Übungsblatt 7

Aufgabe 1.

Sei $L = \{ww \mid w \in \{a, b\}^*\}$. Beweisen Sie, dass L nicht regulär ist.

Aufgabe 2. Sei $L = \{ab^n \mid n \ge 1\}.$

- (a) Geben Sie den Minimalautomaten (bis auf Umbenennung der Zustände) an.
- (b) Beweisen Sie, dass Ihr Minimalautomat wirklich minimal ist, indem Sie zeigen, dass der Index der Relation R_L gleich der Anzahl der Zustände Ihres Automaten ist.
- (c) Begründen Sie kurz, dass ein NFA, der L akzeptiert mindestens drei Zustände braucht.
- (d) Geben Sie zwei verschiedene NFA (nicht durch Umbenennung der Zustände) mit drei Zuständen an, die L akzeptieren.

Aufgabe 3. Sei $\Sigma = \{a, b\}$. Gegeben ist der DFA $M = (Z, \Sigma, \delta, 1, E)$ mit $Z = \{1, 2, 3, 4, 5, 6, 7\}, E = \{7\}$ und

,	J /			
	δ	a	b	
	1	2	4	
	2	7	4	
	3	5	3	
	4	5	$\boxed{4}$	
	5	7	1	
	6	7	3	
	7	7	7	

- (a) Zeichnen Sie M.
- (b) Verwenden Sie den "Algorithmus Minimalautomat" (Skript Folie 132), um den Minimalautomaten für die Sprache L(M) zu erhalten. Beachten Sie hierbei die Hinweise auf Skript Folie 137.
- (c) Zeichnen Sie den in (b) erhaltenen Automaten.

- **Aufgabe 4.** (a) Beweisen Sie, dass $L_Q = \{a^n \mid n \text{ ist Quadratzahl}\}$ nicht regulär ist.
- (b) Beweisen Sie, dass $L_P = \{a^p \mid p \text{ ist Primzahl}\}$ nicht regulär ist.

Aufgabe 5. Beweisen Sie, dass es eine nicht reguläre Sprache L gibt, so dass $L \cdot L$ regulär ist.