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Basics

Landau Symbols

Let f , g : N → N be functions.

g ∈ O(f ) if

∃c > 0 ∃n0 ∀n ≥ n0 : g(n) ≤ c · f (n).
In other words: g is not growing faster than f .

g ∈ o(f ) if

∀c > 0 ∃n0 ∀n ≥ n0 : g(n) ≤ c · f (n).
In other words: g is growing strictly slower than f .

g ∈ Ω(f ) ⇔ f ∈ O(g)
In other words: g is growing at least as fast than f .

g ∈ ω(f ) ⇔ f ∈ o(g)
In other words: g is growing strictly faster than f .

g ∈ Θ(f ) ⇔ (f ∈ O(g) ∧ g ∈ O(f ))
In other words: g and f have the same asymptotic growth.
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Basics

Jensen’s Inequality

Let f : D → R be a function, where D ⊆ R is an interval.

f is convex if for all x , y ∈ D and all 0 ≤ λ ≤ 1,
f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y).

f is concave if for all x , y ∈ D and all 0 ≤ λ ≤ 1,
f (λx + (1− λ)y) ≥ λf (x) + (1− λ)f (y).

Jensen’s inequality

If f is concave, then for all x1, . . . , xn ∈ D and all λ1, . . . , λn ≥ 0 with
λ1 + · · · + λn = 1:

f

( n
∑

i=1

λi · xi
)

≥
n
∑

i=1

λi · f (xi ).

If f is convex, then for all x1, . . . , xn ∈ D and all λ1, . . . , λn ≥ 0 with
λ1 + · · · + λn = 1:

f

( n
∑

i=1

λi · xi
)

≤
n
∑

i=1

λi · f (xi ).
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Basics

Complexity measures

We describe the running time of an algorithm A as a function in the input
length n.

Standard: Worst case complexity

Maximal running time on all inputs of length n:

tA,worst(n) = max{tA(x) | x ∈ Xn},

where Xn = {x | |x | = n}.
Criticism: Unrealistic, since in practise worst-case inputs might not arise.
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Basics

Complexity measures

Alternative: average case complexity.

Needs a probability distribution on Xn.

Standard: uniform distribution, i.e., Prob(x) = 1
|Xn|

.

Average running time:

tA,∅(n) =
∑

x∈Xn

Prob(x) · tA(x)

=
1

|Xn|
∑

x∈Xn

tA(x) (for uniform distribution)

Problem: Difficult to analyse

Example: quicksort

Worst case number of comparisons of quicksort: tQ(n) ∈ Θ(n2).

Average number of comparisons: tQ,∅(n) = 1.38n log n
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Basics

Machine models: Turing machines

The Turing machine (TM) is a very simple and mathematically easy to
define model of computation.

But: memory access (i.e., moving head to a certain symbol on the tape) is
very time-consuming on a Turing machine and not realistic.
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Basics

Machine models: Register machine (RAM)

RAM

IC ✲ Program

Storage

0 = Akku

1 = 1.Reg

2 = 2.Reg

3 = 3.Reg

4 = 4.Reg

.

.

.

x1 x2 x3 x4 x5 x6 x7 x8 x9 . . .
Input READ ONLY

y1 y2 y3 y4 y5 y6 y7 y8 y9 . . .
Output WRITE ONLY

Assumption: Elementary operations (e.g., the arithmetic operations
+,×,−, DIV, comparison, bitwise AND and OR) need a single
computation step.
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Divide & Conquer

Overview

Solving recursive equations

Mergesort

Fast multiplication of integers

Matrix multiplication a la Strassen
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Divide & Conquer

Divide & Conquer: basic idea

As a first major design principle for algorithms, we will see Divide &
Conquer:

Basic idea:

Divide the input into several parts (usually of roughly equal size)

Solve the problem on each part separately (recursion).

Construct the overall solution from the sub-solutions.
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Divide & Conquer

Recursive equations

Divide & Conquer leads in a very natural way to recursive equations.

Assumptions:

Input of length n will be split into a many parts of size n/b.

Dividing the input and merging the sub-solutions takes time g(n).

For an input of length 1 the computation time is g(1).

This leads to the following recursive equation for the computation time:

t(1) = g(1)

t(n) = a · t(n/b) + g(n)

Technical probem: What happens, if n is not divisible by b?

Solution 1: Replace n/b by ⌈n/b⌉.
Solution 2: Assume that n = bk for some k ≥ 0.

If this does not hold: Stretch the input (for every n there exists a
k ≥ 0 with n ≤ bk < bn).
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Divide & Conquer

Solving simple recursive equations

Theorem 1

Let a, b ∈ N and b > 1, g : N −→ N and assume the following equations:

t(1) = g(1)

t(n) = a · t(n/b) + g(n)

Then for all n = bk (i.e., k = logb(n)):

t(n) =

k
∑

i=0

ai · g
( n

bi

)

.

Proof: Induction over k .

k = 0 : We have n = b0 = 1 and t(1) = g(1).
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Divide & Conquer

Solving simple recursive equations

k > 0 : By induction we have

t
(n

b

)

=

k−1
∑

i=0

ai · g
( n

bi+1

)

.

Hence:

t(n) = a · t
(n

b

)

+ g(n)

= a

(

k−1
∑

i=0

ai · g
( n

bi+1

)

)

+ g(n)

=

k
∑

i=1

ai · g
( n

bi

)

+ a0g
( n

b0

)

=
k
∑

i=0

ai · g
( n

bi

)

.
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Divide & Conquer

Master theorem I

Theorem 2 (Master theorem I)

Let a, b, c , d ∈ N with b > 1 and assume that

t(1) = d

t(n) = a · t(n/b) + d · nc

Then, for all n of the form bk with k ≥ 0 we have:

t(n) ∈











Θ(nc) if a < bc

Θ(nc log n) if a = bc

Θ(n
log a
log b ) if a > bc

Remark: log a
log b = logb a. If a > bc , then logb a > c .
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Divide & Conquer

Proof of the master theorem I

Let g(n) = dnc . By Theorem 1 we have the following for k = logb n:

t(n) = d · nc ·
k
∑

i=0

( a

bc

)i

.

Case 1: a < bc

t(n) ≤ d · nc ·
∞
∑

i=0

( a

bc

)i

= d · nc · 1

1− a
bc

∈ O(nc).

Moreover, t(n) ∈ Ω(nc), which implies t(n) ∈ Θ(nc).

