Exercise 6

Task 1

We generalize the definition on slide 121 in the following way: Let $\mathcal{H} \subseteq\{h \mid h: A \rightarrow B\}$ be a family of hash functions. We call \mathcal{H} a family of k-wise independent hash functions, if for all $a_{1}, \ldots, a_{k} \in A$ (pairwise different) and $b_{1}, \ldots, b_{k} \in B$ we have

$$
\operatorname{Prob}\left[\bigwedge_{i=1}^{k} h\left(a_{i}\right)=b_{i}\right]=1 /|B|^{k}
$$

for a randomly chosen $h \in \mathcal{H}$ (uniform distribution). Show that

$$
\mathcal{H}=\left\{h_{x}: \mathbb{F}_{p} \rightarrow \mathbb{F}_{p} \mid h_{x}(a)=\sum_{i=0}^{k-1} x_{i} a^{i}, x=\left(x_{0}, \ldots, x_{k-1}\right) \in \mathbb{F}_{p}^{k}\right\}
$$

is such a k-wise independent family if $k \leq p$.
Task 2 (AMS algorithm)
Consider the stream $S=(101,011,010,111,011,101,000,001)$ and the corresponding set A. Approximate the cardinality of A by using the hash functions $h_{x, y}(u)=x u+y$ over $\mathbb{F}_{2^{3}}$ with

1. $x=101$ and $y=001$,
2. $x=100$ and $y=101$.

Hint: You can use that + over the field $\mathbb{F}_{2^{3}}$ works like a bitwise XOR and $x \cdot u$ is given by the following table:

u	000	001	010	011	100	101	110	111
$100 \cdot u$	000	100	011	111	110	010	101	001
$101 \cdot u$	000	101	001	100	010	111	011	110

Task 3 (Average height of binary search trees)
(a) Write down all binary search trees (BSTs) with 4 nodes.
(b) Compute the average height of a BST with 4 nodes (uniform distribution).
(c) Compute the expected value $E\left[H_{4}\right]$ (slide 153).

