Exercise 6

Task 1

Construct an optimal binary search tree for the following elements v with probabilities $\gamma(v)$.

v	1	2	3	4	5	6	7
$\gamma(v)$	0.18	0.22	0.15	0.1	0.06	0.04	0.25

Task 2

Assume we want to construct an optimal binary search tree using the following greedy algorithm: Choose an element v for which $\gamma(v)$ is maximal as the root node and then continue recursively. Show that this approach does not always yield an optimal binary search tree.

Task 3

Assume we have a rod of length $n \in \mathbb{N}_{+}$that can be cut into smaller pieces, e.g. a rod of length 3 can be cut at zero, one or two points, yielding rods of lengths [3], [1, 2], [2, 1] or $[1,1,1]$. More generally, a rod cut is a sequence of positive lengths $\left[x_{1}, \ldots, x_{m}\right] \in \mathbb{N}_{+}^{m}$ with $1 \leq m \leq n$ and $\sum_{i=1}^{m} x_{i}=n$. Each rod length is assigned a price $p:\{1, \ldots, n\} \rightarrow \mathbb{N}$. The price of a cut is $\sum_{i=1}^{m} p\left(x_{i}\right)$. Use dynamic programming to implement an algorithm that runs in polynomial which finds a way to cut the rod such that the price is maximized.

Task 4

Let $X=\left(x_{1}, \ldots, x_{m}\right)$ and $Y=\left(y_{1}, \ldots, y_{n}\right)$ be two sequences. X is a subsequence of Y if there are indices $1 \leq i_{1}<i_{2}<\cdots<i_{m} \leq n$ such that for all $1 \leq j \leq m$ it holds that $x_{j}=y_{i_{j}}$.
Use dynamic programming to implement an algorithm that runs in polynomial time which, given two sequences X and Y, computes the length of the longest common subsequence of X and Y.

