Exercise 1

Task 1. Given the alphabet $\Sigma=\{0,1\}$ and special symbol \#, construct the following machines:

1. A Turing machine which decides the language consisting of palindromes over Σ.
2. A Turing machine that, once started, erases all the 1's from the head backwards, until it finds another \#.

Task 2. In the definition of the class \mathbf{P} one can replace the Turing machine model by more practical models of computation. Consider the following definition of a simple $R A M$ machine model:

There exists a memory formed by cells, each storing a natural number m_{i} and indexed by a natural number $i \geq 0$. A program is a sequence of instructions L_{l}, numbered on lines $l \geq 1$. The instruction on each line can be:

1. SET (i, a), which assigns $m_{i} \leftarrow a$, where a is constant.
2. $\operatorname{MOV}(i, j)$, which assigns $m_{i} \leftarrow m_{j}$.
3. SUM (i, j), which assigns $m_{i} \leftarrow m_{i}+m_{j}$.
4. SUB (i, j), which assigns $m_{i} \leftarrow \max \left(0, m_{i}-m_{j}\right)$.
5. IfZ (i, l), which transfers control to line L_{l} if $m_{i}=0$, where l is a constant.

In all instructions, i (similarly j) can be a single number (representing a fixed cell m_{i}), or also in the form $* i$, for a constant i, where i is now the address of the cell of interest $\left(m_{i}\right)$.
Control begins at line L_{1}, and after executing L_{l}, it moves to line L_{l+1}, except possibly in the case of IfZ. Input and output are stored in memory at agreed-upon positions. A non-accessed cell contains the value zero. Execution terminates upon reaching the first non-existent line.

Describe how a Turing Machine TM could simulate the $R A M$ machine from above. Hint: In the lecture we defined a single-tape TM, but one could use any number of tapes because a single-tape TM can simulate a k-tape TM. Therefore, feel free using more than one tape in your description if that helps.

Task 3. In the lecture we saw the probability amplification (Slide 13) as follows:

1. Run the machine $M k$ times with independently chosen random strings $y_{1}, \ldots, y_{k} \in\{0,1\}^{r(n)}$
2. At the end the input x is accepted if $\left\langle x, y_{i}\right\rangle \in L(M)$ for at least $k / 2$ many $i \in[1, k]$

Show that the error probability of this algorithm is $2^{-\Theta(k)}$.
Hint: Use the Chernoff bound.
Task 4. 1. Show that If L_{1} and L_{2} belong to NP then also $L_{1} \cup L_{2}$ and $L_{1} \cap L_{2}$ belong to NP.
2. Suppose that $L_{1} \leq L_{2}$ and $\mathbf{P} \neq \mathbf{N P}$. Answer and briefly justify
(a) If L_{1} is in \mathbf{P}, L_{2} is in \mathbf{P} ?
(b) If L_{2} is in \mathbf{P}, L_{1} is in \mathbf{P} ?
(c) if L_{1} is in NP-Complete, is L_{2} NP-Complete?
(d) if L_{2} is in NP-Complete, is L_{1} NP-Complete?
(e) if $L_{2} \leq L_{1}$, are L_{1} and L_{2} NP-Complete?