Case 2: a = bc

t(n) = (k + 1) · d · nc ∈ Θ(nc log n).
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Divide & Conquer

Proof of the master theorem I

Case 3: a > bc

t(n) = d · nc ·
k
∑

i=0

( a

bc

)i

= d · nc · (
a
bc
)k+1 − 1
a
bc

− 1

∈ Θ

(

nc ·
( a

bc

)logb(n)
)

= Θ

(

nc · alogb(n)
bc logb(n)

)

= Θ
(

alogb(n)
)

= Θ
(

blogb(a)·logb(n)
)

= Θ
(

nlogb(a)
)
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Divide & Conquer

Stretching the input is ok

Stretching the input length to a b-power does not change the statement of
the master theorem I.

Formally: Assume that the function t satisfies the following recursive
equation

t(1) = d

t(n) = a · t(n/b) + d · nc

for all b-powers n.

Define the function s : N → N by s(n) = t(m), where m is the smallest
b-power with m ≥ n ( n ≤ m ≤ bn).

With the master theorem I we get

s(n) = t(m) ∈











Θ(mc) = Θ(nc) if a < bc

Θ(mc logm) = Θ(nc log n) if a = bc

Θ(m
log a
log b ) = Θ(n

log a
log b ) if a > bc
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Divide & Conquer

Master theorem II

Theorem 3 (Master theorem II)

Let r > 0,
∑r

i=0 αi < 1 and assume that for a constant c,

t(n) ≤
(

r
∑

i=0

t(⌈αin⌉)
)

+ c · n.

Then we have t(n) ∈ O(n).
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Divide & Conquer

Proof of the master theorem II

Choose ε > 0 and n0 > 0 such that
r
∑

i=0

⌈αin⌉ ≤ (
r
∑

i=0

αi) · n + (r + 1) ≤ (1− ε)n

for all n ≥ n0.

Choose γ such that c ≤ γε and t(n) ≤ γn for all n < n0.

By induction we get for all n ≥ n0:

t(n) ≤
(

r
∑

i=0

t(⌈αin⌉)
)

+ cn

≤
(

r
∑

i=0

γ⌈αin⌉
)

+ cn (induction)

≤ (γ(1 − ε) + c)n

≤ γn
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Divide & Conquer Mergesort

Mergesort

We want to sort an array A of length n, where n = 2k for some k ≥ 0.

Algorithm mergesort

procedure mergesort(l , r)
var m : integer;
begin

if (l < r) then
m := (r + l) div 2;
mergesort(l ,m);
mergesort(m + 1, r);
merge(l ,m, r);

endif
endprocedure

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 20 / 161



Divide & Conquer Mergesort

Mergesort

Algorithm merge

procedure merge(l ,m, r)
var i , j , k : integer;
begin

i = l ; j := m + 1;
for k := 1 to r − l + 1 do

if i = m + 1 or (i ≤ m and j ≤ r and A[j] ≤ A[i ]) then
B [k] := A[j]; j := j + 1

else
B [k] := A[i ]; i := i + 1

endif
endfor
for k := 0 to r − l do

A[l + k] := B [k + 1]
endfor

endprocedure
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Divide & Conquer Mergesort

Mergesort

Note: merge(l ,m, r) works in time O(r − l + 1).

Running time: tms(n) = 2 · tms(n/2) + d · n for a constant d .

Master theorem I: tms(n) ∈ Θ(n log n).

We will see later that O(n log n) is asymptotically optimal for sorting
algorithms that are only based on the comparison of elements.

Drawback of Mergesort: no in-place sorting algorithm

A sorting algorithm works in-place, if at every time instant only a constant
number of elements from the input array A is stored outside of A.

We will see in-place sorting algorithms with a running of O(n log n).
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Divide & Conquer Multiplication of natural numbers

Multiplication of natural numbers

We want to multiply two n-bit natural numbers, where n = 2k for some
k ≥ 0.

School method: Θ(n2) bit operations.

Alternative approach:

r = A B

s = C D

Here, A (C ) are the first n/2 bits and B (D) are the last n/2 bits of r (s),
i.e.,

r = A 2n/2 + B ; s = C 2n/2 + D

r s = AC 2n + (AD + B C ) 2n/2 + B D

Master theorem I: tmult(n) = 4 · tmult(n/2) + Θ(n) ∈ Θ(n2)
No improvement!
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Divide & Conquer Multiplication of natural numbers

Fast multiplication by A. Karatsuba, 1960

Compute recursively AC , (A − B)(D − C ) and BD.

Then, we get

rs = AC 2n + (A− B) (D − C ) 2n/2 + (B D + AC ) 2n/2 + B D

By the master theorem I, the total number of bit operations is:

tmult(n) = 3 · tmult(n/2) + Θ(n) ∈ Θ(n
log 3
log 2 ) = Θ(n1.58496...).

Using divide & conquer we reduced the exponent from 2 (school method)
to 1.58496... .
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Divide & Conquer Multiplication of natural numbers

How fast can we multiply?

In 1971, Arnold Schönhage and Volker Strassen presented an algorithm
which multiplies two n-bit number in time O(n log n log log n) on a
multitape Turing-machine.

The Schönhage-Strassen algorithm uses the so-called fast Fourier
transformation (FFT); see Algorithms II.

In practice, the Schönhage-Strassen algorithm beats Karatsuba’s algorithm
for numbers with approx. 10.000 digits.

In 2019, Harvey and van der Hoeven finally came up with a multiplication
algorithm running in time O(n log n).
https://hal.archives-ouvertes.fr/hal-02070778/document

https://web.maths.unsw.edu.au/~davidharvey/papers/nlogn/

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 25 / 161

https://hal.archives-ouvertes.fr/hal-02070778/document
https://web.maths.unsw.edu.au/~davidharvey/papers/nlogn/


Divide & Conquer Matrix multiplication

Matrix multiplication using naive divide & conquer

Let A = (ai ,j)1≤i ,j≤n and B = (bi ,j)1≤i ,j≤n be two (n × n)-matrices.

For the product matrix AB = (ci ,j)1≤i ,j≤n = C we have

ci ,j =
n
∑

k=1

ai ,kbk,j

 Θ(n3) scalar multiplications.

Divide & conquer: A,B are divided in 4 submatrices of roughly equal size.
Then, the product AB = C can be computed as follows:

(

A11

A21

A12

A22

) (

B11

B21

B12

B22

)

=

(

C11

C21

C12

C22

)
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Divide & Conquer Matrix multiplication

Matrix multiplication using naive divide-and-conquer

(

A11

A21

A12

A22

) (

B11

B21

B12

B22

)

=

(

C11

C21

C12

C22

)

where

C11 = A11B11 + A12B21

C12 = A11B12 + A12B22

C21 = A21B11 + A22B21

C22 = A21B12 + A22B22

We get

t(n) = 8 · t(n/2) + Θ(n2) ∈ Θ(n3).

