Übungsblatt 9

Aufgabe 1.

- 1. Zeigen Sie, dass jede unäre Sprache eine polynomielle Schaltkreisfamilie besitzt.
- 2. Zeigen Sie, dass es nichtentscheidbare Sprachen gibt, die polynomielle Schaltkreise besitzen (Vorlesung Folie 187).

Aufgabe 2. Zeigen Sie: Für jede monotonsche boolsche Funktion

$$f: \{0,1\}^n \to \{0,1\}$$

gibt es einen monotonen Schaltkreis mit $2^{O(n)}$ vielen Gattern, der f berechnet (Vorlesung Folie 188).

Aufgabe 3 (CLIQUE zu Schaltkreis). Geben Sie einen monotonen Schaltkreis an, der entscheidet, ob ein Graph mit vier Knoten eine Clique der Größe drei hat.

Hinweis. Definieren Sie die Eingangsbits via "Es gibt eine Kante von Knoten u zu Knoten v" für die verschiedenen Knotenpaare des Graphen.

Aufgabe 4. Zeigen Sie folgenden Satz: Für jedes n > 1 gibt es eine boolesche Funktion $f: \{0,1\}^n \to \{0,1\}$, der durch keinen Schaltkreis C der Größe $\frac{2^n}{10n}$ berechnet werden kann.