiiiiiieiiie ettt et e e e e e e aaee e 59
3,11 General FEAtUIES ...c.uveeiiiiiiiiiiiiiie ettt s 61
3.12  RCX SPecific FEAtUIES.....cccuviiiieiiiiiie ettt ettt e e vaee e 63
3.13  Scout SPecific FEatUres........c.uviiiiiiiiiiieiiiiiie ettt 63
3.14  CyberMaster Specific Features..........ccouvuiiiiiiniiiiiiiiiiiee et 64
3.15  Spybotics Specific FEatures. .........cccueieeiiiiiiiiiiiiieeeeiiiee et 66
3.16  Swan Specific FEAtUIES ..........eeiiiiiiiiieiiiiiee et 82

Technical DEtailS .........coiiiiiiiiiiiiii e 97
4.1 The asm StAteMENT .......covviiiiiiiiiiiee e 97
4.2 DaAtA SOUICES ...cnueviieeeiiieee ettt et e et e et e e et e e e saireeeenaes 98

Page iii



NQC Programmer's Guide

1 Introduction

NQC stands for Not Quite C, and is a simple language for programming several LEGO

MINDSTORMS products. Some of the NQC features depend on which MINDSTORMS
product you are using. This product is referred to as the target for NQC. Presently, NQC
supports six different targets: RCX, RCX2 (an RCX running 2.0 firmware), CyberMaster,

Scout, Spybotics, and Swan (an RCX running Dick Swan’s enhanced firmware).

All of the targets have a bytecode interpreter (provided by LEGO) which can be used to
execute programs. The NQC compiler translates a source program into LEGO bytecodes,
which can then be executed on the target itself. Although the preprocessor and control
structures of NQC are very similar to C, NQC is not a general purpose language - there

are many restrictions that stem from limitations of the LEGO bytecode interpreter.

Logically, NQC is defined as two separate pieces. The NQC language describes the
syntax to be used in writing programs. The NQC API describes the system functions,
constants, and macros that can be used by programs. This API is defined in a special file
built in to the compiler. By default, this file is always processed before compiling a

program.

This document describes both the NQC language and the NQC API. In short, it provides
the information needed to write NQC programs. Since there are several different
interfaces for NQC, this document does not describe how to use any specific NQC
implementation. Refer to the documentation provided with the NQC tool, such as the

NQC User Manual for information specific to that implementation.

For up-to-date information and documentation for NQC, visit the NQC Web Site at

http://bricxcc.sourceforge.net/nqc

Page 1



NQC Programmer's Guide

2 The NQC Language

This section describes the NQC language itself. This includes the lexical rules used by
the compiler, the structure programs, statements, and expressions, and the operation of

the preprocessor.

2.1 Lexical Rules

The lexical rules describe how NQC breaks a source file into individual tokens. This
includes the way comments are written, then handling of whitespace, and valid characters

for identifiers.

2.1.1Comments

Two forms of comments are supported in NQC. The first form (traditional C comments)

begin with / * and end with */ . They may span multiple lines, but do not nest:

/* this is a comment */

/* thisis atwo
i ne comment */

/* anot her comment. ..
/* trying to nest...
endi ng the inner conment...*/
this text is no longer a comrent! */

The second form of comments begins with / / and ends with a newline (sometimes

known as C++ style comments).

/1 a single |ine comrent
Comments are ignored by the compiler. Their only purpose is to allow the programmer

to document the source code.

Page 2



NQC Programmer's Guide

2.1.2Whitespace

Whitespace (spaces, tabs, and newlines) is used to separate tokens and to make programs
more readable. As long as the tokens are distinguishable, adding or subtracting
whitespace has no effect on the meaning of a program. For example, the following lines

of code both have the same meaning:

X=2;
X = 2

Some of the C++ operators consist of multiple characters. In order to preserve these
tokens whitespace must not be inserted within them. In the example below, the first line
uses a right shift operator (">>"), but in the second line the added space causes the ">'

symbols to be interpreted as two separate tokens and thus generate an error.

Xx =1>>4; /] set xto 1right shifted by 4 bits

1>>4; /] error

X

2.1.3Numerical Constants

Numerical constants may be written in either decimal or hexadecimal form. Decimal
constants consist of one or more decimal digits. Hexadecimal constants start with Ox or

0X followed by one or more hexadecimal digits.

X
X

10; // set x to 10
0x10; // set x to 16 (10 hex)

2.1.4ldentifiers and Keywords

Identifiers are used for variable, task, function, and subroutine names. The first character
of an identifier must be an upper or lower case letter or the underscore ('_'). Remaining

characters may be letters, numbers, and an underscore.

A number of potential identifiers are reserved for use in the NQC language itself. These

reserved words are call keywords and may not be used as identifiers. A complete list of

keywords appears below:
__event _src _res __taskid abs
__nolist __sensor __type acquire

Page 3



NQC Programmer's Guide

asm do i nt sub

br eak el se nmoni t or switch
case fal se r epeat t ask
cat ch for return true
const goto sign voi d
conti nue if start whil e
def aul t inline stop

2.2 Program Structure

An NQC program is composed of code blocks and global variables. There are three
distinct types of code blocks: tasks, inline functions, and subroutines. Each type of code

block has its own unique features and restrictions, but they all share a common structure.

2.2.1Tasks

The RCX implicitly supports multi-tasking, thus an NQC task directly corresponds to an
RCX task. Tasks are defined using the t ask keyword using the following syntax:

task name()

/1 the task's code is placed here

}

The name of the task may be any legal identifier. A program must always have at least
one task - named "main" - which is started whenever the program is run. The maximum
number of tasks depends on the target - the RCX supports 10 tasks, CyberMaster
supports 4, Scout supports 6, and Spybotics supports 8.

The body of a task consists of a list of statements. Tasks may be started and stopped
using the st art and st op statements (described in the section titled Statements). There

is also a NQC API command, St opAl | Tasks, which stops all currently running tasks.

Page 4



NQC Programmer's Guide

2.2.2Functions

It is often helpful to group a set of statements together into a single function, which can
then be called as needed. NQC supports functions with arguments, but not return values.

Functions are defined using the following syntax:
voi d nane(argurent _|ist)

/1 body of the function
}

The keyword voi d is an artifact of NQC's heritage - in C functions are specified with the
type of data they return. Functions that do not return data are specified to return voi d.
Returning data is not supported in NQC, thus all functions are declared using the voi d

keyword.

The argument list may be empty, or may contain one or more argument definitions. An
argument is defined by its #ype followed by its name. Multiple arguments are separated
by commas. All values are represented as 16 bit signed integers. However NQC
supports six different argument types which correspond to different argument passing

semantics and restrictions:;

Type Meaning Restriction

int pass by value none

const int pass by value only constants may be used

int & pass by reference only variables may be used

const int & pass by reference function cannot modify argument

int* pass pointer only pointers may be used

const int * pass pointer function cannot modify pointer argument

Arguments of type i nt are passed by value from the calling function to the callee. This
usually means that the compiler must allocate a temporary variable to hold the argument.
There are no restrictions on the type of value that may be used. However, since the
function is working with a copy of the actual argument, any changes it makes to the value
will not be seen by the caller. In the example below, the function f 0o attempts to set the
value of its argument to 2. This is perfectly legal, but since f 00 is working on a copy of

the original argument, the variable y from main task remains unchanged.

Page 5



NQC Programmer's Guide

void foo(int x)

{

X = 2;
}
task main()
{

int y=1 // yis nowequal to 1l
foo(y); /1y is still equal to 1!

The second type of argument, const i nt, is also passed by value, but with the
restriction that only constant values (e.g. numbers) may be used. This is rather important

since there are a number of RCX functions that only work with constant arguments.

voi d foo(const int Xx)

Pl aySound( x) ; /1 ok
X =1; /] error - cannot nodify argunent
}
task main()
{
foo(2); /1 ok
f oo(4*5); /] ok - expression is still constant
foo(x); /] error - x is not a constant
}

The third type, i nt & passes arguments by reference rather than by value. This allows
the callee to modify the value and have those changes visible in the caller. However,

only variables may be used when calling a function using i nt & arguments:

voi d foo(int &x)

{
X = 2;
}
task main()
{
int y=1 // yis equal tol
foo(y); /] y is nowequal to 2
foo(2); [/ error - only variables allowed
}

The fourth type, const int &, is rather unusual. It is also passed by reference, but with
the restriction that the callee is not allowed to modify the value. Because of this

restriction, the compiler is able to pass anything (not just variables) to functions using

Page 6



NQC Programmer's Guide

this type of argument. In general this is the most efficient way to pass arguments in

NQC.

There is one important difference between i nt arguments and const i nt & arguments.
Ani nt argument is passed by value, so in the case of a dynamic expression (such as a
sensor reading), the value is read once then saved. With const i nt & arguments, the

expression will be re-read each time it is used in the function:

void foo(int x)

{
if (x==x) [/ this wll always be true
Pl aySound( SCUND_CLI CK) ;
}
voi d bar(const int &)
{
if (x==x) // may not be true..value could change
Pl aySound( SCUND_CLI CK) ;
}
task main()
{
f 00( SENSCR 1) ; /] will play sound
bar (2); /] will play sound
bar (SENSCR 1) ; /] may not play sound
}

The last two types, i nt * and const int *,pass pointer arguments. Proper usage of

pointer arguments requires that they be de-referenced.

void foo(int * p)

{
*p:4’
}
task main()

{
int x = 2;
int* y = &; // y contains the address of x
foo(y); Il x =4

}

Functions must be invoked with the correct number (and type) of arguments. The

example below shows several different legal and illegal calls to function f 0o:

voi d foo(int bar, const int baz)

{

Page 7



NQC Programmer's Guide

/1 do sonething here...

}
task main()
{
int Xx; /! declare vari abl e x
foo(l, 2); // ok
foo(x, 2); [/ ok
foo(2, x); [/ error - 2nd argunent not constant!
foo(2); /] error - wong nunber of arguments!
}

NQC functions are always expanded as inline functions. This means that each call to a
function results in another copy of the function's code being included in the program.

Unless used judiciously, inline functions can lead to excessive code size.

2.2.3Subroutines

Unlike inline functions, subroutines allow a single copy of some code to be shared
between several different callers. This makes subroutines much more space efficient than
inline functions, but due to some limitations in the LEGO bytecode interpreter,
subroutines have some significant restrictions. First of all, subroutines cannot use any
arguments. Second, a subroutine cannot call another subroutine. Last, the maximum
number of subroutines is limited to 8 for the RCX, 4 for CyberMaster, 3 for Scout, and 32
for Spybotics. In addition, when using RCX 1.0 or CyberMaster, if the subroutine is
called from multiple tasks then it cannot have any local variables or perform calculations
that require temporary variables. These significant restrictions make subroutines less
desirable than functions; therefore their use should be minimized to those situations
where the resultant savings in code size is absolutely necessary. The syntax for a

subroutine appears below:
sub narre()

/1 body of subroutine

Page 8



NQC Programmer's Guide

2.2.4Variables

All variables in NQC are of one of two types - specifically 16 bit signed integers or
pointers to 16 bit signed integers. Variables are declared using the i nt keyword followed
by a comma separated list of variable names (each with an optional "*' pointer indicator in
front of the name) and terminated by a semicolon ('; '). Optionally, an initial value for
each variable may be specified using an equals sign ('=') after the variable name. Several

examples appear below:

int Xx; /! declare x

int vy,z /] declare y and z

int *q, *p = &; // declare ptrs q and p, p = address of x
int a=1,b; // declare a and b, initialize ato 1

Global variables are declared at the program scope (outside any code block). Once
declared, they may be used within all tasks, functions, and subroutines. Their scope

begins at declaration and ends at the end of the program.

Local variables may be declared within tasks, functions, and sometimes within
subroutines. Such variables are only accessible within the code block in which they are
defined. Specifically, their scope begins with their declaration and ends at the end of
their code block. In the case of local variables, a compound statement (a group of

statements bracketed by { and } ) is considered a block:
int x; [// xis global

task main()

{
int'y,; // yislocal to task nain
x =vy; Il ok
{ /1 begin conpound st at erment
int z; [// local z declared
y =z; [/ ok
}
y =z; [/ error - z no longer in scope
}
task foo()
{
x =1; // ok
y =2; // error - y is not gl obal
}

Page 9



NQC Programmer's Guide

In many cases NQC must allocate one or more temporary variables for its own use. In
some cases a temporary variable is used to hold an intermediate value during a
calculation. In other cases it is used to hold a value as it is passed to a function. These
temporary variables deplete the pool of variables available to the rest of the program.
NQC attempts to be as efficient as possible with temporary variables (including reusing

them when possible).

The RCX (and other targets) provide a number of storage locations which can be used to
hold variables in an NQC program. There are two kinds of storage locations - global and
local. When compiling a program, NQC assigns each variable to a specific storage
location. Programmers for the most part can ignore the details of this assignment by

following two basic rules:
« If a variable needs to be in a global location, declare it as a global variable.

« If a variable does not need to be a global variable, make it as local as possible.
This gives the compiler the most flexibility in assigning an actual storage

location.

The number of global and local locations varies by target

Target Global | Local
RCX (1.0) 32 0
CyberMaster | 32 0
Scout 10 8
RCX2 32 16
Swan 32 16
Spybotics 32 4

Page 10



NQC Programmer's Guide

2.2.5Arrays

The RCX2, Swan, and Spybotics targets support arrays (the other targets do not have
suitable support in firmware for arrays). Arrays are declared the same way as ordinary

variables, but with the size of the array enclosed in brackets. The size must be a constant.

int ny_array[3]; // declare an array with three el enents
The elements of an array are identified by their position within the array (called an

index). The first element has an index of 0, the second has index 1, etc. For example:

ny_array[0] = 123; // set first element to 123
ny_array[ 1]

Currently there are a number of limitations on how arrays can be used. These limitations

ny_array[2]; // copy third into second

will likely be removed in future versions of NQC:

* An array cannot be an argument to a function. An individual array element,

however, can be passed to a function.

* Neither arrays nor their elements can be used with the increment (++) or

decrement (--) operators.

* The initial values for an array's elements cannot be specified - an explicit

assignment is required within the program itself to set the value of an element.

2.3 Statements

The body of a code block (task, function, or subroutine) is composed of statements.

Statements are terminated with a semi-colon ('; ').

2.3.1Variable Declaration

Variable declaration, as described in the previous section, is one type of statement. It
declares a local variable (with optional initialization) for use within the code block. The

syntax for a variable declaration is:

i nt vari abl es;

Page 11



NQC Programmer's Guide

where variables is a comma separated list of names with optional initial values and an

optional pointer indicator:

[ *] name[ =expr essi on]

Arrays of variables may also be declared (for the RCX2, Swan, and Spybotics only):

int array[size];

2.3.2Assignment

Once declared, variables may be assigned the value of an expression:

vari abl e assi gn_operat or expressi on;
There are nine different assignment operators. The most basic operator, '=', simply
assigns the value of the expression to the variable. The other operators modify the

variable's value in some other way as shown in the table below

Operator | Action

= Set variable to expression

+= Add expression to variable

-= Subtract expression from variable

*= Multiple variable by expression

/= Divide variable by expression

Y= Set variable to remainder after dividing by expression
&= Bitwise AND expression into variable

= Bitwise OR expression into variable

A= Bitwise exclusive OR into variable

|I= Set variable to absolute value of expression

+-= Set variable to sign (-1,+1,0) of expression
>>= Right shift variable by a constant amount
<<= Left shift variable by a constant amount

Some examples:

X = 2; // set x to 2
y =7, /] set yto7
X +=y; [/ xis 9, yisstill 7

Page 12



NQC Programmer's Guide

2.3.3Control Structures

The simplest control structure is a compound statement. This is a list of statements

enclosed within curly braces ('{'and '} '):

{

X
y

1
2,

}

Although this may not seem very significant, it plays a crucial role in building more
complicated control structures. Many control structures expect a single statement as their
body. By using a compound statement, the same control structure can be used to control

multiple statements.

The i f statement evaluates a condition. Ifthe condition is true it executes one statement
(the consequence). An optional second statement (the alternative) is executed if the

condition is false. The two syntaxes for ani f statement is shown below.

if (condition) consequence
if (condition) consequence el se alternative

Note that the condition is enclosed in parentheses. Examples are shown below. Note
how a compound statement is used in the last example to allow two statements to be

executed as the consequence of the condition.

if (x==1) y = 2;
if (x==1) y =3; elsey =4,
if (x==1) {y=1 z=2 1}

The whi | e statement is used to construct a conditional loop. The condition is evaluated,
and if true the body of the loop is executed, then the condition is tested again. This
process continues until the condition becomes false (or a br eak statement is executed).
The syntax for a whi | e loop appears below:

whi l e (condition) body

It is very common to use a compound statement as the body of a loop:

whi | e(x < 10)
{
X = X+1;
y = y*2;
}

Page 13



NQC Programmer's Guide

A variant of the whi | e loop is the do-whi | e loop. Its syntax is:

do body while (condition)
The difference between a whi | e loop and a do-whi | e loop is that the do-whi | e loop

always executes the body at least once, whereas the whi | e loop may not execute it at all.