No improvement!
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Divide & Conquer Matrix multiplication

Matrix multiplication by Volker Strassen (1969)

Compute the product of two 2× 2 matrices with 7 multiplications:

M1 := (A12 − A22)(B21 + B22)

M2 := (A11 + A22)(B11 + B22)

M3 := (A11 − A21)(B11 + B12)

M4 := (A11 + A12)B22

M5 := A11(B12 − B22)

M6 := A22(B21 − B11)

M7 := (A21 + A22)B11

C11 = M1 +M2 −M4 +M6

C12 = M4 +M5

C21 = M6 +M7

C22 = M2 −M3 +M5 −M7

Running time: t(n) = 7 · t(n/2) + Θ(n2).

Master theorem I (a = 7, b = 2, c = 2):

t(n) ∈ Θ(nlog2 7) = Θ(n2,81...) .
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Divide & Conquer Matrix multiplication

The story of fast matrix multiplication

Strassen 1969: n2,81...

Pan 1979: n2,796...

Bini, Capovani, Romani, Lotti 1979: n2,78...

Schönhage 1981: n2,522...

Romani 1982: n2,517...

Coppersmith, Winograd 1981: n2.496...

Strassen 1986: n2,479...

Coppersmith, Winograd 1987: n2.376...

Stothers 2010: n2,374...

Williams 2014: n2,372873...
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Sorting

Overview

Lower bounds for comparison-based sorting algorithms

Quicksort

Heapsort

Sorting in linearer time

Median computation
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Sorting Lower bound for comparison-based sorting algorithms

Comparison-based sorting algorithms

A sorting algorithm is comparison-based if the elements of the input array
belong to a data type that only supports the comparison of two elements.

We assume in the following considerations that the input array A[1, . . . , n]
has the following properties:

A[i ] ∈ {1, . . . , n} for all 1 ≤ i ≤ n.

A[i ] 6= A[j] for i 6= j

In other words: The input is a permutation of the list [1, 2, . . . , n].

The sorting algorithm has to sort this list.

Another point of view: The sorting algorithm has to compute the
permutation [i1, i2, . . . , in] such that A[ik ] = k for all 1 ≤ k ≤ n.

Example: On input [2, 3, 1] the output should be [3, 1, 2].
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Sorting Lower bound for comparison-based sorting algorithms

Lower bound for the worst case

Theorem 4

For every comparison-based sorting algorithm and every n there exists an
array of length n, on which the algorithm makes at least

n log2(n)− log2(e)n ≥ n log2(n)− 1, 443n

many comparisons.

Proof: We execute the algorithm on an array A[1, . . . , n] without knowing
the concrete values A[i ].

This yields a decision tree that can be constructed as follows:

Assume that the algorithm compares A[i ] and A[j] in the first step.

We label the root of the decision tree with i : j .

The left (right) subtree is obtained by continuing the algorithm under the
assumption that A[i ] < A[j] (A[i ] > A[j]).
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Sorting Lower bound for comparison-based sorting algorithms

Lower bound for the worst case

This yields a binary tree with n! many leaves because every input
permutation must lead to a different leaf.

Example: Here is a decision tree for sorting an array of length 3.

2 : 3

1 : 2 1 : 3

1, 2, 3 1 : 3

2, 1, 3 2, 3, 1

1, 3, 2 1 : 2

3, 1, 2 3, 2, 1
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Sorting Lower bound for comparison-based sorting algorithms

Lower bound for the worst case

Note: The depth (= max. number of edges on a path from the root to a
leaf) of the decision tree is the maximal number of comparisons of the
algorithm on an input array of length n.

A binary tree with N leaves has depth ≥ log2(N).

Stirling’s formula (we only need n! >
√
2πn(n/e)n) implies

log2(n!) ≥ n log2(n)− log2(e)n +Ω(log n) ≥ n log2(n)− 1, 443n.

Thus, there exists an input array for which the algorithm makes at least
n log2(n)− 1, 443n many comparisons.
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Sorting Lower bound for comparison-based sorting algorithms

Lower bound for the average case

A comparison-based sorting algorithm even makes n log2(n)− 2, 443n
many comparisons on almost all input permutations:

Theorem 5

For every comparison-based sorting algorithm the following holds: The
portion of all permutations on which the algorithm makes at least

log2(n!)− n ≥ n log2(n)− 2, 443n

many comparisons is at least 1− 2−n+1.

For the proof we need a simple lemma:

Lemma 6

Let A ⊆ {0, 1}∗ with |A| = N, and let 1 ≤ n < log2(N). Then, at least
(1− 2−n+1)N many words in A have length ≥ log2(N) − n.
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Sorting Lower bound for comparison-based sorting algorithms

Lower bound for the average case

Consider again the decision tree. It has n! leaves, and every leaf
corresponds to a permutation of the numbers {1, . . . , n}.
Thus, each of the n! many permutations can be represented by a word
over the alphabet {0, 1}:

0 means: go in the decision tree to the left child.

1 means: go in the decision tree to the right child.

Lemma 6  the decision tree has at least (1− 2−n+1)n! many root-leaf
paths of length ≥ log2(n!)− n ≥ n log2(n)− 2, 443n.
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Sorting Lower bound for comparison-based sorting algorithms

Lower bound for the average case

Corollary

Every comparison-based sorting algorithm makes on average at least
n log2(n)− 2, 443n many comparisons when sorting an array of length n
(for n large enough).

Proof: Due to Theorem 5 at least

(1− 2−n+1) · (log2(n!)− n) + 2−n+1 =

log2(n!)− n − log2(n!)− n − 1

2n−1
≥

n log2(n)− 2, 443n +Ω(log2 n)−
log2(n!)− n − 1

2n−1
≥

n log2(n)− 2, 443n

many comparisons are done in the average.
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Sorting Quicksort

Quicksort

The Quicksort-algorithm (Tony Hoare, 1962):

Choose an array-element p = A[i ] (the pivot element).

Partitioning: Permute the array such that on the left (resp., right) of
the pivot element p all elements are ≤ p (resp., > p) (needs n− 1
comparisons).

Apply the algorithm recursively to the subarrays to the left and right
of the pivot element.

Critical: choice of the pivot elements.

Running time is optimal, if the pivot element is the middle element of
the array (median).

Good choice in practice: median-out-of-three
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Sorting Quicksort

Partitioning

First, we present a procedure for partitioning a subarray A[ℓ, . . . , r ] with
respect to a pivot element P = A[p], where ℓ < r and ℓ ≤ p ≤ r .

