Exercise 1

Task 1

Prove or disprove the following statements:
(a) $n \log n \in \mathcal{O}\left(n^{2}\right)$
(d) $n-\log n \in o(n)$
(b) $n^{2} \in \mathcal{O}(n)$
(e) $2+(-1)^{n} \in \Theta(1)$
(c) $n^{n} \in \Omega\left(2^{n}\right)$
(f) $n!\in \omega\left(2^{n}\right)$

Task 2

Let $f: \mathbb{N} \rightarrow \mathbb{N}$ with $f(n) \in \Theta(n)$. Prove or disprove the following statements:
(a) $f(n)^{k} \in \Theta\left(n^{k}\right)$ for all $k \in \mathbb{N}, k \geq 1$
(b) $2^{f(n)} \in \Theta\left(2^{n}\right)$

Task 3

Use the Master Theorem to determine the asymptotic growth of the following functions:
(a) $T_{1}(n)=7 \cdot T_{1}\left(\frac{n}{2}\right)+4 n$
(d) $T_{4}(n)=8 \cdot T_{4}\left(\frac{n}{2}\right)+n^{3}$
(b) $T_{2}(n)=7 \cdot T_{2}\left(\frac{n}{2}\right)+1000 n^{2}$
(e) $T_{5}(n)=6 \cdot T_{5}\left(\frac{n}{3}\right)+n^{3}$
(c) $T_{3}(n)=8 \cdot T_{3}\left(\frac{n}{2}\right)+n^{2}$
(f) $T_{6}(n)=64 \cdot T_{6}\left(\frac{n}{8}\right)+n^{2}$

Task 4

The algorithm Insertion Sort sorts an array a_{1}, \ldots, a_{m} in the following way: From $i=0$ to $i=m-1$ it assumes that a_{1}, \ldots, a_{i} has already been sorted. It then sorts a_{1}, \ldots, a_{i+1} by putting a_{i+1} in the correct position, comparing a_{i+1} to every element of a_{1}, \ldots, a_{i}.
(a) Give the recurrence equation for the function $T(n)$ which is the number of comparisons needed for an input array of n elements.
(b) Why can you not apply the Master Theorem to solve the recurrence equation?
(c) Solve the recurrence equation manually.
(d) Give a function $f: \mathbb{N} \rightarrow \mathbb{N}$ of the form $f(n)=n^{k}$ for some $k \in \mathbb{N}$ such that $T \in \Theta(f)$.