Another kind of loop is the f or loop:

for(stml ; condition ; stnt2) body
A for loop always executes stmt1, then it repeatedly checks the condition and while it

remains true executes the body followed by stmt2. The for loop is equivalent to:

stnt1;
whi | e(condi ti on)
{
body
stnt 2;
}

The r epeat statement executes a loop a specified number of times:

repeat (expression) body
The expression determines how many times the body will be executed. Note that it is
only evaluated a single time, then the body is repeated that number of times. This is
different from both the whi | e and do-whi | e loops which evaluate their condition each
time through the loop.

A swi t ch statement can be used to execute one of several different blocks of code
depending on the value of an expression. Each block of code is preceded by one or more
case labels. Each case must be a constant and unique within the switch statement. The
switch statement evaluates the expression then looks for a matching case label. It will
then execute any statements following the matching case until either a break statement or
the end of the switch is reaches. A single def aul t label may also be used - it will match
any value not already appearing in a case label. Technically, a switch statement has the

following syntax:

sw tch (expression) body
The case and default labels are not statements in themselves - they are labels that precede
statements. Multiple labels can precede the same statement. These labels have the

following syntax

Page 14



NQC Programmer's Guide

case constant _expression :
def aul t

A typical switch statement might look like this:

sw t ch(x)

{

case 1:
/] do sonething when Xis 1
br eak;

case 2:

case 3:
/1 do sonething else when x is 2 or 3
br eak;

defaul t:
// do this when x is not 1, 2, or 3
br eak;

The got o statement forces a program to jump to the specified location. Statements in a
program can be labeled by preceding them with an identifier and a colon. A goto
statement then specifies the label which the program should jump to. For example, this is

how an infinite loop that increments a variable could be implemented using got o:

ny_| oop:
X++;

goto ny_| oop;

The got o statement should be used sparingly and cautiously. In almost every case,
control structures such as i f , whi | e, and swi t ch make a program much more readable
and maintainable than using got 0. Care should be taken to never use a got o to jump
into or out of a noni t or or acqui r e statement. This is because noni t or and

acqui r e have special code that normally gets executed upon entry and exit, and a got o

will bypass that code — probably resulting in undesirable behavior.
NQC also defines the unt i | macro which provides a convenient alternative to the
whi | e loop. The actual definition of unti | is:

#define until (c) while(!(c))
In other words, unt i | will continue looping until the condition becomes true. It is most

often used in conjunction with an empty body statement:

until (SENSCR 1 == 1); // wait for sensor to be pressed

Page 15



NQC Programmer's Guide

2.3.4Access Control and Events

The Scout, RCX2, Swan, and Spybotics support access control and event monitoring.
Access control allows a task to request ownership of one or more resources. In NQC,

access control is provided by the acqui r e statement, which has two forms:

acqui re ( resources ) body
acquire ( resources ) body catch handl er

where resources is a constant that specifies the resources to be acquired and body and
handler are statements. The NQC API defines constants for individual resources which
may be added together to request multiple resources at the same time. The behavior of
the acquire statement is as follows: Ownership of the specified resources will be
requested. If another task of higher priority already owns the resources, then the request
will fail and execution will jump to the handler (if present). Otherwise, the request will
succeed, and the body will begin to be executed. While executing the body, if another
task of equal or higher priority requests any of the owned resources, then the original task
will lose ownership. When ownership is lost, execution will jump to the handler (if
present). Once the body has completed, the resources will be returned back to the system
(so that lower priority tasks may acquire them), and execution will continue with the
statement following the acquire statement. If a handler is not specified, then in both the
case of a failed request, or a subsequent loss of ownership, control will pass to the
statement following the acquire statement. For example, the following code acquires a

resource for 10 seconds, playing a sound if it cannot complete successfully:

acqui re( ACQU RE_QUT_A)
{

Wi t (1000);
}
catch

Pl aySound( SOND_UP) ;
}

Event monitoring is implemented with the nmoni t or statement, which has a syntax very

similar to acqui re:

monitor ( events ) body
monitor ( events ) body handl er_|ist

Page 16



NQC Programmer's Guide

Where handler list is one or more handlers of the form

catch ( catch_events ) handl er

The last handler in a handler list can omit the event specification:

cat ch handl er
Events is a constant that determines which events should be monitored. For the Scout,
events are predefined, so there are constants such as EVENT_1_PRESSED which can be
used to specify events. With RCX2, Swan, and Spybotics, the meaning of each event is
configured by the programmer. There are 16 events (numbers 0 to 15). In order to
specify an event in a monitor statement, the event number must be converted to an event
mask using the EVENT_MASK() macro. The Scout event constants or event masks may
be added together to specify multiple events. Multiple masks can be combined using

bitwise OR.

The monitor statement will execute the body while monitoring the specified events. If
any of the events occur, execution will jump to the first handler for that event (a handler
without an event specification handles any event). If no event handler exists for the
event, then control will continue at the statement following the monitor statement. The

following example waits for 10 seconds while monitoring events 2, 3, and 4 for RCX2:

moni tor( EVENT_NASK(2) | EVENT_MASK(3) | EVENT_MASK(4) )

{ Wi t (1000) ;

i;at ch ( EVENT_MASK(4) )

{ Pl aySound( SOUND DOM); // event 4 happened
i;at ch

} Pl aySound( SOUND UP); // event 2 or 3 happened

Note that the acquire and monitor statements are only supported for targets that
implement access control and event monitoring - specifically the Scout, RCX2, Swan,

and Spybotics.

Page 17



NQC Programmer's Guide

2.3.50ther Statements

A function (or subroutine) call is a statement of the form:

name( ar gunent s) ;
The arguments list is a comma separated list of expressions. The number and type of

arguments supplied must match the definition of the function itself.

Tasks may be started or stopped with the following statements:

start task_narne;
stop task_nare;

Within loops (such as a whi | e loop) the br eak statement can be used to exit the loop
and the cont i nue statement can be used to skip to the top of the next iteration of the

loop. The break statement can also be used to exit a switch statement.

br eak;

conti nue;
It is possible to cause a function to return before it reaches the end of its code using the

r et ur n statement.

return;
Any expression is also a legal statement when terminated by a semicolon. It is rare to use
such a statement since the value of the expression would then be discarded. The one
notable exception is expressions involving the increment (++) or decrement (- - )

operators.

X++:

The empty statement (just a bare semicolon) is also a legal statement.

2.4 EXpressions

Earlier versions of NQC made a distinction between expressions and conditions. As of
version 2.3, this distinction was eliminated: everything is an expression, and there are
now conditional operators for expressions. This is similar to how C/C++ treats

conditional operations.

Page 18



NQC Programmer's Guide

Values are the most primitive type of expressions. More complicated expressions are
formed from values using various operators. The NQC language only has two built in
kinds of values: numerical constants and variables. The RCX API defines other values

corresponding to various RCX features such as sensors and timers.

Numerical constants in the RCX are represented as 16 bit signed integers. NQC
internally uses 32 bit signed math for constant expression evaluation, then reduces to 16
bits when generating RCX code. Numeric constants can be written as either decimal (e.g.
123) or hexadecimal (e.g. 0XABC). Presently, there is very little range checking on

constants, so using a value larger than expected may have unusual effects.

Two special values are predefined: t r ue and f al se. The value of f al se is zero, while
the value of t r ue is only guaranteed to be non-zero. The same values hold for relational
operators (e.g. <): when the relation is false, the value is 0, otherwise the value is non-

Z€10.

Values may be combined using operators. Several of the operators may only be used in
evaluating constant expressions, which means that their operands must either be
constants, or expressions involving nothing but constants. The operators are listed here

in order of precedence (highest to lowest).

Operator | Description Associativity Restriction Example

abs() Absolute value n/a abs(x)

sign() Sign of operand n/a sign(x)

++, -- Increment, decrement left variables only | x++ or ++x

- Unary minus right -X

~ Bitwise negation (unary) right constant only ~123

! Logical negation right Ix

* 1, % Multiplication, division, left x*y
modulo

+, - Addition, subtraction left xty

<<, >> Left and right shift left shift amount x << 4

must constant

Page 19



NQC Programmer's Guide

< > relational operators left x<y

<=, >=

== I= equal to, not equal to left X ==

& Bitwise AND left x&y

A Bitwise XOR left x"y

| Bitwise OR left x|y

&& Logical AND left x&&y

| Logical OR left x|y

?: conditional value n/a x==17y:z

Where needed, parentheses may be used to change the order of evaluation:

X =2+ 3* 4 !/l set x to 14
y =(2+3) *4, /] set yto?20

2.4.1Conditions

Conditions are generally formed by comparing two expressions. There are also two
constant conditions - t r ue and f al se - which always evaluate to true or false
respectively. A condition may be negated with the negation operator, or two conditions
combined with the AND and OR operators. The table below summarizes the different

types of conditions.

Condition Meaning

True always true

Fal se always false

Expr true if expr is not equal to 0

exprl == expr2 true if exprl equals expr2

exprl !'= expr2 true if exprl is not equal to expr2

exprl < expr2 true if one exprl is less than expr2
exprl <= expr2 true if expr1 is less than or equal to expr2

Page 20




NQC Programmer's Guide

exprl > expr2 true if expr1 is greater than expr2

exprl >= expr2 true if exprl is greater than or equal to expr2

' condi tion logical negation of a condition - true if condition is false

condl && cond2 logical AND of two conditions (true if and only if both conditions are
true)

condl || cond2 logical OR of two conditions (true if and only if at least one of the
conditions are true)

2.5 The Preprocessor

The preprocessor implements the following directives: #i ncl ude, #def i ne, #i f def,
#i f ndef , #i f, #el i f, #el se, #endi f, #undef . Its implementation is fairly close to a
standard C preprocessor, so most things that work in a generic C preprocessor should

have the expected effect in NQC. Significant deviations are listed below.

2.5.1#include

The #i ncl ude command works as expected, with the caveat that the filename must be
enclosed in double quotes. There is no notion of a system include path, so enclosing a

filename in angle brackets is forbidden.

#include "foo.ngh" // ok

#include <foo.ngh> // error!

2.5.2#define

The #def i ne command is used for simple macro substitution. Redefinition of a macro
is an error (unlike in C where it is a warning). Macros are normally terminated by the
end of the line, but the newline may be escaped with the backslash (\ ') to allow multi-

line macros:

#define foo(x) do { bar(x); \
baz(x); } while(fal se)

Page 21




NQC Programmer's Guide

The #undef directive may be used to remove a macro’s definition.

2.5.3Conditional Compilation

Conditional compilation works similar to the C preprocessor. The following

preprocessor directives may be used:

#if condition
#i f def synbol

#i f ndef synbol
#el se

#elif condition
#endi f

Conditions in #i f directives use the same operators and precedence as in C. The

def i ned() operator is supported.

2.5.4Program Initialization

The compiler will insert a call to a special initialization function, _i ni t, at the start ofa
program. This default function is part of the RCX API and sets all three outputs to full
power in the forward direction (but still turned off). The initialization function can be

disabled using t he #pragna noi ni t directive:

#pragna noi ni t /1l don't do any programinitialization
The default initialization function can be replaced with a different function using the

#pragma i nit directive.

#pragnma init function // use custominitialization

2.5.5Reserving Storage

The NQC compiler automatically assigns variables to storage locations. However,
sometimes it is necessary to prevent the compiler from using certain storage locations.

This can be done with the #pr agna r eser ve directive:

#pragna reserve start
#pragna reserve start end

This directive forces the compiler to ignore one or more storage locations during variable

assignment. Start and end must be numbers that refer to valid storage locations. If only a

Page 22



NQC Programmer's Guide

start is provided, then that single location is reserved. If start and end are both specified,
then the range of locations from start to end (inclusive) are reserved. The most common
use of this directive is to reserve locations 0, 1, and/or 2 when using counters for RCX2,
Swan, and Spybotics. This is because the RCX2, Swan, and Spybotics counters are
overlapped with storage locations 0, 1, and 2. For example, if all three counters were

going to be used:

#pragnma reserve 0 2

Page 23



NQC Programmer's Guide

3 NQC AP

The NQC API defines a set of constants, functions, values, and macros that provide
access to various capabilities of the target such as sensors, outputs, timers, and
communication. Some features are only available on certain targets. Where appropriate,
a section's title will indicate which targets it applies to. The RCX2 and Swan are a
superset of RCX features, so if RCX is listed, then the feature works with the original
firmware, the 2.0 firmware, and the Swan firmware. If RCX2 is listed, then the feature
only applies to the 2.0 firmware and the Swan firmware. If Swan is listed alone, then the
feature only applies to the Swan firmware. CyberMaster, Scout, and Spybotics are

indicated by CM, Scout, and Spy respectively.

The API consists of functions, values, and constants. A function is something that can be
called as a statement. Typically it takes some action or configures some parameter.
Values represent some parameter or quantity and can be used in expressions. Constants
are symbolic names for values that have special meanings for the target. Often, a set of
constants will be used in conjunction with a function. For example, the Pl ay Sound
function takes a single argument which determines which sound is to be played.

Constants, such as SOUND_UP, are defined for each sound.

3.1 Sensors

There are three sensors, which internally are numbered 0, 1, and 2. This is potentially
confusing since they are externally labeled on the RCX as sensors 1, 2, and 3. To help
mitigate this confusion, the sensor names SENSOR 1, SENSOR_2, and SENSCR_3 have
been defined. These sensor names may be used in any function that requires a sensor as
an argument. Furthermore, the names may also be used whenever a program wishes to

read the current value of the sensor:

X = SENSCR 1; // read sensor and store value in x

Page 24



NQC Programmer's Guide

3.1.1Types and Modes RCX, CM, Spy

The sensor ports on the RCX are capable of interfacing to a variety of different sensors
(other targets don't support configurable sensor types). It is up to the program to tell the
RCX what kind of sensor is attached to each port. A sensor's type may be configured by
calling Set Sensor Type.. There are four sensor types, each corresponding to a specific
LEGO sensor. A fifth type (SENSOR TYPE NONE) can be used for reading the raw
values of generic passive sensors. In general, a program should configure the type to
match the actual sensor. If a sensor port is configured as the wrong type, the RCX may

not be able to read it accurately.

Sensor Type Meaning

SENSOR TYPE NONE generic passive sensor
SENSOR TYPE TOUCH a touch sensor
SENSOR TYPE TEMPERATURE a temperature sensor
SENSOR _TYPE LIGHT a light sensor
SENSOR TYPE ROTATION a rotation sensor

The RCX, CyberMaster, and Spybotics allow a sensor to be configured in different
modes. The sensor mode determines how a sensor's raw value is processed. Some
modes only make sense for certain types of sensors, for example
SENSCOR_MODE_ROTATI ONis useful only with rotation sensors. The sensor mode can be
set by calling Set Sensor Mbde. The possible modes are shown below. Note that since
CyberMaster does not support temperature or rotation sensors, the last three modes are
restricted to the RCX only. Spybotics is even more restrictive, allowing only raw,

boolean, and percentage modes.

Sensor Mode Meaning

SENSOR MODE RAW raw value from 0 to 1023
SENSOR_MODE BOOL boolean value (0 or 1)

SENSOR _MODE_EDGE counts number of boolean transitions
SENSOR_MODE PULSE counts number of boolean periods
SENSOR _MODE PERCENT value from 0 to 100
SENSOR_MODE FAHRENHEIT degrees F - RCX only

Page 25



NQC Programmer's Guide

SENSOR _MODE _CELSIUS degrees C - RCX only

SENSOR_MODE ROTATION rotation (16 ticks per revolution) - RCX only

When using the RCX, it is common to set both the type and mode at the same time. The
SetSensor function makes this process a little easier by providing a single function to call

and a set of standard type/mode combinations.

Sensor Configuration

Type

Mode

SENSOR_TOUCH

SENSOR TYPE TOUCH

SENSOR _MODE BOOL

SENSOR_LIGHT

SENSOR _TYPE LIGHT

SENSOR _MODE PERCENT

SENSOR ROTATION

SENSOR TYPE ROTATION

SENSOR_MODE ROTATION

SENSOR_CELSIUS

SENSOR TYPE TEMPERATURE

SENSOR_MODE_CELSIUS

SENSOR FAHRENHEIT

SENSOR TYPE TEMPERATURE

SENSOR_MODE FAHRENHEIT

SENSOR_PULSE

SENSOR TYPE TOUCH

SENSOR_MODE PULSE

SENSOR_EDGE

SENSOR TYPE TOUCH

SENSOR_MODE_EDGE

The RCX provides a boolean conversion for all sensors - not just touch sensors. This

boolean conversion is normally based on preset thresholds for the raw value. A "low"

value (less than 460) is a boolean value of 1. A high value (greater than 562) is a boolean

value of 0. This conversion can be modified: a slope value between 0 and 31 may be

added to a sensor's mode when calling Set Sensor Mode. If the sensor's value changes

more than the slope value during a certain time (3ms), then the sensor's boolean state will

change. This allows the boolean state to reflect rapid changes in the raw value. A rapid

increase will result in a boolean value of 0, a rapid decrease is a boolean value of 1.