The procedure returns an index m ∈ {ℓ, . . . , r} with the following
properties:

A[m] = P

A[k] ≤ P for all ℓ ≤ k ≤ m − 1

A[k] > P for all m + 1 ≤ k ≤ r
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Sorting Quicksort

Partitioning

Algorithm Partition

function partition(A[ℓ . . . r ] : array of integer, p : integer) : integer
begin

swap(p, r);
P := A[r ];
i := ℓ− 1;
for j := ℓ to r − 1 do

if A[j] ≤ P then
i := i + 1;
swap(i , j)

endif
endfor
swap(i + 1, r)
return i + 1

endfunction
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Sorting Quicksort

Partitioning

The following invariants hold before every iteration of the for-loop:

A[r ] = P

A[k] ≤ P for all ℓ ≤ k ≤ i

A[k] > P for all i + 1 ≤ k ≤ j − 1

Thus, the following holds before the return-statement:

A[k] ≤ P for all ℓ ≤ k ≤ i + 1

A[k] > P for all i + 2 ≤ k ≤ r

A[i + 1] = P

Note: partition(A[ℓ . . . r ]) makes r − ℓ many comparisons.

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 41 / 161



Sorting Quicksort

Quicksort

Algorithm Quicksort

procedure quicksort(A[ℓ . . . r ] : array of integer)
begin

if ℓ < r then
p := index of the median of A[ℓ], A[(ℓ+ r) div 2], A[r ];
m := partition(A[ℓ . . . r ], p);
quicksort(A[ℓ . . .m − 1]);
quicksort(A[m + 1 . . . r ]);

endif
endprocedure

Worst-case running time: O(n2).

The worst-case arises when after each call of partition(A[ℓ . . . r ], p), one of
the subarrays (A[ℓ . . .m − 1] or A[m + 1 . . . r ]) is empty.
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Sorting Quicksort

Quicksort: average case analysis

Average case analysis under the assumption that the pivot element is
chosen randomly.

Alternatively: Input array is chosen randomly.

Let Q(n) be the avergage number of comparisons for an input array of
length n.

Theorem 7

We have Q(n) = 2(n + 1)H(n) − 4n, where

H(n) :=
n
∑

k=1

1

k

is the n-th harmonic number.
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Sorting Quicksort

Quicksort: average case analysis

Proof:

For n = 0 we have Q(0) = 0 = 2 · 1 · 0− 4 · 0.
For n = 1 we have Q(1) = 0 = 2 · 2 · 1− 4 · 1.
For n ≥ 2 we have:

Q(n) = (n − 1) +
1

n

n
∑

i=1

[Q(i − 1) +Q(n − i)]

= (n − 1) +
2

n

n
∑

i=1

Q(i − 1)

Note:

(n − 1) = number of comparisons for partitioning.
Q(i − 1) +Q(n − i) = average number of comparisons for the
recursive sorting of the two subarrays.
The factor 1/n comes from the fact that every pivot element is
chosen with probability 1/n.
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Sorting Quicksort

Quicksort: average case analysis

We get:

nQ(n) = n(n− 1) + 2
n
∑

i=1

Q(i − 1)

Hence:

nQ(n)− (n − 1)Q(n − 1) = n(n − 1) + 2
n
∑

i=1

Q(i − 1)

−(n − 1)(n − 2)− 2

n−1
∑

i=1

Q(i − 1)

= n(n − 1)− (n − 2)(n − 1) + 2Q(n − 1)

= 2(n − 1) + 2Q(n − 1)

We obtain:

nQ(n) = 2(n − 1) + 2Q(n − 1) + (n − 1)Q(n − 1)

= 2(n − 1) + (n + 1)Q(n − 1)
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Sorting Quicksort

Quicksort: average case analysis

Dividing both sides by n(n + 1) gives:

Q(n)

n + 1
=

2(n − 1)

n(n + 1)
+

Q(n − 1)

n

Using induction on n we get:

Q(n)

n+ 1
=

n
∑

k=1

2(k − 1)

k(k + 1)

= 2
n
∑

k=1

(k − 1)

k(k + 1)

= 2
(

n
∑

k=1

k

k(k + 1)
−

n
∑

k=1

1

k(k + 1)

)
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Sorting Quicksort

Quicksort: average case analysis

Q(n)

n+ 1
= 2

[

n
∑

k=1

1

k + 1
−

n
∑

k=1

1

k(k + 1)

]

= 2

[

n
∑

k=1

2

k + 1
−

n
∑

k=1

1

k

]

= 2

[

2

(

1

n+ 1
+ H(n)− 1

)

− H(n)

]

= 2H(n) +
4

n + 1
− 4.
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Sorting Quicksort

Quicksort: average case analysis

Finally, we get for Q(n):

Q(n) = 2(n + 1)H(n) + 4− 4(n + 1)

= 2(n + 1)H(n) − 4n. �

One has H(n) − ln n ≈ 0,57721 . . . = Euler’s constant. Hence:

Q(n) ≈ 2(n + 1)(0,58 + ln n)− 4n

≈ 2n ln n− 2,8n ≈ 1,38n log n− 2,8n.

Theoretical optimum: log(n!) ≈ n log n − 1,44n;
In the average, quicksort is only 38% worse than the optimum.

An average analysis of the media-out-of-three method yields
1,18n log n − 2,2n.
It is in the average only 18% worse than the optimum.
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Sorting Heapsort

Heaps

Definition 8

A (max-)heap is an array a[1 . . . n] with the following properties:

a[i ] ≥ a[2i ] for all i ≥ 1 with 2i ≤ n

a[i ] ≥ a[2i + 1] for all i ≥ 1 with 2i + 1 ≤ n
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Sorting Heapsort

Heaps

Example:

16 14 10 8 7 9 3 2 4 1

1 2 3 4 5 6 7 8 9 10

16

14 10

8 7 9 3

2 4 1

1

2 3

4 5 6 7

8 9 10

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 50 / 161



Sorting Heapsort

Sinking process

In a first step we will permute the entries of the array a[1, . . . , n] such that
the heap condition is satisfied.

Assume that the subarray a[i + 1, . . . , n] already satisfies the heap
condition.

In order to enforce the heap condition also for i we let a[i ] sink:

x

y z

i

2i 2i + 1

With 2 comparisons one can compute max{x , y , z}.
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Sorting Heapsort

Sinking process

In a first step we will permute the entries of the array a[1, . . . , n] such that
the heap condition is satisfied.

Assume that the subarray a[i + 1, . . . , n] already satisfies the heap
condition.

In order to enforce the heap condition also for i we let a[i ] sink:

x

y z

i

2i 2i + 1

With 2 comparisons one can compute max{x , y , z}.
If x is the max., then the sinking process stops.
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Sorting Heapsort

Sinking process

In a first step we will permute the entries of the array a[1, . . . , n] such that
the heap condition is satisfied.

