Exercise 2

Task 1

Sort the array $[2,8,13,4,7,16,3,12]$ using Mergesort.

Task 2

Calculate 2063•3201 using the algorithm of Karatsuba. You do not have to use base 2.

Task 3

Use the algorithm of Strassen to calculate the following matrix product:

$$
\left(\begin{array}{cc}
3 & -2 \\
1 & 0
\end{array}\right) \cdot\left(\begin{array}{cc}
1 & 2 \\
-1 & 1
\end{array}\right)
$$

Task 4

[1] Professor Caesar wishes to develop a matrix-multiplication algorithm that is asymptotically faster than Strassen's algorithm. His algorithm will use the divide-and-conquer method, dividing each matrix into pieces of size $n / 4 \times n / 4$, and the divide and combine steps together will take $\Theta\left(n^{2}\right)$ time. He needs to determine how many subproblems his algorithm has to create in order to beat Strassen's algorithm. If his algorithm creates a subproblems then the recurrence for the running time $T(n)$ becomes $a T(n / 4)+\Theta\left(n^{2}\right)$. What is the largest integer value for a for which Professor Caesar's algorithm would be asymptotically faster than Strassen's algorithm?

References

[1] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