Even when a sensor is configured for some other mode (i.e. SENSOR_MODE_PERCENT),

the boolean conversion will still be carried out.

SetSensor(sensor, configuration)

Function - RCX

Set the type and mode of the given sensor to the specified configuration, which must

be a special constant containing both type and mode information.

Set Sensor (SENSCR 1, SENSCR TOUCH);

Page 26




NQC Programmer's Guide

SetSensorType(sensor, type) Function - RCX

Set a sensor's type, which must be one of the predefined sensor type constants.

Set Sensor Type( SENSCR 1, SENSCR TYPE TOUCH);
SetSensorMode(sensor, mode) Function - RCX, CM, Spy

Set a sensor's mode, which should be one of the predefined sensor mode constants. A
slope parameter for boolean conversion, if desired, may be added to the mode (RCX

only).

Set Sensor Mode( SENSCR 1, SENSCR MDE RAW; // raw node
Set Sensor Mode( SENSCR 1, SENSCR MCDE RAW + 10); // sl ope 10

ClearSensor(sensor) Function - All

Clear the value of a sensor - only affects sensors that are configured to measure a

cumulative quantity such as rotation or a pulse count.

A ear Sensor (SENSCR 1) ;

3.1.2Sensor Information

There are a number of values that can be inspected for each sensor. For all of these
values the sensor must be specified by its sensor number (0, 1, or 2), and not a sensor

name (e.g. SENSOR_1).

SensorValue(n) Value - All

Returns the processed sensor reading for sensor n, where n is 0, 1, or 2. This is the

same value that is returned by the sensor names (e.g. SENSOR_1).

X = SensorVal ue(0); // read sensor 1
SensorType(n) Value — All

Returns the configured type of sensor n, which must be 0, 1, or 2. Only the RCX has
configurable sensors types, other targets will always return the pre-configured type of

the sensor.

Page 27



NQC Programmer's Guide

x = Sensor Type(0);
SensorMode(n) Value - RCX, CM, Spy

Returns the current sensor mode for sensor n, which must be 0, 1, or 2.

X = Sensor Mde(0);
SensorValueBool(n) Value - RCX

Returns the boolean value of sensor n, which must be 0, 1, or 2. Boolean conversion
is either done based on preset cutoffs, or a slope parameter specified by calling

Set Sensor Mode.

X = Sensor Val ueBool (0);

SensorValueRaw(n) Value - RCX, Scout, Spy

Returns the raw value of sensor n, which must be 0, 1, or 2. Raw values may range

from 0 to 1023 (RCX, Spy) or 0 to 255 (Scout).

x = Sensor Val ueRaw( 0) ;

3.1.3Scout Light Sensor Scout

On the Scout, SENSOR_3 refers to the built-in light sensor. Reading the light sensor's
value (with SENSOR_3) will return one of three levels: 0 (dark), 1 (normal), or 2 (bright).
The sensor's raw value can be read with Sensor Val ueRaw( SENSOR_3) , but bear in
mind that brighter light will result in a lower raw value. The conversion of the sensor's
raw value (between 0 and 1023) to one of the three levels depends on three parameters:
lower limit, upper limit, and hysteresis. The lower limit is the smallest (brightest) raw
value that is still considered normal. Values below the lower limit will be considered
bright. The upper limit is the largest (darkest) raw value that is considered normal.

Values about this limit are considered dark.

Hysteresis can be used to prevent the level from changing when the raw value hovers
near one of the limits. This is accomplished by making it a little harder to leave the dark
and bright states than it is to enter them. Specifically, the limit for moving from normal

to bright will be a little lower than the limit for moving from bright back to normal. The

Page 28



NQC Programmer's Guide

difference between these two limits is the amount of hysteresis. A symmetrical case

holds for the transition between normal and dark.

SetSensorLowerLimit(value) Function - Scout

Set the light sensor's lower limit. Value may be any expression.

Set Sensor Lower Li m t (100);
SetSensorUpperLimit(value) Function - Scout

Set the light sensor's upper limit. Value may be any expression.

Set Sensor Upper Li m t (900) ;
SetSensorHysteresis (value) Function - Scout

Set the light sensor's hysteresis. Value may be any expression.

Set Sensor Hyst er esi s( 20);
CalibrateSensor() Function - Scout

Reads the current value of the light sensor, then sets the upper and lower limits to
12.5% above and below the current reading, and sets the hysteresis to 3.12% of the

reading.

Cal i brat eSensor () ;

3.1.4Spybotics Sensors Spy

Spybotics uses built-in sensors instead of externally connected ones. The touch sensor on
the front of the Spybotics brick is SENSOR_1. It is normally configured in percentage

mode, so it has a value of 0 when not pressed, and a value of 100 when pressed.

SENSOR 2 is the light sensor (the connector on the back of the brick that is used to
communicate with a computer). It is normally configured in percentage mode, where

higher numbers indicate brighter light.

Page 29



NQC Programmer's Guide

3.2 Qutputs

3.2.1Primitive Calls

All of the functions dealing with outputs take a set of outputs as their first argument.
This set must be a constant. The names OUT_A, QUT_B, and OUT_C are used to identify
the three outputs. Multiple outputs can be combined by adding individual outputs
together. For example, use OUT_A+QOUT_B to specify outputs A and B together. The set

of outputs must always be a compile time constant (it cannot be a variable).

Each output has three different attributes: mode, direction, and power level. The mode
can be set by calling Set Qut put (outputs, mode). The mode parameter should be one of

the following constants:

Output Mode Meaning

OUT_OFF output is off (motor is prevented from turning)
OUT_ON output is on (motor will be powered)
OUT_FLOAT motor can "coast"

The other two attributes, direction and power level, may be set at any time, but only have
an effect when the output is on. The direction is set with the Set Di r ect i on(outputs,

direction) command. The direction parameter should be one of the following constants:

Direction Meaning

OUT_FWD Set to forward direction

OUT_REV Set to reverse direction

OUT TOGGLE Switch direction to the opposite of what it is presently

The power level can range 0 (lowest) to 7 (highest). The names OUT_LOW OUT_HALF,
and OUT_FULL are defined for use in setting power level. The level is set using the

Set Power (outputs, power) function.

Be default, all three motors are set to full power and the forward direction (but still turned

off) when a program starts.

Page 30




NQC Programmer's Guide

SetOutput(outputs, mode) Function - All
Set the outputs to the specified mode. Outputs is one or more of OUT_A, OUT_B, and
OUT_C. Mode must be OUT_QN, QUT_COFF, or OQUT_FLQAT.

Set Qutput (QUT_A + QUT_B, QUT_QAN); // turn A and B on

SetDirection(outputs, direction) Function - All
Set the outputs to the specified direction. Outputs is one or more of OUT_A, OUT_B,
and OUT_C. Direction must be OUT_FWD, OUT_REV, or OUT_TOGGLE.

SetDrection(QUT_A QJT_REV); // nake A turn backwards
SetPower(outputs, power) Function - All

Sets the power level of the specified outputs. Power may be an expression, but
should result in a value between 0 and 7. The constants OUT_LOW OUT_HALF, and
OUT_FULL may also be used.

Set Power (QUT_A, QUT_FULL); // A full power
Set Power (QUT_B, Xx);

OutputStatus(n) Value - All
Returns the current output setting for motor n. Note that n must be 0, 1, or 2 - not
OUT_A, QUT_B, or OUT_C.

X = Qutput Status(0); // status of CQUT_A

3.2.2Convenience Calls

Since control of outputs is such a common feature of programs, a number of convenience
functions are provided that make it easier to work with the outputs. It should be noted
that these commands do not provide any new functionality above the Set Qut put and
Set Di rect i on commands. They are merely convenient ways to make programs more

concise.

Page 31



NQC Programmer's Guide

On(outputs) Function - All

Turn specified outputs on. Outputs is one or more of OUT_A, OUT_B, and OUT_C
added together.

OW(QUT_A + AJT_Q; // turn on outputs A and C
Off(outputs) Function - All

Turn specified outputs off. Outputs is one or more of OUT_A, QUT_B, and QUT_C
added together.

Gf(QUT_A); // turn off output A
Float(outputs) Function - All

Make outputs float. Outputs is one or more of OUT_A, OUT_B, and OUT_C added

together.

Fl oat (QUT_A); // float output A

Fwd(outputs) Function - All

Set outputs to forward direction. Outputs is one or more of OUT_A, OUT_B, and

OUT_C added together.
Fnd(QUT_A) ;
Rev(outputs) Function - All

Set outputs to reverse direction. Outputs is one or more of OUT_A, OUT_B, and

OUT_C added together.
Rev(QUT_A);
Toggle(outputs) Function - All

Flip the direction of the outputs. Outputs is one or more of OUT_A, OUT_B, and
OUT_C added together.

Toggl e(QUT_A);

Page 32



NQC Programmer's Guide

OnFwd(outputs) Function - All
Set outputs to forward direction and turn them on. Outputs is one or more of OUT_A,
OUT_B, and OUT_C added together.

OnFwd(OJT_A);

OnRev(outputs) Function - All
Set outputs to reverse direction and turn them on. Outputs is one or more of OUT_A,
OUT_B, and OUT_C added together.

OnhRev(QUT_A);

OnFor(outputs, time) Function - All

Turn outputs on for a specified amount of time, then turn them off. Outputs is one or

more of OUT_A, OUT_B, and OUT_C added together. Time is measures in 10ms

increments (one second = 100) and may be any expression.

OnFor (AUT_A, X);
3.2.3Global Control RCX2, Scout, Spy

SetGlobalOutput(outputs, mode) Function - RCX2, Scout, Spy

Disable or re-enable outputs depending on the mode parameter. If mode is OUT_COFF,
then the outputs will be turned off and disabled. While disabled any subsequent calls
to Set Qut put () (including convenience functions such as On() ) will be ignored.
Using a mode of OUT_FLQAT will put the outputs in float mode before disabling
them. Outputs can be re-enabled by calling Set A obal Qut put () with a mode of
OUT_ON. Note that enabling an output doesn't immediately turn it on - it just allows

future calls to Set Qut put () to take effect.

Set @ obal Qut put (QUT_A, QUT_CFF); // disabl e output A
Set d obal Qut put (QUT_A, QJT_QN); // enable output A

Page 33



NQC Programmer's Guide

SetGlobalDirection(outputs, direction) Function - RCX2, Scout, Spy

Reverses or restores the directions of outputs. The direction parameter should be
OUT_FWD, QUT_REV, or OQUT_TOGGLE. Normal behavior is a global direction of
OUT_FWD. When the global direction is OUT_REV, then the actual output direction
will be the opposite of whatever the regular output calls request. Calling

Set G obal Di rection() with OUT_TOGG.E will switch between normal and
opposite behavior.

Setd obal Direction(QUT_A, QUT_REV); // opposite direction
Setd obal Direction(QUT_A, QUT_PAD); // normal direction

SetMaxPower(outputs, power) Function - RCX2, Scout, Spy

Sets the maximum power level allowed for the outputs. The power level may be a

variable, but should have a value between OUT_LOWand OUT_FULL.
Set MaxPower (QUT_A, OUT_HALF);
GlobalOutputStatus(n) Value - RCX2, Scout, Spy

Returns the current global output setting for motor n. Note that n must be 0, 1, or 2 -
not OQUT_A, QUT_B, or QUT_C.
X = dobal Qutput Status(0); // global status of QUT_A
EnableQutput(outputs) Function - RCX2, Scout, Spy
A helper function for enabling the specified outputs. Use OUT_A, OUT_B, or
QuT_C.

Enabl eQut put (QJUT_A+QUT_B); // enable QUT_A and QUT_B
This is the same as using Set G obal Qut put with the OUT_ON mode.

DisableOQutput(outputs) Function - RCX2, Scout, Spy
A helper function for disabling the specified outputs. Use OUT_A, OUT_B, or
QUT_C.

D sabl eQut put (QUT_A+QUJT_B); // disable QUT_A and QUT_B

Page 34



NQC Programmer's Guide

This is the same as using Set G obal Qut put with the OUT_OFF mode.

InvertOQutput(outputs) Function - RCX2, Scout, Spy
A helper function for inverting the direction of the specified outputs. Use OUT_A,
QUT_B, or QUT_C.

I nvert Qut put (QJT_A+QUT_B); // reverse dir QUT_A and QUT_B
This is the same as using Set G obal Di r ect i on with the OUT_REV direction.

ObvertOutput(outputs) Function - RCX2, Scout, Spy

A helper function for returning the direction of the specified outputs to forward. Use
OQUT_A, OQUT_B, or QUT_C.

Govert Qut put (QUT_A+QUT_B); // normal dir QUT_A and QUT_B
This is the same as using Set G obal Di r ect i on with the OUT_FWD direction.

3.2.4Spybotics Outputs

Spybotics has two built-in motors. OUT_A refers to the right motor, and OUT_B is for the
left motor. OQUT_Cwill send VLL commands out the rear LED (the one used for
communication with a computer). This allows a VLL device, such as a Micro-Scout, to
be used as a third motor for Spybotics. The same LED may be controlled using the
SendVLL() and Set Li ght () functions.

3.3 Sound

PlaySound(sound) Function - All

Plays one of the 6 preset RCX sounds. The sound argument must be a constant
(except on Spybotics, which allows a variable to be used). The following constants
are pre-defined for use with Pl aySound: SOUND_CLI CK, SOUND_DOUBLE_BEEP,
SOUND_DOARN, SOUND_UP, SOUND_LOW BEEP, SOUND_FAST_UP.

Pl aySound( SOUND _CLI CK) ;

Page 35



NQC Programmer's Guide

The Spybotics brick has additional sound support via this function. It has 64 preset
sounds in ROM (numbered 0-63). The additional 58 constants defined for these

sounds are:

Spvbot Sound Effect Constants

SOUND_SHOCKED, SOUND_FI RE_LASER, SOUND_FI RE_ELECTRONET,
SOUND_FI RE_SPI NNER, SOUND_HI T_BY_LASER,

SOUND_HI T_BY_ELECTRONET, SOUND H T_BY_SPI NNER, SOUND TAG,
SOUND_CRASH, SOUND_FI GHT, SOUND_GOT I T,
SOUND_GENERAL_ALERT, SOUND OUT_OF ENERGY_ALERT,
SOUND_LOW ENERGY_ALERT, SOUND SCORE_ALERT,

SOUND_TI ME_ALERT, SOUND PROXI M TY_ALERT,

SOUND_DANGER ALERT, SOUND BOVB_ALERT,

SOUND_FI NAL_COUNTDOWN, SOUND_TI CK_TOCK, SOUND_GOTO,
SOUND_SCAN, SOUND POl NT_TO, SOUND_ACTI VATE_SHI ELDS,
SOUND_ACTI VATE_REFLECT, ~ SOUND_ACTI VATE_CLOAK,

SOUND_ACTI VATE_FLASH BLI ND, SOUND_MAGNET,

SOUND_QUAD DAMAGE, SOUND REPULSE, SOUND TURBO,
SOUND_FREEZE, SOUND SLOW SOUND REVERSE, SOUND DI ZZY,
SOUND_BOOST, SOUND_DEACTI VATE_SHI ELDS,

SOUND_DEACTI VATE_REFLECT, SOUND_DEACTI VATE_CLOAK,
SOUND_REFLECT, SOUND EXPLOSI ON,  SOUND Bl G_EXPLOSI ON,
SOUND_PLACE_BOMVB, SOUND HI T_BY_ W ND, SOUND OUCH,
SOUND_GEI GER,  SOUND WHI STLE, SOUND | M IT, SOUND HELP,
SOUND_SI REN, SOUND BURNT, SOUND GRI NDED, SOUND_SMACKED,
SOUND_TRILL_UP, SOUND TRI LL_DOAN, SOUND YELL, SOUND WHI SPER

A special constant, SOUND_NONE, is also defined for the Spybotics target to indicate

that no sound should be played.

PlayTone(frequency, duration) Function - All

Plays a single tone of the specified frequency and duration. The frequency is in Hz
and can be a variable for RCX2, Scout, and Spybotics, but has to be constant for RCX

and CyberMaster. The duration is in 100ths of a second and must be a constant.

Pl ayTone(440, 50); /[l Play "A for one half second
MuteSound() Function - RCX2, Scout, Spy

Stops all sounds and tones from being played.

Mut eSound() ;

UnmuteSound() Function - RCX2, Scout, Spy

Restores normal operation of sounds and tones.

Page 36



NQC Programmer's Guide

Unnut eSound() ;

ClearSound()

Removes any pending sounds from the sound buffer.

d ear Sound() ;

SelectSounds(group)

Function - RCX2, Spy

Function - Scout

Selects which group of system sounds should be used. The group must be a constant.

Sel ect Sounds( 0) ;

3.4 LCD Display

RCX

The RCX has seven different display modes as shown below. The RCX defaults to
DI SPLAY_WATCH.

The RCX2 adds an eighth display mode - DI SPLAY_USER. User display mode

Mode

LCD Contents

DISPLAY WATCH

show the system "watch"

DISPLAY SENSOR 1

show value of sensor 1

DISPLAY SENSOR 2

show value of sensor 2

DISPLAY SENSOR 3

show value of sensor 3

DISPLAY OUT A

show setting for output A

DISPLAY OUT B

show setting for output B

DISPLAY_OUT_C

show setting for output C

continuously reads a source value and updates the display. It can optionally display a

decimal point at any position within the number. This allows the display to give the

illusion of working with fractions even though all values are stored internally as integers.