Assume that the subarray a[i + 1, . . . , n] already satisfies the heap
condition.

In order to enforce the heap condition also for i we let a[i ] sink:

x

y z

i

2i 2i + 1

With 2 comparisons one can compute max{x , y , z}.
If y is the max., then x and y are swapped and we continue at 2i .

y

x z

i

2i 2i + 1
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Sorting Heapsort

Sinking process

In a first step we will permute the entries of the array a[1, . . . , n] such that
the heap condition is satisfied.

Assume that the subarray a[i + 1, . . . , n] already satisfies the heap
condition.

In order to enforce the heap condition also for i we let a[i ] sink:

x

y z

i

2i 2i + 1

With 2 comparisons one can compute max{x , y , z}.
If z is the max., then x and z are swapped and we continue at 2i + 1.

z

y x

i

2i 2i + 1
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Sorting Heapsort

Reheap

Algorithm Reheap

procedure reheap(i , n: integer) (∗ i is the root ∗)
var m: integer;
begin

if i ≤ n/2 then
m := max{a[i ], a[2i ], a[2i + 1]}; (∗ 2 comparisons! ∗)
if (m 6= a[i ]) ∧ (m = a[2i ]) then

swap(i , 2i); (∗ swap x , y ∗)
reheap(2i , n)

elsif (m 6= a[i ]) ∧ (m = a[2i + 1]) then
swap(i , 2i + 1); (∗ swap x , z ∗)
reheap(2i + 1, n)

endif
endif

endprocedure
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Sorting Heapsort

Building the heap

Algorithm Build Heap

procedure build-heap(n: integer)
begin

for i :=
⌊

n
2

⌋

downto 1 do
reheap(i , n)

endfor
endprocedure

Invariant: Before the call of reheap(i , n) the subarray a[i + 1, . . . , n]
satisfies the heap condition.

Clearly, this hods for i =
⌊

n
2

⌋

.

Assume that the invariant holds for i .

Thus, the heap condition can only fail for i .

After the sinking process for a[i ], the heap condition also holds for i .
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Sorting Heapsort

Time analysis for building the heap

Theorem 9

Built-heap runs in time O(n).

Proof: Sinking of a[i ] needs 2 · (height of the subtree under a[i ]) many
comparisons.

We carry out the computation for n = 2k − 1.

Then we have a complete binary tree of height k − 1.

There are

20 trees of height k − 1,

21 trees of height k − 2,
...

2i trees of height k − 1− i ,
...

2k−1 trees of height 0.
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Sorting Heapsort

Time analysis for building the heap

Hence, building the heap needs at most

2 ·
k−1
∑

i=0

2i (k − 1− i) = 2 ·
k−1
∑

i=0

2k−1−i i

= 2k ·
k−1
∑

i=0

i · 2−i

≤ (n + 1) ·
∑

i≥0

i · 2−i

many comparisons.

Claim:
∑

j≥0 j · 2−j = 2

Proof of the claim: For every |z | < 1 we have

∑

j≥0

z j =
1

1− z
.
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Sorting Heapsort

Time analysis for building the heap

Taking derivations yields

∑

j≥0

j · z j−1 =
1

(1− z)2
,

and hence

∑

j≥0

j · z j = z

(1− z)2
.

Setting z = 1/2 yields
∑

j≥0

j · 2−j = 2.
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Sorting Heapsort

Standard Heapsort (W. J. Williams, 1964)

Algorithm Heapsort

procedure heapsort(n: integer)
begin

build-heap(n)
for i := n downto 2 do

swap(1, i);
reheap(1, i − 1)

endfor
endprocedure

Theorem 10

Standard Heapsort sorts an array with n elements and needs
2n log2 n+O(n) comparisons.
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Sorting Heapsort

Standard Heapsort

Proof:

Correctness: After build-heap(n), a[1] is the maximal element of the array.

This element will be moved with swap(1, n) to its correct position (n).

By induction, the subarray a[1, . . . , n − 1] will be sorted in the remaining
steps.

Running time: Building the heap needs O(n) comparison. Each of the
remaining n− 1 many reheap-calls needs at most 2 log2 n comparisons.
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Sorting Heapsort

