Exercise 2

Task 1

Which of the following problems are decidable, and which of them are recursively enumerable?
(a) Checking whether a formula F of predicate logic is neither valid nor unsatisfiable,
(b) checking whether a formula F of propositional logic (Aussagenlogik) is valid,
(c) checking whether a formula F of predicate logic without any existential quantifiers is satisfiable,
(d) checking whether a formula F of predicate logic without any existential quantifiers and universal quantifiers is satisfiable.

Task 2

Let ($\mathbb{N},+, \cdot$) be a structure, where

- \mathbb{N} denotes the universe of the structure,
- + und • are binary function symbols, interpreted as the addition and multiplication of natural numbers,
- the binary relation $=$ denotes equality of two natural numbers.

Find formulas of predicate logic for the following statements:
(a) x is a prime number (use a free variable x).
(b) z is the greatest common divisor of x and y (use free variables x, y, z).
(c) x and y are coprime (use free variables x and y).
(d) There is no largest prime number.
(e) Every number except for 1 is the product of a prime number and a natural number.
(f) Every prime number except for 2 is odd.
(g) Every even number which is greater than 2 is a sum of two prime numbers (Goldbach's conjecture).
(h) There are infinitely many prime numbers p, such that $p+2$ is a prime number as well.