For example, the following call will set the user display to show the value 1234 with two

digits appearing after the decimal point, resulting in "12.34" appearing on the LCD.

Set User D spl ay(1234, 2);
The following short program illustrates the update of the user display:

task main()

{

Page 37



NQC Programmer's Guide

A ear Timer (0);
Set User Di spl ay(Ti mer (0), 0);
until (fal se);

}

Because the user display mode continuously updates the LCD, there are certain
restrictions on the source value. Ifa variable is used it must be assigned to a global
storage location. The best way to ensure this is to make the variable a global one. There
can also be some strange side effects. For example, if a variable is being displayed and
later used as the target of a calculation, it is possible for the display to show some

intermediate results of the calculation:

int Xx;
task main()

{
Set User Di spl ay(x, 0);
whi | e(true)

/] display may briefly show 1!
X =1+ Timer(0);

}
SelectDisplay(mode) Function - RCX
Select a display mode.
Sel ect D spl ay( Dl SPLAY_SENSCR 1) ; /] view sensor 1

SetUserDisplay(value, precision) Function - RCX2

Set the LCD display to continuously monitor the specified value. Precision specifies
the number of digits to the right of the decimal point. A precision of zero shows no

decimal point.

Set User D spl ay(Tiner(0), 0); // viewtiner O

3.5 Communication

3.5.1Messages RCX, Scout

The RCX and Scout can send and receive simple messages using IR. A message can

have a value from 0 to 255, but the use of message 0 is discouraged. The most recently

Page 38



NQC Programmer's Guide

received message is remembered and can be accessed as Message() . If no message has
been received, Message() will return 0. Note that due to the nature of IR

communication, receiving is disabled while a message is being transmitted.

ClearMessage() Function - RCX, Scout

Clear the message buffer. This facilitates detection of the next received message

since the program can then wait for Message() to become non-zero:

A ear Message(); // clear out the recei ved nessage
until (Message() > 0); // wait for next message
SendMessage(message) Function - RCX, Scout

Send an IR message. Message may be any expression, but the RCX can only send
messages with a value between 0 and 255, so only the lowest 8 bits of the argument

are used.

SendMessage(3); // send nessage 3
SendMessage(259); // another way to send nessage 3

SetTxPower(power) Function - RCX, Scout
Set the power level for IR transmission. Power should be one of the constants
TX_POWER_LOor TX_POAER HI .

MessageParam() Value - Swan

Read the message parameter. The Swan firmware supports a 2 byte message

parameter in addition to the single byte supported by the RCX firmware.

X = MessageParan(); // read the rcvd nsg param val ue
SendMessageWithParam(const int &m, const int &p) Function - Swan

Send an IR message with an additional parameter. The first parameter is restricted a

single byte while the second parameter can be two bytes.

SendMessageWt hPar an( 3, 1024);

Page 39



NQC Programmer's Guide

SetMessageByteParam(const int m, const int p) Function - Swan

Set the IR message and its parameter using constants. The parameter must be a single

byte value.
Set MessageByt ePar an{ 3, 43);
SetMessageWordParam(const int m, const int p) Function - Swan
Set the IR message and its parameter using constants. The parameter can be 2 bytes.
Set MessageVWr dPar an{ 3, 1024);
SetMessageVariableParam(const int &m, const int &p) Function - Swan

Set the IR message and its parameter using variables. The parameter can be 2 bytes.

Set MessageVar i abl eParan(x, vy);

3.5.2Serial RCX2, Spy

The RCX2 and Spybotics can transmit serial data out the IR port. Prior to transmitting
any data, the communication and packet settings must be specified. Then, for each
transmission, data should be placed in the transmit buffer, then sent using the

SendSeri al () function.

For the RCX2 the communication settings are set with Set Ser i al Comm This

determines how bits are sent over IR. Possible values are shown below.

Option Effect

SERIAL COMM _DEFAULT | default settings

SERIAL COMM 4800 4800 baud
SERIAL COMM_DUTY?25 25% duty cycle
SERIAL COMM_76KHZ 76kHz carrier

The default is to send data at 2400 baud using a 50% duty cycle on a 38kHz carrier. To
specify multiple options (such as 4800 baud with 25% duty cycle), combine the
individual options using bitwise or (SERI AL_COWM 4800 | SERI AL_COWM DUTY25).

Page 40



NQC Programmer's Guide

The RCX2 also allows you to set the packet settings with Set Ser i al Packet . This

controls how bytes are assembled into packets. Possible values are shown below.

Option

Effect

SERIAL PACKET DEFAULT

no packet format - just data bytes

SERIAL PACKET PREAMBLE

send a packet preamble

SERIAL PACKET NEGATED

follow each byte with its complement

SERIAL PACKET CHECKSUM

include a checksum for each packet

SERIAL PACKET RCX

standard RCX format (preamble,

negated data, and checksum)

Note that negated packets always include a checksum, so the

SERI AL_PACKET_CHECKSUMoption is only meaningful when

SERI AL_PACKET_NEGATED is not specified. Likewise the preamble, negated, and
checksum settings are implied by SERI AL_PACKET_RCX.

The transmit buffer can hold up to 16 data bytes. These bytes may be set using
Set Ser i al Dat a, then transmitted by calling SendSeri al . For example, the following
code sends two bytes (0x12 and 0x34) out the serial port:

Set Seri al Comm{ SERI AL_COW DEFAULT) ;

Set Seri al Packet (SER AL_PACKET_DEFAULT);
Set Seri al Data(0, 0x12);

Set Serial Data(1l, 0x34);

SendSeri al (0, 2);

Spybotics uses a different mechanism for configuring the serial transmission parameters.
Use Set Ser i al Type to specify the transmission type with the constants described in the

following table.

Option Effect

SERIAL TYPE SPYBOT Spybotics type
SERIAL TYPE RCX RCX type
SERIAL TYPE RC RC type

SERIAL TYPE USER User-defined type

Page 41



NQC Programmer's Guide

Use Set Ser i al Baud to specify the baud rate with the constants described in the

following table.

Option Effect

SERIAL BAUD 2400 2400 baud
SERIAL BAUD 4800 4800 baud
SERIAL BAUD 9600 9600 baud

Use Set Ser i al Channel to specify the transmission channel with the constants

described in the following table.

Option Effect
SERIAL CHANNEL IR IR channel
SERIAL CHANNEL PC PC channel (visible light)

Use Set Ser i al Preanbl ePos to specify the position of the preamble in the 16 bytes of
serial data. Use Set Seri al Preanbl eLen to specify the length of the preamble. Use
Set Ser i al Checksumto specify the checksum type with the constants described in the

following table.

Option Effect
SERIAL CHECKSUM NONE No checksum
SERIAL CHECKSUM_ SUM Sum checksum

SERIAL CHECKSUM ZERO SUM Zero sum checksum

Use Set Ser i al Bi Phase to specify the bi-phase mode with the constants described in
the following table.

Option Effect

SERIAL BIPHASE OFF No bi-phase

SERIAL BIPHASE ON Use bi-phase

SetSerial Comm(settings) Function - RCX2

Set the communication settings, which determine how the bits are sent over IR

Page 42



NQC Programmer's Guide

Set Seri al Comm( SERI AL_COWI DEFAULT) ;
SetSerialPacket(settings) Function - RCX2

Set the packet settings, which control how bytes are assembled into packets.

Set Seri al Packet ( SER AL_PACKET_DEFAULT);
SetSerialData(n, value) Function - RCX2, Spy

Set one byte of data in the transmit buffer. N is the index of the byte to set (0-15),

and value can be any expression.

Set SerialData(3, x); // set byte 3 to x
SerialData(n) Value - RCX2, Spy

Returns the value of a byte in the transmit buffer (NOT received data). N must be a

constant between 0 and 15.

x = SerialData(7); // read byte #7
SendSerial(start, count) Function - RCX2, Spy

Use the contents of the transmit buffer to build a packet and send it out the IR port
(according to the current packet and communication settings). Start and count are
both constants that specify the first byte and the number of bytes within the buffer to

be sent.

SendSerial (0,2); // send first two bytes in buffer

InitSpybotCommy() Function - RCX2

Use this function to configure the serial communication registers in preparation for

sending messages using the Spybot protocol.

I ni t Spybot Coom(); // prepare IR using Spybot protocol

SendSpybotMsg() Function - RCX2

Use this function to send a 7 byte Spybot message which was previously set via a call

to Set Spybot Message.

SendSpybot Msg() ;

Page 43



NQC Programmer's Guide

SetSpybotMessage(mode, myID, addr, cmd, hi, lo) Function - RCX2

Use this function to set the contents of a Spybot message. The message can then be

sent repeatedly via calls to SendSpybot Msg.

Set Spybot Message( MSG BROADCAST, 9, 0, CMD FI RE_LASER 1,
100) ;

SendSpybotMessage(mode, myID, addr, cmd, hi, lo) Function - RCX2

Use this function to send a 7 byte Spybot message. This function calls
I ni t Spybot Comm Set Spybot Message, and SendSpybot Msg in sequence.

SendSpybot Message( MBG BROADCAST, 9, 0, OMD FI RE LASER 1,
100) ;

SendSpybotCtriMsg() Function - RCX2

Use this function to send a 2 byte Spybot controller message which was previously

set via a call to Set Spybot Ct r | Message.

SendSpybot G r | Msg() ;

SetSpybotCtriMessage(nMyID, nMsg) Function - RCX2

Use this function to set the contents of a Spybot controller message. The message can
then be sent repeatedly via calls to SendSpybot Ct r | Msg.
Set Spybot Gt rl Message(lI D CTRL_1, SPY_CTRL_BTN 1);

SendSpybotCtriMessage(nMyID, nMsg) Function - RCX2

Use this function to send a 2 byte Spybot controller message. This function calls
I ni t Spybot Comm Set Spybot Ct r| Message, and SendSpybot Ct r | Msg in

sequence.

SendSpybot G r| Message(1 D CTRL_1, SPY_CTRL_BTN 1);
SendSpybotCtrlPingMsg() Function - RCX2

Use this function to send a 2 byte Spybot controller ping message which was

previously set via a call to Set Spybot Ct r| Pi ngMessage.

Page 44



NQC Programmer's Guide

SendSpybot Gt r | Pi ngMsg() ;

SetSpybotCtrIPingMessage(nID) Function - RCX2

Use this function to set the contents of a Spybot controller ping message. The

message can then be sent repeatedly via calls to SendSpybot Ct r | Pi nghsg.
Set Spybot Gt r| P ngMessage(1 D CTRL_1);

SendSpybotCtriPingMessage(nlD) Function - RCX2

Use this function to send a 2 byte Spybot controller ping message. This function calls
I ni t Spybot Comm Set Spybot Ct r| Pi ngMessage, and
SendSpybot Ct r | Pi ngMsg in sequence.

SendSpybot G r| Pi ngMessage(I D CTRL_1);

SendSpybotPingMsg() Function - RCX2

Use this function to send a 4 byte Spybot ping message which was previously set via

a call to Set Spybot Pi ngMessage.

SendSpybot P ngMsg() ;
SetSpybotPing(nLinkID, nMyID, nInfo) Function - RCX2

Use this function to set the contents of a Spybot ping message. The message can then
be sent repeatedly via calls to SendSpybot Pi nghsg.
Set Spybot Pi ngMessage(I1 D CTRL_1, ID M N BOr+1, 10);

SendSpybotPing(nLinkID, nMyID, nInfo) Function - RCX2

Use this function to send a 2 byte Spybot ping message. This function calls
I ni t Spybot Comm Set Spybot Pi ngMessage, and SendSpybot Pi nghMsg in

sequence.

SendSpybot Pi ngMessage(1 D CTRL_1, ID M N BOr+1, 10);
InitRCComm() Function - RCX2

Use this function to configure the serial communication registers in preparation for

sending messages using the Spybot RC protocol.

Page 45



NQC Programmer's Guide

I ni t ROComm(); // prepare to send | R using RC protocol
SendRCMsg() Function - RCX2

Use this function to send a 4 byte RC message which was previously set via a call to

Set RCMessage.

SendROMsQ() ;

SetRCMessage(nChannel, nLeft, nRight) Function - RCX2

Use this function to set the contents of a Spybot RC message. The message can then

be sent repeatedly via calls to SendRCVsg.
Set RCMessage( RC_CHANNEL 2, RC_CVD_PWD, RC_ OMD WD) ;

SendRCMessage(nChannel, nLeft, nRight) Function - RCX2

Use this function to send a 2 byte Spybot ping message. This function calls
I ni t RCConm Set RCMessage, and SendRCMs g in sequence.

SendROVessage( RC_CHANNEL 2, RC_ OMD FWD, RC_ OMD FWD) ;
DefaultSerialComm() Value - Swan

Returns the default UART transmit parameter configuration.

X = Defaul tSerial Coom(); // read default UART xmt config

DefaultSerialPacket() Value - Swan

Returns the default packet data formatting configuration.

x = Defaul t Seri al Packet (); // read default packet config
SetDefaultSerial Comm(settings) Function - Swan

Set the default communication settings, which determine how the bits are sent over IR

Set Def aul t Seri al Comm( SER AL_COMWI DEFAULT) ;
SetDefaultSerialPacket(settings) Function - Swan

Set the default packet settings, which control how bytes are assembled into packets.

Set Def aul t Seri al Packet ( SERI AL_PACKET_DEFAULT) ;

Page 46



NQC Programmer's Guide

SerialType() Value - Spy
Returns the type of the serial transmission.
x = Serial Type(); // SER AL_TYPE_USER ??
SetSerialType(type) Function - Spy

Sets the type of the serial transmission.

Set Seri al Type(SERI AL_TYPE USER); // set type to user
Use one of the following constants: SERI AL_TYPE_SPYBOT, SERI AL_TYPE_RCX,
SERI AL_TYPE_RC, SERI AL_TYPE_USER

SerialBaud() Value - Spy

Returns the baud rate of the serial transmission.

x = Serial Baud(); // SER AL_BAUD 2400 ??
SetSerialBaud(baud) Function - Spy

Sets the baud rate of the serial transmission.

Set Seri al Baud( SERI AL_BAUD 2400); // set baud to 2400
Use one of the fOllOWing constants: SERI AL_BAUD 2400, SERI AL_BAUD 4800,
SERI AL_BAUD 9600.

SerialChannel() Value - Spy

Returns the transmission channel.

x = Serial Channel (); // SER AL_CHANNEL_PC ??
SetSerialChannel(channel) Function - Spy

Sets the transmission channel.

Set Seri al Channel (SERFAL_CHANNEL_IR); // set channel to IR

Page 47



NQC Programmer's Guide

Use one of the following constants: SERI AL_CHANNEL | R, SERI AL_CHANNEL_PC.

SerialPreamblePos() Value - Spy

Returns the preamble position within the serial data buffer.

x = Seri al Preanbl ePos();
SetSerialPreamblePos(n) Function - Spy

Sets the position of the preamble within the serial data buffer.

Set Seri al Preanbl ePos(12); // set preanble pos to 12
SerialPreambleLen() Value - Spy

Returns the preamble length.

X = Seri al Preanbl eLen();
SetSerialPreambleLen(n) Function - Spy

Sets the length of the preamble.

Set Seri al Preanbl eLen(3); // set preanble length to 3
SerialChecksum() Value - Spy
Returns the transmission checksum type.
x = Serial Checksun(); // SER AL_CGHECKSUM SUM ??
SetSerial Checksum(check) Function - Spy

Sets the transmission checksum type.

Set Seri al Checksun{ SER AL_CHECKSUM SWV); // use Sum checksum
Use one of the following constants: SERI AL_ CHECKSUM_NONE,
SERI AL_CHECKSUM SUM SERI AL_ CHECKSUM ZERO_SUM

SerialBiPhase() Value - Spy

Returns the transmission bi-phase mode.

x = Serial Bi Phase(); // SER AL_BIPHASE CFF ??

Page 48



NQC Programmer's Guide

SetSerialBiPhase(mode) Function - Spy

Sets the transmission bi-phase mode.

Set Seri al Bi Phase( SERI AL_BI PHASE CFF); // no bi - phase
Use one of the following constants: SERI AL_BI PHASE_COFF,
SERI AL_BI PHASE_ON.

3.5.3VLL Scout, Spy

SendVLL(value) Function — Scout, Spy

Sends a Visible Light Link (VLL) command, which can be used to communicate with
the MicroScout or Code Pilot. The specific VLL commands are described in the
Scout SDK.

SendVLL(4); // send VLL command #4

3.6 Timers

All targets provide several independent timers with 100ms resolution (10 ticks per
second). The Scout provides 3 such timers while the RCX, Swan, CyberMaster and
Spybotics provide 4. The timers wrap around to 0 after 32767 ticks (about 55 minutes).
The value of a timer can be read using Ti mer ( n) , where n is a constant that determines
which timer to use (0-2 for Scout, 0-3 for the others). RCX2, Swan, and Spybotics
provide the ability to read the same timers with higher resolution by using

Fast Ti mer ( n) , which returns the timer's value with 10ms resolution (100 ticks per

second).