Example for Standard Heapsort

1 2 3 4 5 6 7 8 9 10

10

9 8

6 5 7 3

2 4 1

1

2 3

4 5 6 7

8 9 10
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Sorting Heapsort

Example for Standard Heapsort

10

1 2 3 4 5 6 7 8 9 10

1

9 8

6 5 7 3

2 4

1

2 3

4 5 6 7

8 9
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Sorting Heapsort

Example for Standard Heapsort

10

1 2 3 4 5 6 7 8 9 10

9

1 8

6 5 7 3

2 4

1

2 3

4 5 6 7

8 9
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Sorting Heapsort

Example for Standard Heapsort

10

1 2 3 4 5 6 7 8 9 10

9

6 8

1 5 7 3

2 4

1

2 3

4 5 6 7

8 9
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Sorting Heapsort

Example for Standard Heapsort

10

1 2 3 4 5 6 7 8 9 10

9

6 8

4 5 7 3

2 1

1

2 3

4 5 6 7

8 9
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Sorting Heapsort

Example for Standard Heapsort

9 10

1 2 3 4 5 6 7 8 9 10

1

6 8

4 5 7 3

2

1

2 3

4 5 6 7

8
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Sorting Heapsort

Example for Standard Heapsort

9 10

1 2 3 4 5 6 7 8 9 10

8

6 1

4 5 7 3

2

1

2 3

4 5 6 7

8
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Sorting Heapsort

Example for Standard Heapsort

9 10

1 2 3 4 5 6 7 8 9 10

8

6 7

4 5 1 3

2

1

2 3

4 5 6 7

8
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Sorting Heapsort

Example for Standard Heapsort

8 9 10

1 2 3 4 5 6 7 8 9 10

2

6 7

4 5 1 3

1

2 3

4 5 6 7
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Sorting Heapsort

Example for Standard Heapsort

8 9 10

1 2 3 4 5 6 7 8 9 10

7

6 2

4 5 1 3

1

2 3

4 5 6 7
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Sorting Heapsort

Example for Standard Heapsort

8 9 10

1 2 3 4 5 6 7 8 9 10

7

6 3

4 5 1 2

1

2 3

4 5 6 7
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Sorting Heapsort

Example for Standard Heapsort

7 8 9 10

1 2 3 4 5 6 7 8 9 10

2

6 3

4 5 1

1

2 3

4 5 6
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Sorting Heapsort

Example for Standard Heapsort

7 8 9 10

1 2 3 4 5 6 7 8 9 10

6

2 3

4 5 1

1

2 3

4 5 6
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Sorting Heapsort

Example for Standard Heapsort

7 8 9 10

1 2 3 4 5 6 7 8 9 10

6

5 3

4 2 1

1

2 3

4 5 6
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Sorting Heapsort

Example for Standard Heapsort

6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1

5 3

4 2

1

2 3

4 5
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Sorting Heapsort

Example for Standard Heapsort

6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

5

1 3

4 2

1

2 3

4 5
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Sorting Heapsort

Example for Standard Heapsort

6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

5

4 3

1 2

1

2 3

4 5
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Sorting Heapsort

Example for Standard Heapsort

5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

2

4 3

1

1

2 3

4
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Sorting Heapsort

Example for Standard Heapsort

5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

4

2 3

1

1

2 3

4
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Sorting Heapsort

Example for Standard Heapsort

5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

4

2 3

1

1

2 3

4
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Sorting Heapsort

Example for Standard Heapsort

4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1

2 3

1

2 3

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 59 / 161



Sorting Heapsort

Example for Standard Heapsort

4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

3

2 1

1

2 3
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Sorting Heapsort

Example for Standard Heapsort

3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1

2

1

2
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Sorting Heapsort

Example for Standard Heapsort

3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

2

1

1

2
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Sorting Heapsort

Example for Standard Heapsort

2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1
1
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Sorting Heapsort

Example for Standard Heapsort

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10
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Sorting Heapsort

Bottom-Up Heapsort

Remark: An analysis of the average case complexity of Heapsort yields
2n log2 n many comparisons in the average. Hence, standard Heapsort
cannot compete with Quicksort.

Bottom-up Heapsort needs significantly fewer comparisons.

After swap(1, i) one first determines the potential path from the root to a
leaf along which the elemente a[i ] will sink; the sink path.

For this, one follows the path that always goes to the larger child. This
needs at most log n instead of 2 log2 n comparisons.

In most cases, a[i ] will sink deep into the heap. It is therefore more
efficient to compute the actual position of a[i ] on the sink path bottom-up.

The hope is that the bottom-up computations need in total only O(n)
comparisons.
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Sorting Heapsort

The sink path

x0

x1 y1
>

y2 x2
<

y3 x3
<

...

xk−1

xk yk
>

Elements will sink along the path [x0, x1, x2, . . . , xk−1, xk ] which can be
computed with only log2 n comparisons.
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Sorting Heapsort

Finding the right position on the sink path

We now compute the right position p on the sink path starting from the
leaf and going up.

If this position p is found, then all elements x0, . . . , xp have to be rotated
cyclically (x0 goes to the position of xp, and every x1, . . . , xp moves up one
position).
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Sorting Heapsort

Finding the right position on the sink path

We now compute the right position p on the sink path starting from the
leaf and going up.

If this position p is found, then all elements x0, . . . , xp have to be rotated
cyclically (x0 goes to the position of xp, and every x1, . . . , xp moves up one
position).

3

9 8

6 5 7 4

1 2

1

2 3

4 5 6 7

8 9
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Sorting Heapsort

Finding the right position on the sink path

We now compute the right position p on the sink path starting from the
leaf and going up.

If this position p is found, then all elements x0, . . . , xp have to be rotated
cyclically (x0 goes to the position of xp, and every x1, . . . , xp moves up one
position).

9 8

6 5 7 4

1 2

1

2 3

4 5 6 7

8 9

> 3?
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Sorting Heapsort

Finding the right position on the sink path

We now compute the right position p on the sink path starting from the
leaf and going up.

If this position p is found, then all elements x0, . . . , xp have to be rotated
cyclically (x0 goes to the position of xp, and every x1, . . . , xp moves up one
position).

9 8

6 5 7 4

1 2

1

2 3

4 5 6 7

8 9
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Sorting Heapsort

Finding the right position on the sink path

We now compute the right position p on the sink path starting from the
leaf and going up.

If this position p is found, then all elements x0, . . . , xp have to be rotated
cyclically (x0 goes to the position of xp, and every x1, . . . , xp moves up one
position).

9

6 8

3 5 7 4

1 2

1

2 3

4 5 6 7

8 9
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Sorting Heapsort

Average Analyse of Heapsort

Theorem 11

Standard heapsort makes on a portion of at least 1− 2−(n−1) many input
permutations at least 2n log2(n)−Θ(n) many comparisons.
Bottom-up heapsort makes on a portion of at least 1− 2−(n−1) many
input permutations at most n log2(n) + Θ(n) many comparisons.

Proof: information-theoretic argument

A sorting algorithm computes from a permutation of [1, . . . , n] the sorted
list [1, . . . , n].

One can specify (or encode) the input permutation by running the
algorithm and in addition output information in form of a {0, 1}-string
that allows us to run the algorithm backwards starting with the output
permutation [1, . . . , n].
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Sorting Heapsort

Average Analyse of Heapsort

In the case of standard heapsort: we output the sink paths, i.e., every time
an element is swapped with the left (resp., right) child, we output a 0
(resp., 1). This makes heapsort reversible.

But: We have to know when one sink paths (a {0, 1}-string) stops and the
next sink path starts.

Alternative 1: We encode a string w = a1a2 · · · at−1at ∈ {0, 1}∗ by

c1(w) = a10a20 · · · at−10at1.

Note: |c1(w)| = 2|w |.
Alternative 2: We encode a string w = a1a2 · · · at−1at ∈ {0, 1}∗ by

c2(w) = c1(binary representation of t)a1 · · · at

Thus, |c2(w)| = |w |+ 2 log2(|w |).
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Sorting Heapsort

Average Analyse of Heapsort

Note: c2(ε) = 01, since 0 = binary representation of the number 0.

We encode the sink path w = a1a2 · · · at ∈ {0, 1}∗ by

c ′2(w) = c1(binary representation of log2(n)− t)a1 · · · at .

Note: t ≤ log2(n), because every sink path has length ≤ log2 n.

Our proof showing that building the heap only needs O(n) many
comparisons also shows: In phase 1, we will output a {0, 1}-string of
length O(n).

We now analyse the {0, 1}-string produced in phase 2.
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Sorting Heapsort

Average Analyse of Heapsort

Let t1, . . . , tn be the lengths of the sink paths during phase 2.

Hence, we produce in phase 2 a {0, 1}-string of length

n
∑

i=1

(ti + 2 log2(log2(n)− ti)) =

n
∑

i=1

ti + 2

n
∑

i=1

log2(log2(n)− ti )).

Define the average

t̄ =

∑n
i=1 ti
n

.

The function f with f (x) = log2(log2(n)− x) is concave on (−∞, log2(n)).

