Exercise 2

Task 1. If $|x\rangle$ is a unit vector and $\left\{\left|x_{1}\right\rangle, \ldots,\left|x_{d}\right\rangle\right\}$ an orthonormal base then $|x\rangle=\sum_{i=1}^{d} \alpha_{i}\left|x_{i}\right\rangle$ for unique $\alpha_{1}, \ldots, \alpha_{d} \in \mathbb{C}$ with $\sum_{i=1}^{d}\left|\alpha_{i}\right|^{2}=1$.

Task 2. Let f be a linear mapping and let $\left\{\left|x_{1}\right\rangle, . .,\left|x_{d}\right\rangle\right\}$ and $\left\{\left|y_{1}\right\rangle, \ldots\left|y_{d}\right\rangle\right\}$ be two bases of \mathbb{C}^{d}. Let A (resp., B) be the matrix for f in the basis $\left\{\left|x_{1}\right\rangle, . .,\left|x_{d}\right\rangle\right\}$ (resp., $\left\{\left|y_{1}\right\rangle, \ldots\left|y_{d}\right\rangle\right\}$).
Then, there is an invertible matrix $C \in \mathbb{C}^{d \times d}$ such that $B=C^{-1} A C$.
Find the matrix C explicitly.
Task 3. The trace of a matrix $\operatorname{tr}(A)$ is defined as the sum of the diagonal entries:

$$
\operatorname{tr}(A)=\sum_{i=1}^{d} A_{i, i}
$$

then, prove the following important properties:

- $\operatorname{tr}(A+B)=\operatorname{tr}(A)+\operatorname{tr}(B)$
- $\operatorname{tr}(\alpha A)=\alpha \cdot \operatorname{tr}(A)$
- $\operatorname{tr}(A B)=\operatorname{tr}(B A)$

Task 4. If Π is any projector $\left(\Pi^{2}=\Pi\right)$ find a subspace S with $\Pi=\Pi_{S}$.
Task 5. Calculate the eigenvalues of the Pauli matrices

$$
\begin{aligned}
\sigma_{x} & =\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
\sigma_{y} & =\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \\
\sigma_{z} & =\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
\end{aligned}
$$

Task 6. Prove that for every matrix $A \in \mathbb{C}^{d \times d}$ the matrix $A^{\dagger} A$ is positive semi-definite.

Task 7. Let A and B be unitary Hermitian positive definite projectors, then $A \otimes B$ is an unitary Hermitian positive definite projector.