ClearTimer(n) Function - All

Reset the specified timer to 0.

A ear Timer (0);
Timer(n) Value - All

Return the current value of specified timer (in 100ms resolution).

Page 49



NQC Programmer's Guide

x = Timer(0);
SetTimer(n, value) Function - RCX2, Spy
Set a timer to a specific value (which may be any expression).
Set Ti ner (0, Xx);
FastTimer(n) Value - RCX2, Spy

Return the current value of specified timer in 10ms resolution.

x = FastTinmer(0);

3.7 Counters RCX2, Scout, Spy

Counters are like very simple variables that can be incremented, decremented, and
cleared. The Scout provides two counters (0 and 1), while RCX2, Swan, and Spybotics
provide three (0, 1, and 2). In the case of RCX2, Swan, and Spybotics, these counters are
overlapped with global storage locations 0-2, so if they are going to be used as counters, a
#pragma reserve should be used to prevent NQC from using the storage location for a

regular variable. For example, to use counter 1:

#pragnma reserve 1
ClearCounter(n) Function - RCX2, Scout, Spy

Reset counter nto 0. N must be 0 or 1 for Scout, 0-2 for RCX2 and Spybotics.

O earCounter(1);
IncCounter(n) Function - RCX2, Scout, Spy

Increment counter n by 1. N must be 0 or 1 for Scout, 0-2 for RCX2 and Spybotics.

I ncCounter(1);
DecCounter(n) Function - RCX2, Scout, Spy

Decrement counter n by 1. N must be 0 or 1 for Scout, 0-2 for RCX2 and Spybotics.

DecCounter(1);

Page 50



NQC Programmer's Guide

Counter(n) Value - RCX, Scout, Spy

Return the current value of counter n. N must be 0 or 1 for Scout, 0-3 for RCX2 and

Spybotics.

x = Counter(1);

3.8 Access Control RCX2, Scout, Spy

Access control is implemented primarily by the acqui r e statement. The Set Priority
function can be used to set a task's priority, and the following constants may be used to
specify resources in an acqui r e statement. Note that the user defined resources are only

available on the RCX2 and Swan.

Constant Resource

ACQUIRE OUT A, outputs
ACQUIRE OUT B,
ACQUIRE OUT C

ACQUIRE SOUND sound

ACQUIRE LED LEDs (Spybotics
only)

ACQUIRE USER 1, user defined -

ACQUIRE USER 2, RCX2 and Swan

ACQUIRE USER 3, only

ACQUIRE_USER 4

SetPriority(p) Function - RCX2, Scout, Spy

Set a task's priority to p, which must be a constant. RCX2, Swan, and Spybotics
support priorities 0-255, while Scout supports priorities 0-7. Note that lower numbers

are higher priority.

SetPriority(1);

3.9 Events RCX2, Scout

Although the RCX2, Swan, Scout, and Spybotics share a common event mechanism, the

RCX2, Swan, and Spybotics provide 16 completely configurable events while the Scout

Page 51



NQC Programmer's Guide

has 15 predefined events. The only functions common to both targets are the commands

to inspect or force events.

ActiveEvents(task) Value - RCX2, Scout, Spy

Return the set of events that have been triggered for a given task.

x = ActiveEvents(0);
CurrentEvents() Value - RCX2, Spy

Return the set of events that have been triggered for the active task.

X = QurrentEBEvents();
Event(events) Function - RCX2, Scout, Spy

Manually triggers the specified events. This can be useful in testing event handling
of the program, or in other cases simulating an event based on other criteria. Note
that the specification of the events themselves is slightly different between brick
types. RCX2, Swan, and Spybotics use the EVENT_MASK macro to compute an event

mask, while Scout has predefined masks.

Event (EVENT_MASK(3)); // triggering an RCX2 event
Event (EVENT_1_PRESSED); // triggering a Scout event

3.9.1Configurable Events RCX2, Spy

RCX2, Swan, and Spybotics provide an extremely flexible event system. There are 16

events, each of which can be mapped to one of several event sources (the stimulus that

can trigger the event), and an event type (the criteria for triggering). A number of other
parameters may also be specified depending on the event type. For all of the

configuration calls an event is identified by its event number - a constant from 0 to 15.

Legal event sources are sensors, timers, counters, or the message buffer. An event is
configured by calling Set Event (event, source, type), where event is a constant
event number (0-15), source is the event source itself, and type is one of the types shown

below (some combinations of sources and types are illegal).

Page 52



NQC Programmer's Guide

Event Type

Condition

Event Source

EVENT_TYPE_PRESSED

value becomes on

sensors only

EVENT_TYPE_RELEASED

value becomes off’

sensors only

EVENT_TYPE_PULSE value goes from off to | sensors only (RCX2)
on to off
EVENT_TYPE_EDGE value goes fromonto | sensors only (RCX2)
off or vice versa
EVENT_TYPE_FASTCHANGE value changes rapidly | sensors only (RCX2)
EVENT_TYPE_LOW value becomes low any
EVENT_TYPE_NORVAL value becomes normal | any
EVENT_TYPE_H CGH value becomes high any
EVENT_TYPE_CLI CK value from low to high | any
back to low
EVENT_TYPE_DOUBLECLI CK two clicks within a Any (RCX2)

certain time

EVENT_TYPE_NESSAGE

new message received

Message() only (RCX2)

EVENT_TYPE_ENTRY_FOUND

World entry found

VLL() only (Spy)

EVENT_TYPE_NSG DI SCARD

Message discarded

VLL() only (Spy)

EVENT_TYPE_NMSG_RECEI VED

Message received

VLL() only (Spy)

EVENT_TYPE_VLL_NMSG RECEI VED

Message received

VLL() only (Spy)

EVENT_TYPE_ENTRY_CHANGED World entry changed VLL() only (Spy)
EVENT_TYPE_4 Event type 4 any (Swan)
EVENT_TYPE_5 Event type 5 any (Swan)
EVENT_TYPE_6 Event type 6 any (Swan)
E@W_TYPE_V| RTUAL_MOTOR_CH | Virtual motor changes | any (Swan)
5\\E/ENT_TYPE_V| RTUAL_MOTOR_PO | Virtual motor power any (Swan)
E\F/ENT_TYPE_V' RTUAL_SENSOR_D | Virtual sensor def any (Swan)
EVENT_TYPE_| NFRARED_| DLE Infrared goes idle any (Swan)
EVENT TYPE RESET p— any (Swan)

Page 53




NQC Programmer's Guide

The first four event types make use of a sensor's boolean value, thus are most useful with
touch sensors. For example, to set event #2 to be triggered when a touch sensor on port 1

is pressed, the following call could be made:

Set Event (2, SENSOR 1, EVENT_TYPE_PRESSED) ;
In order for EVENT_TYPE_PULSE or EVENT_TYPE_EDGE to be used, the sensor must be
configured in the SENSOR_MODE_PUL SE or SENSOR_MODE_EDGE respectively.

EVENT_TYPE_FASTCHANGE should be used with sensors that have been configured with
a slope parameter. When the raw value changes faster than the slope parameter an

EVENT_TYPE_FASTCHANCE event will be triggered.

The next three types (EVENT_TYPE_LOW EVENT_TYPE_NORMAL, and

EVENT_TYPE_H GH) convert an event source's value into one of three ranges (low,
normal, or high), and trigger an event when the value moves from one range into another.
The ranges are defined by the lower limit and upper limit for the event. When the source
value is lower than the lower limit, the source is considered low. When the source value
is higher than the upper limit, the source is considered high. The source is normal

whenever it is between the limits.

The following example configures event #3 to trigger when the sensor on port 2's value
goes into the high range. The upper limit is set for 80, and the lower limit is set for 50.
This configuration is typical of how an event can be triggered when a light sensor

detected a bright light.

Set Event (3, SENSOR 2, EVENT_TYPE H (H);
Set LowerLimt (3, 50);
Set UpperLimt (3, 80);

A hysteresis parameter can be used to provide more stable transitions in cases where the
source value may jitter. Hysteresis works by making the transition from low to normal a
little higher than the transition from normal to low. In a sense, it makes it easier to get
into the low range than get out of it. A symmetrical case applies to the transition between

normal and high.

A transition from low to high back to low will trigger a EVENT_TYPE_CLI| CK event,

provided that the entire sequence is faster than the click time for the event. Iftwo

Page 54



NQC Programmer's Guide

successive clicks occur and the time between clicks is also less than the click time, then
an EVENT_TYPE_DOUBLECLI| CK event will be triggered. The system also keeps track of

the total number of clicks for each event.

The last event type, EVENT_TYPE_MESSAGE, is only valid when Message() is used as
the event source. The event will be triggered whenever a new message arrives (even if its

value is the same as a previous message).

The monitor statement and some API functions (such as ActiveEvents() or Event()) need
to handle multiple events. This is done by converting each event number to an event
mask, and then combining the masks with a bitwise OR. The EVENT_MASK( event )
macro converts an event number to a mask. For example, to monitor events 2 and 3, the

following statement could be used:
noni t or (EVENT_MASK(2) | EVENT_NMASK(3))
SetEvent(event, source, type) Function - RCX2, Spy

Configure an event (a number from 0 to 15) to use the specified source and type.
Both event and type must be constants, and source should be the actual source

expression.

Set Event (2, Tiner(0), EVENT_ TYPE H@);
ClearEvent(event) Value - RCX2, Spy

Clear the configuration for the specified event. This prevents it from triggering until

it is re-configured.

AearBvent(2); // clear event #2
ClearAllEvents() Value - RCX2, Spy

Clear the configurations for all events.

QearAl Events();
EventState(event) Value - RCX2, Spy

Return the state of a given event. States are 0: Low, 1: Normal, 2: High, 3:

Undefined, 4: Start calibrating, 5: Calibrating in process.

Page 55



NQC Programmer's Guide

x = EventState(2);
CalibrateEvent(event, lower, upper, hyst) Function - RCX2, Spy

Calibrate the event by taking an actual sensor reading and then applying the specified
lower, upper, and hyst ratios to determine actual limits and hysteresis value. The
specific formulas for calibration depend on sensor type and are explained in the
LEGO SDK. Calibration is not instantaneous - EventState() can be checked to

determine when the calibration is complete (typically about 50ms).

Cal i brat eEvent (2, 50, 50, 20);
until (EventState(2) !'=5); // wait for calibration

SetUpperLimit(event, limit) Function - RCX2, Spy

Set the upper limit for the event, where event is a constant event number and limit can

be any expression.

Set WoperLimt (2, x); // set upper limt for #2 to x
UpperLimit(event) Value - RCX2, Spy
Return the current upper limit for the specified event number.
X = UpperLimt(2); // get upper limt for event 2

SetLowerLimit(event, limit) Function - RCX2, Spy

Set the lower limit for the event, where event is a constant event number and limit can

be any expression.

SetLowerLimt (2, x); // set lower limt for #2 to x
LowerLimit(event) Value - RCX2, Spy

Return the current lower limit for the specified event number.

X = LowerLimt(2); // get lower limt for event 2
SetHysteresis(event, value) Function - RCX2, Spy

Set the hysteresis for the event, where event is a constant event number and value can

be any expression.

Page 56



NQC Programmer's Guide

Set Hysteresis(2, x);
Hysteresis(event) Value - RCX2, Spy
Return the current hysteresis for the specified event number.
X = Hysteresis(2);
SetClickTime(event, value) Function - RCX2, Spy

Set the click time for the event, where event is a constant event number and value can
be any expression. The time is specified in increments of 10ms, so one second would

be a value of 100.
Set A ickTime(2, x);
ClickTime(event) Value - RCX2, Spy
Return the current click time for the specified event number.
x = OickTine(2);
SetClickCounter(event, value) Function - RCX2

Set the click counter for the event, where event is a constant event number and value

can be any expression.

SetdickCounter (2, x);

ClickCounter(event) Value - RCX2

Return the current click counter for the specified event number.

x = dickCounter(2);

3.9.2Scout Events Scout

The Scout provides 15 events, each of which has a predefined meaning as shown in the

table below.

Event Name Condition

EVENT 1 PRESSED sensor 1 pressed

Page 57



NQC Programmer's Guide

EVENT 1 RELEASED sensor 1 released
EVENT 2 PRESSED sensor 2 pressed
EVENT 2 RELEASED sensor 2 released
EVENT LIGHT HIGH light sensor "high"
EVENT LIGHT NORMAL light sensor "normal”
EVENT LIGHT LOW light sensor "low"
EVENT LIGHT CLICK low to high to low

EVENT LIGHT DOUBLECLICK two clicks

EVENT _COUNTER 0 counter 0 over limit
EVENT _COUNTER 1 counter 1 over limit
EVENT _TIMER 0 timer 0 over limit
EVENT TIMER 1 timer 1 over limit
EVENT _TIMER 2 timer 2 over limit
EVENT MESSAGE new message received

The first four events are triggered by touch sensors connected to the two sensor ports.
EVENT LI GHT_HI GH, EVENT_LI GHT_NORMAL, and EVENT_LI GHT _LOWare triggered
by the light sensor's value changing from one range to another. The ranges are defined
by Set Sensor Upper Li m t, Set Sensor LowerLi m t,and Set Sensor Hyst eresi s

which were described previously.

EVENT_LI GHT_CLI CK and EVENT_LI GHT_DOUBLECLI CK are also triggered by the light
sensor. A click is a transition from low to high and back to low within a certain amount

of time, called the click time.

Each counter has a counter limit. When the counter exceeds this limit,
EVENT_COUNTER_0 or EVENT_COUNTER 1 is triggered. Timers also have a limit, and
they generate EVENT_TI MER_0, EVENT_TI MER 1, and EVENT_TI MER 2.

EVENT_MESSACE is triggered whenever a new IR message is received.

Page 58



NQC Programmer's Guide

SetSensorClickTime(value) Function - Scout

Set the click time used to generate events from the light sensor. Value should be

specified in increments of 10ms, and may be any expression.

Set Sensor d i ckTi me(x);
SetCounterLimit(n, value) Function - Scout

Set the limit for counter n. N must be 0 or 1, and value may be any expression.

Set GounterLimt (0, 100); // set counter O limt to 100
SetTimerLimit(n, value) Function - Scout

Set the limit for timer n. N must be 0, 1, or 2, and value may be any expression.

SetTinmerLimt(1, 100); // set tiner 1 [imt to 100

3.10 Data Logging RCX

The RCX contains a datalog which can be used to store readings from sensors, timers,
variables, and the system watch. Before adding data, the datalog first needs to be created
using the Cr eat eDat al og(size) command. The 'size' parameter must be a constant and

determines how many data points the datalog can hold.

O eat eDat al og(100) ; /1 datal og for 100 points
Values can then be added to the datalog using AddToDat al og(value). When the datalog
is uploaded to a computer it will show both the value itself and the source of the value
(timer, variable, etc). The datalog directly supports the following data sources: timers,
sensor values, variables, and the system watch. Other data types (such as a constant or
random number) may also be logged, but in this case NQC will first move the value into
a variable and then log the variable. The values will still be captured faithfully in the

datalog, but the sources of the data may be a bit misleading.

AddToDat al og(Tiner(0)); // add tiner O to datal og
AddToDat al og(x); // add variable "X
AddToDatal og(7); // add 7 - will look |ike a variable

The RCX itself cannot read values back out of the datalog. The datalog must be

uploaded to a host computer. The specifics of uploading the datalog depend on the NQC

Page 59



NQC Programmer's Guide

environment being used. For example, in the command line version of NQC, the

following commands will upload and print the datalog:

ngc —dat al og
ngc -datal og_full

The Swan (and the standard LEGO firmware version 3.30 which is available via the
ROBOLAB software) adds the ability to read values and types out of the datalog. New
firmware sources are used to implement this functionality. Use the DatalogType,

DatalogValue, and DatalogByte functions to programmatically access these sources.

CreateDatalog(size) Function - RCX

Create a datalog of the specified size (which must be a constant). A size of 0 clears

the existing datalog without creating a new one.

O eat ebDat al og(100); // datal og for 100 points

AddToDatalog(value) Function - RCX

Add the value, which may be an expression, to the datalog. Ifthe datalog is full the

call has no effect.

AddToDat al og( x) ;

UploadDatalog(start, count) Function - RCX

Initiate and upload of count data points beginning at start. This is of relatively little

use since the host computer usually initiates the upload.

Upl oadDat al og(0, 100); // upload entire 100 point |og

DatalogType(n) Value — Swan (and RCX2+)

Read or write the 8-bit datalog type specified by the parameter. Ifa variable is used

the type is read or written indirectly.

x = Datal ogType(0);

Page 60



NQC Programmer's Guide

DatalogValue(n) Value — Swan (and RCX2+)

Read or write the 16-bit datalog value specified by the parameter. Ifa variable is

used the value is read or written indirectly.

x = Dat al ogVal ue(0);
DatalogByte(n) Value — Swan (and RCX2+)

Read or write the 8-bit datalog byte specified by the parameter. Ifa variable is used

the byte is read or written indirectly.

x = Dat al ogByte(0);
3.11 General Features

Wait(time) Function - All

Make a task sleep for specified amount of time (in 100ths of a second). The time

argument may be an expression or a constant:

Wi t(100); // wait 1 second
Wai t (Randon{100)); // wait randomtinme up to 1 second

StopAllTasks() Function - All

Stop all currently running tasks. This will halt the program completely, so any code

following this command will be ignored.

