Exercise 1

Task 1. Given the alphabet $\Sigma = \{0, 1\}$ and special symbol #, construct the following machines:

- 1. A Turing machine which decides the language consisting of palindromes over Σ .
- 2. A Turing machine that, once started, erases all the 1's from the head backwards, until it finds another #.

Task 2. In the definition of the class \mathbf{P} one can replace the Turing machine model by more practical models of computation. Consider the following definition of a simple RAM machine model:

There exists a memory formed by cells, each storing a natural number m_i and indexed by a natural number $i \ge 0$. A program is a sequence of instructions L_l , numbered on lines $l \ge 1$. The instruction on each line can be:

- 1. SET (i, a), which assigns $m_i \leftarrow a$, where a is constant.
- 2. MOV (i, j), which assigns $m_i \leftarrow m_j$.
- 3. SUM (i, j), which assigns $m_i \leftarrow m_i + m_j$.
- 4. SUB (i, j), which assigns $m_i \leftarrow \max(0, m_i m_j)$.
- 5. If Z(i, l), which transfers control to line L_l if $m_i = 0$, where l is a constant.

In all instructions, i (similarly j) can be a single number (representing a fixed cell m_i), or also in the form *i, for a constant i, where i is now the address of the cell of interest (m_i) .

Control begins at line L_1 , and after executing L_l , it moves to line L_{l+1} , except possibly in the case of IfZ. Input and output are stored in memory at agreed-upon positions. A non-accessed cell contains the value zero. Execution terminates upon reaching the first non-existent line.

Describe how a Turing Machine TM could simulate the RAM machine from above. Hint: In the lecture we defined a single-tape TM, but one could use any number of tapes because a single-tape TM can simulate a k-tape TM. Therefore, feel free using more than one tape in your description if that helps. **Task 3.** In the lecture we saw the probability amplification (Slide 13) as follows:

- 1. Run the machine M k times with independently chosen random strings $y_1, ..., y_k \in \{0, 1\}^{r(n)}$
- 2. At the end the input x is accepted if $\langle x, y_i \rangle \in L(M)$ for at least k/2 many $i \in [1, k]$

Show that the error probability of this algorithm is $2^{-\Theta(k)}$. Hint: Use the Chernoff bound.

- **Task 4.** 1. Show that If L_1 and L_2 belong to **NP** then also $L_1 \cup L_2$ and $L_1 \cap L_2$ belong to **NP**.
 - 2. Suppose that $L_1 \leq L_2$ and $\mathbf{P} \neq \mathbf{NP}$. Answer and briefly justify
 - (a) If L_1 is in **P**, L_2 is in **P**?
 - (b) If L_2 is in **P**, L_1 is in **P**?
 - (c) if L_1 is in **NP**-Complete, is L_2 **NP**-Complete?
 - (d) if L_2 is in **NP**-Complete, is L_1 **NP**-Complete?
 - (e) if $L_2 \leq L_1$, are L_1 and L_2 **NP**-Complete?