Jensen’s inequality (slide 4) implies:

log2(log2(n)− t̄) ≥
n
∑

i=1

1

n
· log2(log2(n)− ti )).
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Sorting Heapsort

Average Analyse of Heapsort

Therefore:
n
∑

i=1

ti + 2

n
∑

i=1

log2(log2(n)− ti)) ≤ nt̄ + 2n log2(log2(n)− t̄).

To sum up: The input permutation σ on [1, . . . , n] can be encoded by a
{0, 1}-string of length

I (σ) ≤ cn + nt̄ + 2n log2(log2(n)− t̄),

where c is a constant (for phase 1).

Lemma 6 implies

cn+ nt̄ + 2n log2(log2(n)− t̄) ≥ I (σ) ≥ log2(n!)− n ≥ n log2(n)− 2, 443n

for at least (1− 2−n+1)n! many input permutations.

With d = 2, 443 + c we get:

t̄ ≥ log2(n)− 2 log2(log2(n)− t̄)− d . (1)
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Sorting Heapsort

Average Analyse von Heapsort

Since t̄ ≥ 0 we obtain

t̄ ≥ log2(n)− 2 log2(log2(n))− d . (2)

From (1) and (2) we get the better estimate

t̄ ≥ log2(n)− 2 log2(2 log2(log2(n)) + d)− d . (3)

This estimate can be again applied to (1), and so on.

In general, we get for all i ≥ 1:

t̄ ≥ log2(n)− αi − d ,

where α1 = 2 log2(log2(n)) and αi+1 = 2 log2(αi + d).

(proof by induction on i ≥ 1)
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Sorting Heapsort

Average Analyse von Heapsort

For all x ≥ max{10, d} we have:

2 log2(x + d) ≤ 2 log2(2x) = 2 log2(x) + 2 ≤ 0, 9 · x .

Hence, as long as αi ≥ max{10, d} holds, we have αi+1 ≤ 0, 9 · αi .

Therefore, there exists a constant α with

t̄ ≥ log2(n)− α− d . (4)

Thus, for at least (1− 2−n+1)n! many input permutations we have

n
∑

i=1

ti ≥ n log2 n −Θ(n).
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Sorting Heapsort

Average Analyse of Heapsort

The statement of Theorem 11 for standard Heapsort follows easily:

In phase 2, standard Heapsort makes 2
∑n

i=1 ti many comparisons.

Hence, standard Heapsort makes for at least (1− 2−n+1)n! many input
permutations at least 2n log2 n −Θ(n) many comparisons.

Bottom-up heapsort makes in phase 2 at most

n log2(n) +
n
∑

i=1

(log2(n)− ti ) = 2n log2(n)−
n
∑

i=1

ti

many comparisons.

Hence, bottom-up Heapsort makes for at least (1− 2−n+1)n! many input
permutations at most

Θ(n) + 2n log2(n)−
n
∑

i=1

ti ≤ n log2(n) + Θ(n)

many comparisons.
Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 70 / 161



Sorting Heapsort

Variant by Svante Carlsson, 1986

One can show that bottom-up Heapsort makes in the worst case at most
1.5n log n +O(n) many comparisons.

Carlsson proposed to determine the correct position on the sink path using
binary search.

This yields a worst-case bound of n log n+O(n log log n) many comparison.

On the other hand, in practice binary search on the sink path does not
seem to pay off.
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Sorting Sorting in linearer time

Counting-Sort

Recall: The lower bound of Ω(n log n) only holds for comparison-based
sorting algorithms.

If we make further assumptions on the array elements, we can sort in time
O(n).

Assumption: The array elements A[1], . . . ,A[n] are natural numbers in
the range [0, k].

Counting sort (see next slide) sorts under this assumption in time
O(k + n).

Hence, if k ∈ O(n), then counting sort works in linear time.
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Sorting Sorting in linearer time

Counting Sort

Algorithm Counting-Sort

procedure counting-sort(array A[1, n] with A[1], . . .A[n] ∈ [0, k])
begin

var Arrays C [0, k], B [1, n]
for i := 0 to k do

C [i ] := 0
for i := 1 to n do

C [A[i ]] := C [A[i ]] + 1
for i := 1 to k do

C [i ] := C [i ] + C [i − 1]
for n downto 1 do

B [C [A[i ]]] := A[i ];
C [A[i ]] := C [A[i ]]− 1

endprocedure
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Sorting Sorting in linearer time

Counting Sort

After the first three for-loops, C [i ] is the number of array entries that are
≤ i .

The statement B [C [A[i ]]] := A[i ] puts the array element A[i ] at the right
position C [A[i ]].

Remark: Counting sort is a stable sorting algorithm.

This means: If A[i ] = A[j] for i < j , then in the sorted array B the array
entry A[i ] is to the left of A[j].

This is relevant if the array entries consist of (i) keys that are used for
sorting and (ii) additional informations.

Stability of counting sort will be needed for radix sort on the next slide.
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Sorting Sorting in linearer time

Radix Sort

We use counting sort to sort an array A[1, n], where A[1], . . . ,A[n] are
d -ary numbers in base k (where the least significant digit is the left most
digit).

Radix sort sorts such an array in time O(d(n + k)).

If in addition d ∈ O(1) and k ∈ O(n) (which means that we can represent
number of size O(nd)), then radix sort works in linear time.

Algorithm Radix Sort

procedure radix sort(array A[1, n] with A[1], . . .A[n])
begin

for i := 1 to d do
sort the array A with counting sort with respect to the i -th digit.

endfor
endprocedure
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Sorting Computation of the Median

Computation of the Media

Input: array a[1, . . . , n] of numbers and 1 ≤ k ≤ n.

Output: k-th smallest element, i.e., the number m ∈ {a[i ] | 1 ≤ i ≤ n}
such that

|{i | a[i ] < m}| ≤ k − 1 and |{i | a[i ] > m}| ≤ n − k

Special case: k = ⌈n/2⌉  median

Naive approach:

sort the array a in time O(n log n),

output the k-th element of the sorted array.

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 76 / 161



Sorting Computation of the Median

Median of the medians

Goal: Compute the k-th smallest element in linear time.

Idea: Compute a pivot element (as in quick sort) as the median of the
medians of blocks of length 5.

We split the array in blocks of length 5.

For each block we compute the median (6 comparisons are sufficient).

Compute recursively the median p of the array of medians and take p
as the pivot element.

Number of comparisons: T (n5 ).
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Sorting Computation of the Median

Quick sort step

Partition the array with the pivot element p such that for suitable
positions m1 < m2 we have:

a[i ] < p for 1 ≤ i ≤ m1

a[i ] = p for m1 < i ≤ m2

a[i ] > p für m2 < i ≤ n

Number of comparisons: ≤ n.