StopAl | Tasks(); // stop the program
Random(n) Value - All

Return a random number between 0 and n. N must be a constant.

X = Randon( 10);
SetRandomSeed(n) Function - RCX2, Spy

Seed the random number generator with n. N may be an expression.

Set RandonBeed(x); // seed with val ue of x

Page 61



NQC Programmer's Guide

BatteryLevel() Value - RCX2, Spy

Return the battery level in millivolts.

x = BatterylLevel ();
FirmwareVersion() Value - RCX2, Spy

Return the firmware version as an integer. For example, version 3.2.6 is 326.

X = F rmwnareVersi on();
SetSleepTime(minutes) Function - All

Set the sleep timeout the requested number of minutes (which must be a constant).

Specifying 0 minutes disables the sleep feature.

Set S eepTine(5); // sleep after 5 mnutes
Set S eepTine(0); // disable sleep tinme

SleepNow() Function - All

Force the device to go to sleep. Only works if the sleep time is non-zero.

Sl eepNow(); // go to sleep
Indirect(n) Value - RCX2, Spy

Read the value of a variable indirectly. The parameter is the address of a global

variable whose value is the address of the variable you wish to read.

X = Indirect(0); // the value of var pointed to by var O
SetIndirectVar(const int &v, const int &n) Value - RCX2, Spy

Set the value of a variable indirectly. The first parameter is the global variable whose
value is the address of the variable you wish to set. The second parameter is the value

you wish to set it to.

Set | ndi r ect Var (x, 200);

Page 62



NQC Programmer's Guide

3.12 RCX Specific Features

Program() Value - RCX

Number of the currently selected program.
X = Progran);

SelectProgram(n) Function - RCX2

Select the specified program and start running it. Note that programs are numbered

0-4 (not 1-5 as displayed on the LCD).

Sel ect Progran(3);

Watch() Value - RCX

Return the value of the system clock in minutes.

x = Watch();
SetWatch(hours, minutes) Function - RCX

Set the system watch to the specified number of hours and minutes. Hours must be a
constant between 0 and 23 inclusive. Minutes must be a constant between 0 and 59

inclusive.

Set Wtch(3, 15); // set watch to 3:15

3.13 Scout Specific Features

SetScoutRules(motion, touch, light, time, fx) Function - Scout

Set the various rules used by the scout in stand-alone mode.

ScoutRules(n) Value - Scout

Return current setting for one of the rules. N should be a constant between 0 and 4.

x = ScoutRules(1); // get setting for rule #1

Page 63



NQC Programmer's Guide

SetScoutMode(mode) Function - Scout

Put the scout into stand-alone (0) or power (1) mode. As a programming call it really
only makes sense to put into stand-alone mode since it would already be in power

mode to run an NQC program.

SetEventFeedback(events) Function - Scout

Set which events should be accompanied by audio feedback.

Set Event Feedback( EVENT_1_PRESSED) ;

EventFeedback() Value - Scout

Return the set of events that have audio feedback.

x = Event Feedback();
SetLight(mode) Function - Scout

Control the Scout's LED. Mode must be LIGHT ON or LIGHT OFF.

Set Light (LIGHT_QN\); // turn on LED

3.14 CyberMaster Specific Features

CyberMaster provides alternate names for the sensors: SENSOR_L, SENSOR_M and
SENSCR_R. It also provides alternate names for the outputs: QUT_L, OUT_R OUT_X.
Additionally, the two internal motors have tachometers, which measure 'clicks' and speed
as the motors turn. There are about 50 clicks per revolution of the shaft. The tachometers
can be used, for example, to create a robot which can detect if it has bumped into an
object without using any external sensors. The tachometers have maximum values of
32767 and do not differentiate between directions. They will also count up if the shaft is

turned by hand, including when no program is running.

Drive(motor(0, motor1) Function - CM

Turns on both motors at the power levels specified. If a power level is negative, then

the motor will run in reverse. Equivalent to this code:

Page 64



NQC Programmer's Guide

Set Power (QUT_L, abs(power0));
Set Power (QUT_R, abs(powerl));
i f(power0 < 0)

{ SetDrection(QUT_L, QUT_REV) }
el se

{ SetDrection(QUT_L, QUT_RPAD) }
i f(powerl < 0)

{ SetDrection(QUT_R QUT_REV) }
el se

{ SetDrection(QUT_R QUT_RPAD) }
Set Qutput (QUT_ L + QUT_ R QUT_ON);

OnWait(motors, n time) Function - CM
Turns on the motors specified, all at the same power level then waits for
the given time. The time is in 10ths of a second, with a maximum of 255 (or

25.5 seconds). Equivalent to this code:

Set Power (not ors, abs(power));
i f(power < 0)

{ SetDirection(nmotors, QUT_REV) }
el se

{ SetDirection(nmotors, QUT_RWD) }
Set Qut put (notors, QUT_QN);
Vait( time * 10 );

OnWaitDifferent(motors, n0, n1, n2, time) Function - CM

Like OnWait(), except different power levels can be given for each motor.

ClearTachoCounter(motors) Function - CM

Resets the tachometer for the motor(s) specified.

TachoCount(n) Value - CM

Returns the current value of the tachometer for a specified motor.

TachoSpeed(n) Value - CM

Returns the current speed of the tachometer for a specified motor. The speed is fairly

constant for an unladen motor at any speed, with a maximum value of 90. (This will

Page 65



NQC Programmer's Guide

be lower as your batteries lose power!) The value drops as the load on the motor

increases. A value of 0 indicates that the motor is stalled.

ExternalMotorRunning() Value - CM

This is actually a measure of the current being drawn by the motor. The values

returned tends to fluctuate slightly, but are, on average, as follows for an unladen

motor:
0 motor is floating
1 motor is off

<=7  motor is running at around this power level. This is where the value
fluctuates the most (probably related to the PWM method used to drive the motors.)

In any case, you should know what power level you set the motor to in the first place.

The value increases as the load on the motor increases, and a value between 260 and

300 indicates that the motor has stalled.

AGC() Value - CM

Return the current value of the automatic gain control on the RF receiver. This can
be used to give a very rough (and somewhat inaccurate) measure of the distance

between the CyberMaster and the RF transmitter.

x = A);
3.15 Spybotics Specific Features

SetLED(mode, value) Function - Spy

A single command, Set LED( node, val ue), can be used to control all of the
different LEDs on the Spybotics brick. The function takes two arguments, a mode and

a value. The mode parameter selects which group of LEDs to control, and how they

should be affected.

Page 66



NQC Programmer's Guide

LED Mode Constants

LED MODE_ON, LED MODE_BLINK, LED MODE_DURATI ON,
LED_MODE_SCALE, LED MODE_SCALE_BLI NK,
LED_MODE_SCALE_DURATI ON, LED MODE_RED SCALE,
LED_MODE_RED SCALE_BLI NK, LED MODE_GREEN SCALE,
LED_MODE_GREEN SCALE_BLI NK, LED MODE_YELLOW
LED_MODE_YELLOW BLI NK, LED_MODE_YELLOW DURATI ON,
LED_MODE_VLL, LED MODE_VLL_BLINK, LED MODE_VLL_DURATI ON

The meaning of value parameter depends on the mode. Sometimes it is a mask of
which LEDs should be controlled (as with LED MODE_ON). Sometimes it is a single
value that is used to determine how many LEDs to turn on (as with

LED_MODE_SCALE).

LED Value Constants

LED RED1, LED RED2, LED RED3, LED GREEN1, LED GREEN2,
LED GREEN3, LED YELLOW LED ALL_RED, LED ALL_GREEN,
LED ALL_RED GREEN, LED ALL

Here is a short program that blinks all six of the top red/green LEDs.
task main()

Set LED( LED MODE BLINK, LED ALL_RED GREEN);
i t (200) ;
}

LED(mode) Value - Spy

Return the value of the LED control registers. Use the LED Mode constants as the

parameter.
X = LED(LED MDE QN);
SetAnimation(number) Function - Spy

A more sophisticated way to control the top LEDs is to use animations. An animation
is a sequence of LED patterns. Each pattern is displayed for a certain amount of time,
then the next pattern is displayed. Animations are activated using the

Set Ani mat i on( nunber) function. There are 8 pre-defined animations in ROM.

ROM Animation Constants

ANI MATI ON_SCAN, ANI MATI ON_SPARKLE, AN MATI ON_FLASH,
ANI MATI ON_RED_TO GREEN, ANI MATI ON_GREEN TO RED,

Page 67



NQC Programmer's Guide

ANI MATI ON_POI NT_FORWARD, AN MATI ON_ALARM
ANI MATI ON_THI NKI NG

Here is a short program that runs a ROM animation.

task main()

{
Set Ani mat i on( ANl MATI ON_SCAN) ;

i t (200);
}

ANIMATION Resource Declaration - Spy

It is also possible to define custom animations. This is done with a resource
declaration (a new NQC feature). The declaration must be done at the global level
(not within a task/sub/function), and must occur before the animation is used in the

program. An animation declaration looks like this:

AN MATI ON nare { data ... };
Where name is a name you pick for the animation, and data is a series of bytes that
determine the animation's appearance. The data bytes are interpreted in pairs, with the
first byte of each pair specifying a mask of the LEDs that should be turned on, and the
second byte determining how many 10ms ticks that pattern should be displayed for. A
pair of 255,0 causes the animation to loop continuously. You can also use the

following two special commands (in a comma-separated list) to define an animation:

Animation Commands

Ani mat eLED(| ed_nask, tinme)
Repeat Ani mat i on()

Once the animation is declared, its name may be used as an argument to

Set Ani mat i on() . Here is an example:

AN MATI ON ny_ani mation {
Ani nat eLED( 1, 10),
Ani nat eLED( 2, 10),
Ani nat eLED( 4, 10),
Ani nat eLED( 2, 10),
Repeat Ani nati on()

b

task main()

Page 68



NQC Programmer's Guide

{
Set Ani mat i on( ny_ani mati on);

i t (500);
}

AnimateLED(led_mask, time) Animation Macro - Spy

User animations contain LED patterns. The led mask parameter is a mask of the
LEDs that should be turned on (see the LED value constants defined above). The

time parameter is the number of 10 ms steps to display the pattern for, ranging from 1

to 255 (2.55 seconds).

Ani nat i onLED( LED RED1, 10)
RepeatAnimation() Animation Macro - Spy

Repeat the user animation from the beginning.

Repeat Ani mati on()
SOUNDEFFECT Resource Declaration - Spy

With Spybotics you can define up to 15 of your own sound effects using a resource
declaration. The declaration must be done at the global level (not within a
task/sub/function), and must occur before the sound effect is used in the program. A

sound effect declaration looks like this:

SOUNDEFFECT nane { data ... };
Where name is a name you pick for the sound effect, and data is a series of bytes that
determine the sound effect sound. Use the following special commands (in a comma-

separated list) to define the sound effect.

User Sound Effect Commands

Gate(on, period)

GateOr f ()

Gide(freql, freqg2, tine)
Vi brato(freql, freqg2, timne)
VWaitEffect (tine)

Fi xedWai t Ef fect (ti nme)
Tone(freq, tine)

Fi xedTone(freq, tinme)
Repeat Ef f ect ()

Page 69



NQC Programmer's Guide

Once the sound effect is declared, its name may be used as an argument to

Pl aySound() . Here is an example:

SOUNDEFFECT ny_effect {
Gate(1, 10),
dide(294, 660, 60),
Gateddf (),

Wi t Ef f ect (50),

Vi brat o( 294, 660, 60),
Fi xedTone(500, 50),
Repeat E f ect ()

|
task main()
Pl aySound(ny_effect);

Wi t (500);
}

Gate(on, period) Sound Effect Macro - Spy

User sound effects can be changed by turning the sound on and off rapidly. The on
parameter is that portion of the period during which sound is output. The period

parameter is the length of the gate cycle in 10 ms steps from 1 to 255 (2.55 seconds).

Gate(1, 10)

GateOff() Sound Effect Macro - Spy

Stop gating the sound effect.

Gat eCf f ()

Glide(frequencyl, frequency2, duration) Sound Effect Macro - Spy

User sound effects can contain sounds which glide from one frequency to another.
The two frequency parameters can range from 32 to 20000 Hz. The duration
parameter is the time to glide from the first frequency to the second in 10 ms steps

from 1 to 255 (2.55 seconds).

Qide(294, 660, 60)

Page 70



NQC Programmer's Guide

Vibrato(frequencyl, frequency2, duration)  Sound Effect Macro - Spy

User sound effects can contain vibratos, where the sound alternates rapidly between
two frequencies. The two frequency parameters can range from 32 to 20000 Hz. The

duration parameter is the number of 10 ms steps from 1 to 255 (2.55 seconds).

Vi brat o( 294, 660, 60)

WaitEffect(duration) Sound Effect Macro - Spy
User sound effects can contain wait periods. The duration parameter is the length of
the wait in 10 ms steps from 1 to 255 (2.55 seconds).

Wi t Ef f ect (60)

FixedWaitEffect(duration) Sound Effect Macro - Spy

User sound effects can contain fixed wait periods. The duration parameter is the
length of the wait in 10 ms steps from 1 to 255 (2.55 seconds). This wait period will

be unaffected by adjustments to the sound effect time.

Fi xedVai t Ef f ect ( 60)
Tone(frequency, duration) Sound Effect Macro - Spy

User sound effects can contain simple tones. The frequency parameter is the tone to
be played, ranging from 32 to 20000 Hz. The duration parameter is the length of the
wait in 10 ms steps from 1 to 255 (2.55 seconds).

Tone( 440, 60)
FixedTone(frequency, duration) Sound Effect Macro - Spy

User sound effects can contain fixed wait periods. The frequency parameter is the
tone to be played, ranging from 32 to 20000 Hz. The duration parameter is the length
of the wait in 10 ms steps from 1 to 255 (2.55 seconds). This wait period will be

unaffected by adjustments to the sound effect sound or time.

Fi xedTone( 440, 60)

Page 71



NQC Programmer's Guide

RepeatEffect() Sound Effect Macro - Spy

Repeat the user sound effect from the beginning.

Repeat E f ect ()

EffectSound() Value - Spy

Return the value of the sound effect frequency adjustment register.

x = EffectSound(); // read the sound effect freq adj
EffectTime() Value - Spy

Return the value of the sound effect time adjustment register.

x = EffectTine(); // read the sound effect tinme adj
SetEffectSound(s) Function - Spy

Set the value of the sound effect frequency adjustment register. The parameter can

range from 0 to 255 where 100 = 1.0 * the frequency.

Set Ef f ect Sound(50); // cut freq in half (50%

SetEffectTime(t) Function - Spy
Set the value of the sound effect time adjustment register. The parameter can range
from 0 to 255 where 100 = 1.0 * the duration.

SetEffect Tine(50); // cut sound duration in half (50%

ClearWorld() Function - Spy

Clear the contents of the world relationship table.

AQearVrld(); // enpty world table
FindWorld(v, relationSource, criteria, threshold) Function - Spy
Sets variable v to the next entry in the world relationship table that matches the
criteria specified.
task main()

{

int v =-1;

Page 72



NQC Programmer's Guide

AearVorld();
Fi ndvorl d(v, SPY_RANGE, REL _GI, RANGE NONERE);
while (v !'=-1)

Set Vor | dNot e(v, 40);

Set Target | D(v) ;

Findwrid(v, SPY_RANGE, REL_GI, RANGE_NONERE);
}

Criteria Constants
REL GI, REL LT, REL EQ REL_NE

Target(n) Value - Spy
Return the value from the specified relation source for the current target.

X = Target (SPY_RANGE); // get the target range

Relation Source Constants
SPY _TARGETI D, SPY _NOTE, SPY LI NKID, SPY_ RANGE,
SPY_DI RECTI ON, SPY_ASPECT, SPY_ I NFQ, SPY_SHORTI D

SetTargetID(v) Function - Spy

Set the current target based on the value of v. Setting the target to TARGET_NONE

stops tracking.

int Xx =5;
Set Target | (x); // set the target ID

ID Constants
TARGET_NONE, I D NONE, ID CTRL1, ID CTRL2, | D CTRL3,
| D CTRL4, ID CTRL5, ID CTRL6, IDPC, IDBOr_ MN, |ID BOT_ NMAX

SetTargetNote(v) Function - Spy

Set the current target's game note.

Set Target Not e(50); // set the target's note to 50
GetWorld(relationSource, target, v) Function - Spy

Set variable v to the value in the relationSource for the specified target.

Get Wor | d(SPY_RANGE, t, v); // set v to target t's range
GetWorldAspect(t, v) Function - Spy

Set variable v to the specified target's aspect.

