Übungsblatt 1

Aufgabe 1.

Seien A, B und C beliebige Teilmengen einer Grundmenge M. Beweisen oder widerlegen Sie:

- $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$
- $A \cup (B \setminus C) = (A \cup B) \setminus C$
- $(A \cup B) \cap (\overline{B} \cup C) \subseteq A \cup C$
- $(A \times B) = (C \times B) \Rightarrow A = C$

Aufgabe 2.

Sei $\Sigma = \{a, b, c\}$ und $R = \{(a, b), (a, c), (b, c)\}$ eine Relation über Σ . Geben Sie den reflexiven Abschluss, den symmetrischen Abschluss sowie den transitiven Abschluss von R an. Geben Sie eine Äquivalenzrelation an, die R enthält.

Aufgabe 3.

Seien $L, L_1, L_2 \subseteq \Sigma^*$ drei Sprachen über dem Alphabet Σ . Dann ist:

- $L_1 \cdot L_2 = \{uv \mid u \in L_1 \land v \in L_2\}$ (die Konkatenation der Sprachen L_1 und L_2)
- $L^0 = \{\epsilon\}, L^1 = L \text{ und } L^{n+1} = L \cdot L^n \text{ für } n \geq 0$
- $L^* = \bigcup_{n\geq 0} L^n = \{w_1 \dots w_n \mid w_1, \dots, w_n \in L, n \geq 0\}$ (die Sternmenge oder Kleene-Iteration von L)
- $L^+ = \bigcup_{n>1} L^n = \{w_1 \dots w_n \mid w_1, \dots, w_n \in L, n \ge 1\}.$
- (a) Sei $L_1 = \{0, 11\}$ und $L_2 = \{\epsilon, 010, 111, 01\}$. Geben Sie $L_1 \cdot L_2$ und L_1^* an.
- (b) Seien $L_1, L_2 \subseteq \Sigma^*$. Geben Sie eine Sprache C abhängig von L_1 und L_2 an, so dass $C = (L_1 \cdot C) \cup L_2$ gilt.
- (c) Zeigen Sie, dass $(L_1 \cup L_2)^* = (L_1^* \cdot L_2^*)^*$ gilt.