Page 73



NQC Programmer's Guide

Get Wor | dAspect (t, v); // set v to target t's aspect

Aspect Constants
ASPECT FRONT_LEFT, ASPECT FRONT, ASPECT_FRONT_RI GHT,
ASPECT BACK RI GHT, ASPECT BACK, ASPECT_BACK LEFT

GetWorldDirection(t, v) Function - Spy

Set variable v to the value in the relationSource for the specified target.

GetWrldDrection(t, v); // set v to target t's direction

Direction Constants
DI RECTI ON_LEFT, DI RECTI ON LEFT _OF CENTER, DI RECTI ON CENTER,
DI RECTI ON_RI GHT_COF _CENTER, DI RECTI ON_RI GHT

GetWorldLinkID(t, v) Function - Spy

Set variable v to the specified target's link ID.

Get Worl dLinkl D(t, v); // set v totarget t's link ID

GetWorldNote(t, v) Function - Spy

Set variable v to the specified target's note.

Get Wor | dNote(t, v); // set v to target t's note

GetWorldRange(t, v) Function - Spy

Set variable v to the specified target's range.

Get Wr | dRange(t, v); // set v to target t's range

Range Constants
RANGE NOWHERE, RANGE ANYWHERE, RANGE THERE, RANGE HERE

GetWorldShortID(t, v) Function - Spy

Set variable v to the specified target's short ID.

Get Worl dShort I D(t, v); // set v to target t's short ID

SetWorldNote(t, v) Function - Spy

Set the specified target's note to the value v.

Set Wr | dNote(t, v); // set target t's note

Page 74



NQC Programmer's Guide

Pop(n) Function - Spy
Pop n entries off the stack.
Pop(2); // pop 2 entries off the stack
Push(v) Function - Spy

Push a value onto the stack

Push(v); // push the contents of variable v onto the stack
Stack(index) Value - Spy

Return the value at the specified stack index.

x = Stack(0); // set x to first stack entry
SetStack(index, v) Function - Spy

Set the stack entry specified by index to the value v.

Set Stack(0, 4); // set the first stack entry to 4
TimerState(n) Value - Spy

Return the current running state of timer n.

x = TinerState(0); // set x totinmer 0's state
SetTimerState(n, s) Function - Spy

Set the running state of the specified timer.

Set Ti nerState(0, TIMER STCPPED); // stop timer O

State Constants
TI MER_RUNNI NG, TI MER_STOPPED

EEPROM(n) Value - Spy

Return the value stored at the EEPROM location specified by index (either directly or

indirectly.

x = EEPROM10); // read contents of EEPROM | ocation 10

Page 75



NQC Programmer's Guide

SetEEPROM(, d) Function - Spy

Set the EEPROM location specified by index (directly or indirectly) to the value d.
Set EEPROM 0, 5); // set EEPROM I ocation O to 5

int i =3;
Set EEPROMi, TimerState(0)); // set EEPROM | ocation 3

CurrentTaskID() Value - Spy

Return the current task ID.

X = QurrentTasklD(); // read current task ID
RxMessageLock() Value - Spy

Return the receive buffer locking value.
X = RxMessagelock(); // read the message | ocking val ue
SetRxMessageLock(lock) Function - Spy
Set the receive buffer locking value. To lock both IR and PC buffers use
MSG _IR+MSG PC.

Set RxMessageLock(MSG I R); // lock the IR nessage buffer

Receive Message Locking Constants
MSG NONE, MG IR, MBG PC

RxMessagelndex() Value - Spy

Return the index for the latest NewEntry event.

X = RxMessagel ndex();
RxMessageChannel() Value - Spy

Return the channel containing the latest received message.

X = RxMessageChannel ();
RxMessagelD(channel) Value - Spy

Extract an ID from a received IR or PC message and convert it into an index. The

desired channel is MSG_IR or MSG_PC.

Page 76



NQC Programmer's Guide

X = RxMessagel D(MSG I R);
RxMessage(channel, byte) Value - Spy

Read the contents of a received IR or PC message (4 bytes total). The desired
channel is MSG IR or MSG PC. The desired byte is specified using MSG_INDEX,
MSG_COMMAND, MSG_HI BYTE, or MSG LO BYTE.

if (Rx<Message(MSG IR MSG OCOMMVAND) == COMMAND OONTRCLLER)
{

X = RxMessage(MSG IR, MsSG H _BYTE);
}

PingControl(n) Value - Spy

Return the value of the ping control registers (n = 0..2).

X = PingControl (1); // read the current ping interval
PingData() Value - Spy
Return the current 8 bit information for ping messages
x = PingData();
SetPingData(d) Function - Spy

Set the 8 bit information for ping messages.

Set P ngDat a(55); // send the val ue 55 when pi ngi ng
PinglInterval() Value - Spy

Return the current ping interval.

x = Pinglnterval ();
SetPingInterval(interval) Function - Spy

Set the ping interval in 10ms steps. Setting the interval to zero will disable pinging.

Set P ngl nterval (0); // disable pings
PingID() Value - Spy

Return the Spybotics ping ID number.

Page 77



NQC Programmer's Guide

X =PinglD); // x=ny ping ID
BeaconControl(n) Value - Spy

Return the value of the beacon control registers (n = 0..3).

X = BeaconControl (1); // read the RC receive channel

LinkID() Value - Spy

Return the link ID (0-7; 0 = no link, 1-6 control unit ID, 7 = PC).

X = LinklD(); // read link ID

ID Constants
ID NONE, ID CTRL1, IDCTRL2, ID CTRL3, ID CTRL4, |ID CTRL5,
I D CTRL6, I D PC

RCRxChannel() Value - Spy

Return the RC receive channel.

X = RCRxChannel (); // read RC receive channel
SetRCRxChannel(channel) Function - Spy

Set the RC receive channel.

Set RCRxChannel (RC_CHANNEL _1);

RC Channel Constants
RC _CHANNEL BROADCAST, RC_ CHANNEL 1,RC CHANNEL 2,
RC CHANNEL 3, RC_ CHANNEL DISABLED

RCTxChannel() Value - Spy

Return the RC transmit channel.

x = RCIxChannel (); // read RC transmt channel
SetRCTxChannel(channel) Function - Spy

Set the RC transmit channel.

Set RCTxChannel (RC_CHANNEL 1) ;

RCTxMode() Value - Spy

Return the current RC transmit mode.

Page 78



NQC Programmer's Guide

X = RCTxMbde(); // read RC transmt node
SetRCTxMode(mode) Function - Spy

Set the RC transmit mode.

Set RCTxMode( RCTXMXDE_SI NGLE_SHOT) ;

RC Tx Mode Constants
RCTXMODE_SI NGLE_SHOT, RCTXMODE_CONTI NUOUS

StartTask(task) Function - Spy

Start a task by numeric value rather than by name.

Start Task(9); // start task nunber 9

StopTask(task) Function - Spy

Stop a task by numeric value rather than by name.

StopTask(9); // stop task nunber 9
Action(nSound, nDisplay, nMovement, nRepeat, nTime) Function - Spy

Built-in ROM subroutine number 44. This subroutine plays any combination of
sound, LED animation, and movement, like a multimedia presentation. nSound is the
sound to play (0-79, -1 means no sound). nDisplay is the LED animation to play (0-
15, -1 means no animation). nMovement is the Spybot motion (see BasicMove,
FancyMove, RandomMove, SlowDownMove, and SpeedUpMove) with -1 meaning
no movement. nRepeat is the number of times to repeat the motion. nTime is the
time to wait if nMovement equals -1, otherwise it is passed on to the movement

subroutines.
Action(SOUND CGEl GER AN MATI ON FLASH -1, 0, 300);
Disp(display) Function - Spy

Built-in ROM subroutine number 42. This subroutine displays one of the LED

animations. Passing an undefined user animation will turn the display off (8-15).

Di sp( ANl MATI ON_FLASH) ;

Page 79



NQC Programmer's Guide

BasicMove(move, time) Function - Spy

Built-in ROM subroutine number 43. This subroutine performs the requested motion
for the specified duration. The motors are not floated or braked and motor power is

not restored on exit.

Basi cMbve( MOVE_BASI C AVA D LEFT, 500);

Basic Motion Constants

MOVE_BASI C_ FORWARD, MOVE BASI C_BACKWARD,
MOVE_BASI C SPI N LEFT, MOVE BASI C SPI N _RI GHT,
MOVE_BASI C TURN LEFT, MOVE BASI C TURN RI GHT,
MOVE_BASI C AVO D LEFT, MOVE BASI C_ AvA D RI GHT,
MOVE_BASI C_REST, MOVE BASI C STCP

FancyMove(move, time) Function - Spy

Built-in ROM subroutine number 47. This subroutine performs the requested motion
for the specified duration. The motors are not floated or braked and motor power is

not restored on exit.

FancyMve( MIVE_FANCY_ZI GZAG  500) ;

Fancy Motion Constants

MOVE_FANCY ZI GZAG MOVE FANCY SHAKE, MOVE FANCY_SCAN,
MOVE_FANCY_STEP, MOVE _FANCY_STEP_ BACK, MOVE FANCY_ SEARCH,
MOVE_FANCY FAKE LEFT, MOVE_FANCY_ RAKE RI GHT,
MOVE_FANCY BUG FORWARD, MOVE_FANCY_LAZY, MOVE_FANCY_ WALK,
MOVE_FANCY WALK BACK, MOVE_FANCY_ DANCE

RandomMove(move, time) Function - Spy

Built-in ROM subroutine number 46. This subroutine performs the requested motion
for the specified duration. The motors are not floated or braked and motor power is
not restored on exit.

RandoniMbve( MOVE_RANDOM FCRMRD, 500) ;

Random Motion Constants

Page 80



NQC Programmer's Guide

MOVE_RANDOM FORWARD, MOVE_RANDOM BACKWARD,
MOVE_RANDOM SPI N_LEFT, MOVE_RANDOM SPI N_RI GHT,
MOVE_RANDOM TURN_LEFT, MOVE_RANDOM TURN_RI GHT,
MOVE_RANDOM REST

SlowDownMove(move, time) Function - Spy

Built-in ROM subroutine number 48. This subroutine performs the requested motion
for the specified duration. The motors are not floated or braked and motor power is

not restored on exit.

Sl owDownMve( MOVE_SLONDOMN_FCRMRD, 500) ;

SlowDown Motion Constants
MOVE_SLONDOAN FORWARD, MOVE_SLOADOWN BACKWARD,
MOVE_SLOADOWN_SPI N_LEFT, MOVE_SLOADOWN_SPI N_RI GHT

SpeedUpMove(move, time) Function - Spy

Built-in ROM subroutine number 49. This subroutine performs the requested motion
for the specified duration. The motors are not floated or braked and motor power is

not restored on exit.

SpeedUpMve( MOVE_SPEEDUP_FCRWARD, 500) ;

SpeedUp Motion Constants
MOVE_SPEEDUP_FORWARD, MOVE_SPEEDUP BACKWARD,
MOVE_SPEEDUP_SPI N LEFT, MOVE SPEEDUP_SPI N RI GHT

Sum2Mem(mem, value) Function - Spy
Built-in ROM subroutine number 50. This subroutine adds value to a 2-byte location
in EEPROM. The value is stored low byte first. No overflow checking is performed.

Sun2Men( 50, 400);
Sum4Mem(mem, value) Function - Spy

Built-in ROM subroutine number 51. This subroutine adds value to a 4-byte location
in EEPROM. The value is stored least significant byte first. No overflow checking is

performed.

SumtMen( 50, 400);

Page 81



NQC Programmer's Guide

SendAllRangeMessage (nMessage, nData) Function - Spy

Built-in ROM subroutine number 38. This subroutine sends nMessage to all Spybots
in the world relation table that are in the here, there, or anywhere zones with the

actual Spybot range as the high byte of each message.

SendAl | RangeMessage( 50, 40);
SendRCXMessage (nMessage) Function - Spy

Built-in ROM subroutine number 37. This subroutine sends an RCX message at 2400
baud with bi-phase encoding and sum checksum. These messages can be received by

an RCX or Scout.
SendRCXMessage( 50) ;
SendSpybotMessage(nlndex, nCmd, nHiByte, nLoByte) Function - Spy

Built-in ROM subroutine number 34. This subroutine sends a message to a Spybot.
If nIndex is a controller or PC then it does nothing. nIndex is the index of the Spybot
in the world relation table (0-15), | NDEX_LI NKCAST, or | NDEX_ BRQOADCAST.

SendSpybot Message( | NDEX_LI NKCAST, 50, 0, 10);

3.16 Swan Specific Features

SetMotorPowerSigned(const int motor, const int &v) Function - Swan

Set the power of a motor to the specified signed value.

Set Mot or Power Si gned( MTR_A, 10);

The motor can be specified using the following constants.

Motor Constant Meaning

MTR A output A

MTR B output B

MTR C output C

MTR D virtual output D
MTR E virtual output E
MTR F virtual output F

Page 82



NQC Programmer's Guide

Motor Power Direction

There are additional constants for the motor power functions and values.

Meaning

MPD FWD
MPD REV
MPD FLOAT
MPD_OFF

Motor State
MS FLOAT
MS BRAKE
MS FWD
MS REV

Motor Forward Power
MTR_FWD POWER 1
MTR_FWD POWER 2
MTR_FWD POWER 3
MTR_FWD POWER 4
MTR_FWD POWER 5
MTR_FWD POWER 6
MTR_FWD POWER 7
MTR_FWD POWER 8

Motor Reverse Power

MTR_REV POWER 1
MTR_REV POWER 2
MTR_REV POWER 3
MTR_REV POWER 4
MTR_REV POWER 5
MTR_REV POWER 6
MTR_REV POWER 7
MTR_REV POWER 8

Motor Float Power

foward
reverse
float
off

Meaning
float state

brake state
forward state
reverse state

Meaning
forward at power level 1

forward at power level 2
forward at power level 3
forward at power level 4
forward at power level 5
forward at power level 6
forward at power level 7
forward at power level 8

Meaning
reverse at power level 1

reverse at power level 2
reverse at power level 3
reverse at power level 4
reverse at power level 5
reverse at power level 6
reverse at power level 7
reverse at power level 8

Meaning

MTR_FLOAT POWER 1
MTR_FLOAT POWER 2
MTR _FLOAT POWER 3
MTR_FLOAT POWER 4
MTR _FLOAT POWER 5
MTR _FLOAT POWER 6
MTR _FLOAT POWER 7
MTR _FLOAT POWER 8

float at power level 1
float at power level 2
float at power level 3
float at power level 4
float at power level 5
float at power level 6
float at power level 7
float at power level 8

Motor Brake Power Meaning
MTR_BRAKE POWER 1 brake at power level 1
MTR _BRAKE POWER 2 brake at power level 2

Page 83



NQC Programmer's Guide

MTR _BRAKE POWER 3 brake at power level 3
MTR _BRAKE POWER 4 brake at power level 4
MTR_BRAKE POWER 5 brake at power level 5
MTR _BRAKE POWER 6 brake at power level 6
MTR _BRAKE POWER 7 brake at power level 7
MTR _BRAKE POWER 8 brake at power level 8

MotorPowerSigned(const int motor) Value - Swan

Read the signed power setting of a motor.

X = Mot or Power S gned( MTR_A) ;
SetMotorBrakePower(const int motor, const int &v)  Function - Swan

Set the brake power of a motor to the specified value.

Set Mot or Br akePower (MIR_A, 10);
MotorBrakePower(const int motor) Value - Swan

Read the brake power setting of a motor.

X = Mot or Br akePower (MIR_A) ;
SetMotorPower8(const int motor, const int &v) Function - Swan

Set the power of a motor to the specified value (using a scale from 0 to 7).

Set Mot or Power 8( MIR_A, 7);
MotorPower8(const int n) Value - Swan

Read the power setting of a motor (using a scale from 0 to 7).

X = Mot or Power 8( MTR_A) ;
SetMotorPower128(const int motor, const int &v) Function - Swan

Set the power of a motor to the specified value (using a scale from 0 to 127).

Set Mot or Pover 128( MTR A, 100) ;
MotorPower128(const int n) Value - Swan

Read the power setting of a motor (using a scale from 0 to 127).

x = Mot or Power 128( MTR_A) ;

Page 84



NQC Programmer's Guide

SetEventType(const int n, const int &v) Function
Set the event type of event n to the type specified by v.
Set Event Type( My Event, EVENT_TYPE_PRESSED) ;
EventType(const int n) Value
Read the event type of an event.
x = Event Type( M/Event);
SetEventSrc(const int n, const int &v) Function
Set the event source of event n to the source specified by v.
Set Event Src(M/Event, EST_SENSCR 1);
Event Source Meaning
EST SENSOR 1 sensor 1 source
EST SENSOR 2 sensor 2 source
EST SENSOR 3 sensor 3 source
EST TIMER 1 timer 1 source
EST TIMER 2 timer 2 source
EST TIMER 3 timer 3 source
EST TIMER 4 timer 4 source
EST LAST IR MSG IR msg source
EST COUNTER 1 counter 1 source
EST COUNTER 2 counter 2 source
EST COUNTER 3 counter 3 source
EST USER EVENT 0 user event source
EST USER EVENT 1 user event source
EST USER EVENT 2 user event source
EST USER EVENT 3 user event source
EST USER EVENT 4 user event source
EST VIRTUAL MOTOR virtual motor source
EST VIRTUAL SENSOR virtual sensor source
EST WAIT FOR _MSG IR msg source
EST INFRARED STATUS IR msg source
EST SENSOR UNUSED  sensor source
EventSrc(const int n) Value

Read the event source of an event.

x = Event Src(M/Event);

There are also constants for event states

- Swan

- Swan

- Swan

- Swan

Page 85



NQC Programmer's Guide

Event Source Meaning

ES BELOW_LOWER below lower threshold

ES BETWEEN between lower and upper thresholds
ES ABOVE UPPER above upper threshold

ES UNDETERMINED undetermined state

SetEventCounts(const int n, const int &v) Function - Swan

Set the event count of event n to the count specified by v.

Set Event Count s( M/Event, 10);
EventCounts(const int n) Value - Swan

Read the event counts of an event.

x = Event Count s( MyEvent);
ResetMSTimer(const int n) Function - Swan

Set the specified 1 ms timer back to zero.

Reset MSTi mer (T1) ;
MSTimer(const int n) Value - Swan

Read the specified 1 ms timer value.

X = MsTimer(T1l); // get the value of tinmer 1
WaitMS(const int &v) Function - Swan
Wait for the specified number of milliseconds.
Wi t MS(T1);
System(const int n) Value - Swan

Read the specified system value.

X = Systen(SYS BATTERY_LEVEL); // get the systemval ue
SetSystem(const int n, const int &v) Function - Swan

Set the system item to the specified value.

Set Syst en{ SYS_CPCCDES _PER TI MESLI CE, 10);

Page 86



NQC Programmer's Guide

System Constants

SYS BATTERY LEVEL

SYS DEBUG TASK MODE

SYS MEMORY_ MAP ADDRESS
SYS CURRENT TASK

SYS SERIAL LINK STATUS

SYS OPCODES PER TIMESLICE
SYS MOTOR TRANSITION DELAY
SYS SENSOR REFRESH RATE

SYS EXPANDED RC MESSAGES

SYS LCD REFRESH RATE

SYS NO POWER DOWN ON_AC

SYS DEFAULT TASK STACK SIZE
SYS TASK ACQUIRE PRIORITY

SYS TRANSMITTER RANGE

SYS FLOAT DURING INACTIVE PWM

SYS ROT ERRORS COUNT

SYS ROT DEBOUNCED GLITCHES
SYS PREAMBLE SIZE

SYS UNSOLICITED MESSAGE

SYS EXPANDED SUBROUTINES
SYS POWER DOWN DELAY

SYS WATCH FORMAT

SYS SENSOR_MISSED CONVERSIONS
SYS IGNORE MESSAGES CPU

SYS COMM ERRORS TIMEOUT
SYS COMM_ERRORS PARITY

SYS COMM_ERRORS FRAMING
SYS COMM_ERRORS OVERRUN
SYS INTER CHAR TIMEOUT

SYS TASK SCHEDULING PRIORITY
SYS VOLUME

SYS SOUND PLAYING

SYS PLAY SOUNDS

SYS QUEUED SOUND COUNT

SYS SENSOR STARTUP DELAY
SYS SENSOR DELAY CYCLES
SYS SENSOR REFRESH STATE
SYS _SENSOR_SCAN COUNT
SYS DATALOG SIZE

Meaning
battery level

debug task mode

memory map address
current task

serial link status

opcodes per timeslice
motor transition delay
sensor refresh rate
expanded remote control
messages

LCD refresh rate

power down while on AC
default task size

task acquire priority
transmitter range

float motors during inactive
PWM

rotation sensor errors count
rotation sensor debounce glitches
preamble size

unsolicited messages
expanded subroutines
power down delay

watch format

sensor missed conversions
ignore messages CPU
count of timeout errors
count of parity errors

count of framing errors
count of overrun errors
inter-character timeout
task scheduling priority
volume level

sound playing state
enable/disable sound playing
count of sounds waiting to be
played

sensor startup delay

sensor delay cycles

sensor refresh state

sensor scan count

datalog size

ImmediateBatteryLevel() Value - Swan

Read the immediate battery level.

Page 87



NQC Programmer's Guide

X = | mredi ateBatterylLevel ();

DebugTaskMode() Value

Read the debug task mode.

x = DebugTaskMde();

MemoryMapAddress() Value

Read the memory map address.
X = MenoryMapAddr ess();

CurrentTask() Value

Read the current task number.

X = Qurrent Task();

SerialLinkStatus() Value

Read the serial link status.

X = Serial LinkStatus();

Serial Link Status Constants Meaning

SLS WAIT FOR MSG
SLS RECEIVING MSG
SLS TRANSMITTING

waiting for message
receiving message
transmitting

SLS UNKNOWN unknown

OpcodesPerTimeslice() Value

Read the number of opcodes to execute per timeslice.

X = QpcodesPer Timeslice();
SetOpcodesPerTimeslice(const int &v) Function

Set the system item to the specified value.

Set QocodesPer Ti nesl i ce(10);
MotorTransitionDelay() Value

Read the number of milliseconds to delay when changing motor direction.

- Swan

- Swan

- Swan

- Swan

- Swan

- Swan

- Swan

Page 88



NQC Programmer's Guide

X = MotorTransitionDel ay();
SetMotorTransitionDelay(const int &v) Function - Swan

Set the motor transition delay to the specified value.

Set Mot or Transi ti onDel ay( 10) ;
SensorRefreshRate() Value - Swan

Read the sensor refresh rate.

X = Sensor RefreshRate();
SetSensorRefreshRate(const int &v) Function - Swan

Set the sensor refresh rate to the specified value.

Set Sensor Ref r eshRat e( 10) ;
ExpandedRemoteMessages() Value - Swan

Read a boolean value indicating whether or not to support expanded remote control

messages.

X = ExpandedRenot eMessages(); // 0 or 1
SetExpandedRemoteMessages(const int &v) Function - Swan

Enable or disable expanded remote control messages.

Set ExpandedRenot eMessages(f al se) ;
LCDRefreshRate() Value - Swan

Read the LCD refresh rate.

X = LCDRefreshRat e() ;
SetLCDRefreshRate(const int &v) Function - Swan

Set the LCD refresh rate.

Set LCDRef r eshRat e(10) ;

Page 89



NQC Programmer's Guide

NoPowerDownOnAC() Value - Swan

Read a boolean value specifying whether or not to power down while running on AC

power.

X = NoPower DownnAQ() ;

SetNoPowerDownOnAC(const int &v) Function - Swan

Enable or disable power down while running on AC power.

Set NoPower DownCnAQ(f al se) ;
DefaultStackSize() Value - Swan

Read the default stack size.

x = Defaul t StackSi ze();
SetDefaultStackSize(const int &v) Function - Swan

Set the default stack size.

Set Def aul t St ackSi ze(10);
TaskAcquirePriority() Value - Swan

Read the task acquire priority level.

x = TaskAcquirePriority();
SetTaskAcquirePriority(const int &v) Function - Swan

Set the task acquire priority level.

Set TaskAcqui rePriority(10);
TransmitterRange() Value - Swan

Read the transmitter range value.

x = Transm tterRange();

Page 90



NQC Programmer's Guide

FloatDuringInactivePWM() Value - Swan

Read a boolean value specifying whether or not to float motors during inactive pulse

width modulation.

x = Fl oat Duri ngl nacti vePW();
SetFloatDuringInactivePWM(const int &v) Function - Swan

Enable or disable floating the motors during inactive pulse width modulation.

Set Fl oat Duri ngl nacti vePW( f al se);
RotErrorsCount() Value - Swan

Read the rotation sensor errors count.

X = RotErrorsCount ();

RotDebouncedGlitches() Value - Swan

Read the rotation sensor debounced glitches.

X = Rot Debouncedd it ches();
SystemPreambleSize() Value - Swan

Read the system preamble size.

X = SystenPreanbl eS ze();
SetSystemPreambleSize(const int &v) Function - Swan

Set the system preamble size.

Set Syst enPreanbl eSi ze(10) ;
UnsolicitedMessages() Value - Swan

Read a boolean value specifying whether or not to accept unsolicted messages.

x = Unsol i citedMessages();

Page 91



NQC Programmer's Guide

ExpandedSubroutines() Value - Swan

Read a boolean value specifying whether or not to allow an expanded number of

subroutines.

X = ExpandedSubrouti nes();
SetExpandedSubroutines(const int &v) Function - Swan

Enable or disable support for an expanded number of subroutines.

Set ExpandedSubr out i nes(fal se);
PowerDownDelay() Value - Swan

Read the power down delay.

x = Power DownDel ay() ;
WatchFormat() Value - Swan

Read the watch format.

X = WatchFormat () ;
SetWatchFormat(const int &v) Function - Swan

Set the watch format.

Set Wt chFor mat (10) ;

Watch Format Constants Meaning

FMT HHMM hours and minutes

FMT_ MMSS minutes and seconds

FMT MSSTENTHS minutes, seconds, and tenths of seconds
MissedSensorADConversions() Value - Swan

Read the number of missed sensor analog to digital conversions.

X = M ssedSensor ADConver si ons() ;
IgnoreMessagesCPU() Value - Swan

Read a boolean value specifying whether or not to ignore CPU messages.

X = | gnoreMessagesCPU();

Page 92



NQC Programmer's Guide

CommErrorsTimeout() Value - Swan

Read the number of communication timeout errors.

x = CormmEr ror sTi meout () ;
CommErrorsParity() Value - Swan

Read the number of communication parity errors.

X = CommerrorsParity();
CommErrorsFraming() Value - Swan

Read the number of communication framing errors.

x = CommEr ror sFramng();
CommErrorsOverrun() Value - Swan

Read the number of communication overrun errors.

x = CommEr rorsQverrun();
InterCharTimeout() Value - Swan

Read the inter-character timeout value.

X = I nterCharTi meout ();
SetInterCharTimeout(const int &v) Function - Swan

Set the inter-character timeout value.

Set | nt er Char Ti meout ( 10) ;
TaskSchedulingPriority() Value - Swan

Read the task scheduling priority.

X = TaskSchedul i ngPriority();
SetTaskSchedulingPriority(const int &v) Function - Swan

Set the task scheduling priority.

Set TaskSchedul i ngPri ority(10);

Page 93



NQC Programmer's Guide

Volume()

Read the system volume level.

x = Vol une();

SetVolume(const int &v)

Value - Swan

Function - Swan

Set the system volume level. The maximum volume level is MAX VOLUME.

Set Vol une( 10) ;

SoundActive()

Value - Swan

Read a boolean value specifying whether or not a sound is currently playing.

X = SoundActi ve();

PlaySounds()

Value - Swan

Read a boolean value specifying whether or not to allow sound playing.

x = PlaySounds();
SetPlaySounds(const int &v)

Enable or disable support for playing sounds.

Set Pl aySounds(f al se) ;

QueuedSoundCount()

Read the number of sounds currently waiting to be played.

X = QueuedSoundCount ();
SensorStartupDelay()

Read the sensor startup delay.

X = Sensor Startupblel ay();
SetSensorStartupDelay(const int &v)

Set the sensor startup delay.

Set Sensor St ar t upDel ay( 10) ;

Function - Swan

Value - Swan

Value - Swan

Function - Swan

Page 94



NQC Programmer's Guide

SensorDelayCycles()

Read the number of sensor delay cycles.

X = Sensor Del ayCycl es();

SensorRefreshState()

Read the sensor refresh state.

X = SensorRefreshState();
SensorScanCount()

Read the sensor scan count.

x = Sensor ScanCount () ;

DatalogSize()

Read the datalog size.
x = Datal 0gS ze();
IntrinsicIndGlobal(const int n)

Access the value of an intrinsic indirectly.

X = Intrinsiclndd obal (15);

GlobalVar(const int &n)

Value - Swan

Value - Swan

Value - Swan

Value - Swan

Value - Swan

Value - Swan

Read or write the value of a global variable (either directly or indirectly).

X = d obal Var (y);
StackAddress(const int task)

Read the stack address of the specified task.

X = StackAddress(1);
StackSize(const int task)

Read the size of the stack for the specified task.

x = StackSi ze(1);

Value - Swan

Value - Swan

Page 95



NQC Programmer's Guide

ClearAll(const int &v) Function - Swan

Clear the specified items. The constants can be added together to clear multiple items

at once.

AearAl (CLR_TI MERS);

ClearAll Constants Meaning
CLR _TIMERS clear all timers
CLR _INPUTS clear all inputs
CLR VARIABLES clear all variables
CLR TASK STACK clear all task stacks
CLR _EVENTS clear all events
CLR_BREAKPOINTS clear all breakpoints
CLR _DATALOG clear the datalog
BitSet(const int &result, const int &operand) Function - Swan

Set the bit in the result specified by the operand.

BitSet(x, 0x01);
BitClear(const int &result, const int &operand) Function - Swan

Clear the bit in the result specified by the operand.

Bitd ear(x, 0x01);
Negate(const int &result, const int &operand) Function - Swan

Negate the bits in the result specified by the operand.

Negat e(x, 0x01);

Page 96



NQC Programmer's Guide

4 Technical Detalils

This section explains some of the low-level features of NQC. In general, these
mechanisms should only be used as a last resort since they may change in future releases.
Most programmers will never need to use the features described below - they are mainly

used in the creation of the NQC API file.

4.1 The asm statement

The asmstatement is used to define almost all of the NQC API calls. The syntax of the

statement is:

asm{ iteml, itenR ... itenN}

Where an item is one of the following

const ant _expr essi on
$ expression
$ expression : restrictor

The statement simply emits the values of each of the items as raw bytecodes. Constant
items are the simplest - they result in a single byte of raw data (the lower 8 bits of the

constant value). For example, the API file defines the following inline function:

voi d d ear Message() { asm{ 0x90 }; }
Whenever Cl ear Message( ) is called by a program, the value 0x90 is emitted as a

bytecode.

Many API functions take arguments, and these arguments must be encoded into an
appropriate effective address for the bytecode interpreter. In the most general case, an
effective address contains a source code followed by a two byte value (least significant
byte first). Source codes are explained in the SDK documentation available from LEGO.
However, it is often desirable to encode the value in some other manner - for example to
use only a single byte value after the source code, omit the source code itself, or only
allow certain sources to be used. A restrictor may be used to control how the effective
address is formatted. A restrictor is a 32 bit constant value. The lower 24 bits form a

bitmask indicating which sources are valid (bit 0 should be set to allow source 0, etc).

Page 97



NQC Programmer's Guide

The upper 8 bits include formatting flags for the effective address. Note that when no
restrictor is specified, this is the same as using a restrictor of 0 (no restriction on sources,
and a format of source followed by two value bytes). The API file defines the following

constants which can be used to build restrictors:

#define _ ASM SMALL VALUE 0x01000000
#define _ ASM NO TYPE 0x02000000
#define _ ASM NO LOCAL 0x04000000

#if _ RCOX==
/] no restriction
#define __ ASMSRC BASIC O
#define _ ASM SRC EXT 0
#el se
#defi ne __ ASM SRC BASIC 0x000005
#defi ne _ ASM SRC EXT 0x000015
#endi f

The _ ASM SMALL_VALUE flag indicates that a one-byte value should be used instead of
a two-byte value. The __ASM NO TYPE flag indicates that the source code should be
omitted. The __ ASM NO _LOCAL flag specifies that local variables are not a legal source
for the expression. Note that the RCX2 firmware is less restrictive than the other
interpreters, thus the definition of __ASM SRC BASI Cand __ ASM SRC EXT are relaxed
in the RCX2 case. The API definition file for NQC contains numerous examples of using
restrictors within asm statement. If you are using a command-line version of NQC, you

can emit the API file by typing the following command:

ngc - api

4.2 Data Sources

The bytecode interpreters use different data sources to represent the various kinds of data

(constants, variables, random numbers, sensor values, etc). The specific sources depend

Page 98



NQC Programmer's Guide

to a certain extent on which device you are using and are described in the SDK

documentation available from LEGO.

NQC provides a special operator to represent a data source:

@ const ant
The value of this expression is the data source described by the constant. The lower 16
bits of the constant represent the data value, and the next 8 bits are the source code. For
example, the source code for a random number is 4, so the expression for a random

number between 0 and 9 would be:

@x40009
The NQC API file defines a number of macros which make the use of the @ operator

transparent to the programmer. For example, in the case of random numbers:

#defi ne Randon{n) @ 0x40000 + (n))
Note that since source 0 is the global variable space, the global storage locations can be
referenced by number: @ refers to storage location 0. If for some reason you need
explicit control over where variables are being stored, then you should use #pr agna
r eser ve to instruct NQC not to use those storage locations, and then access them
manually with the @ operator. For example, the following code snippet reserves location
0 and creates a macro for it called x.

#pragna reserve 0

#define x (@)
Because of how sensors have been implemented it is necessary to convert the sensor's
data source into a sensor index for use in macros such as SensorValueRaw(). The

__sensor expression can be used to do this:

#defi ne Sensor Val ueRaw(n) @0xc0000 + (__sensor(n)))

Page 99