Case distinction:

1 k ≤ m1: Search for the k-th element recursively in a[1], . . . , a[m1].

2 m1 < k ≤ m2: Return p.

3 k > m2: Search for the (k −m2)-th element in a[m2 + 1], . . . , a[n].
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Sorting Computation of the Median

30 – 70 splitting

The choice of the pivot element as the median of the medians (of blocks
of length 5) ensures the following inequalites for m1,m2:

3

10
n ≤ m2 and m1 ≤

7

10
n

Therefore, the recursive step needs at most T (7n10 ) comparisons.
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Sorting Computation of the Median

Total time

T (n) is the totoal number of comparisons comparisons for an array of
length n.

We get the following recurrence for T (n):

T (n) ≤ T
(

⌈n
5
⌉
)

+ T

(

⌈7n
10

⌉
)

+O(n)

The master theorem II gives T (n) ∈ O(n).
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Sorting Computation of the Median

More precise analysis

T (n) = T
(n

5

)

+ T

(

7n

10

)

+
6n

5
+

2n

5
,

where:

6n
5 is the number of comparisons to compute the medians of the
blocks of length 5.
2n
5 is the number of comparisons for the partitioning step.

This yields the bound T (n) ≤ 16n:

With 1
5 +

7
10 = 9

10 we get T (n) ≤ T (9n10 ) +
8n
5 and hence

T (n) ≤ 10 · 8n
5 = 16n.
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Sorting Computation of the Median

Quick select

Quick select is a randomized algorithm for computing the median:

Algorithm

function quickselect(A[ℓ . . . r ] : array of integer, k : integer) : integer
begin

if ℓ = r then return A[ℓ]
else

p := random(ℓ, r);
m := partition(A[ℓ . . . r ], p);
k ′ := (m − ℓ+ 1);
if k = k ′ then return A[m]
elsif k < k ′ then return quickselect(A[ℓ . . .m − 1], k)
else return quickselect(A[m + 1 . . . r ], k − k ′)
endif

endif
endfunction
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Sorting Computation of the Median

Analysis of quick select

Let Q(n) be the average number of comparisons that quick select is doing
for an array with n elements.

We have:

Q(n) ≤ (n − 1) +
1

n

n
∑

i=1

Q(max{i − 1, n − i}),

where:

(n − 1) is the number of comparisons for partitioning the array, and

Q(max{i − 1, n − i}) is the (maximal) average number of
comparisons for a recursive call on one of the two subarrays.

Here, we make the pessimistic assumption that we continue searching in
the larger subarray.
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Sorting Computation of the Median

Analysis of quick select

We have

Q(n) ≤ (n − 1) +
1

n

n
∑

i=1

Q(max{i − 1, n − i})

= (n − 1) +
1

n







n−1
∑

i=⌈ n
2⌉

Q(i) +

n−1
∑

i=⌊ n
2⌋

Q(i)







Claim: Q(n) ≤ 4 · n:
Proof by induction on n: OK for n = 1.

Let n ≥ 2 and let Q(i) ≤ 4 · i for all i < n.
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Sorting Computation of the Median

Analysis of quick select

Case 1: n is even.

Q(n) ≤ (n − 1) +
2

n

n−1
∑

i= n
2

Q(i)

≤ (n − 1) +
8

n

n−1
∑

i= n
2

i

= (n − 1) +
8

n

(

(n − 1)n

2
− (n2 − 1)n2

2

)

= (n − 1) + 4(n − 1)− n + 2

= 4n − 3 ≤ 4n
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Sorting Computation of the Median

Analyse von Quickselect

Case 2: n is odd.

Q(n) ≤ (n − 1) +
2

n

n−1
∑

i=⌈ n
2⌉

Q(i) +
1

n
Q
(⌊n

2

⌋)

≤ (n − 1) +
8

n

n−1
∑

i=⌈ n
2⌉

i + 2

= (n − 1) +
8

n
·
(

(n − 1)n

2
− (
⌈

n
2

⌉

− 1)
⌈

n
2

⌉

2

)

+ 2

≤ (n − 1) + 4(n − 1)− n − 2 + 2

= 4n − 5 ≤ 4 · n.
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Greedy algorithms

Overview

Matroids

Kruskal’s algorithm for spanning trees

Dijkstra’s algorithm for shortest paths

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 87 / 161



Greedy algorithms

Greedy algorithms

Algorithms that take in each step the locally best optimal choice are called
greedy.

For some problems this yields a globally optimal solution.

Problems where greedy algorithms always find an optimal solution can be
characterized via the notion of a matroid.
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Greedy algorithms Matroids

Optimization problems

Let E be a finite set and U ⊆ 2E a set of subsets of E .

A pair (E ,U) is a subset system, if the following holds:

∅ ∈ U

If A ⊆ B ∈ U then A ∈ U as well.

A set A ∈ U is maximal (with respect to ⊆) if for all B ∈ U the following
holds: if A ⊆ B , then A = B .

The optimization problems associated with (E ,U) is:

Input: A weight function w : E → R

Output: A maximal set A ∈ U with w(A) ≥ w(B) for all maximal sets
B ∈ U, where

w(C ) =
∑

a∈C

w(a)

We call A an optimal solution.
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Greedy algorithms Matroids

Optimization problems

In order to solve such optimization problems, one can try to use the
following generic greedy algorithm:

Algorithm generic greedy algorithm

procedure find-optimal (subset system (E ,U), w : E → R)
begin

order set E by descending weights as e1, e2, . . . , en with
w(e1) ≥ w(e2) ≥ · · · ≥ w(en)
T := ∅
for k := 1 to n do

if T ∪ {ek} ∈ U then T := T ∪ {ek}
endfor
return (T )

endprocedure
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Greedy algorithms Matroids

Matroids

Note: The solution computed by the generic greedy algorithm is always a
maximal subset.

Unfortunately there exist subset systems for which the generic greedy
algorithm does not find an optimal solution (will be shown later).

A subset system (E ,U) is a matroid, if the following property (exchange
property) holds:

∀A,B ∈ U : |A| < |B | =⇒ ∃x ∈ B \ A : A ∪ {x} ∈ U

Remark: If (E ,U) is a matroid, then all maximal sets in U have the same
cardinality.

Example: Let E be a finite set and k ≤ |E |. Then

(E , {A ⊆ E | |A| ≤ k})

is a matroid.
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Greedy algorithms Matroids

Matroids

Theorem 12

Let (E ,U) be a subset system. The generic greedy algorithm computes for
every weight function w : E → R an optimal solution if and only if (E ,U)
is a matroid.

Proof: First assume that (E ,U) is a matroid.

Let w : E → R be a weight function and let E = {e1, e2, . . . , en} with

w(e1) ≥ w(e2) ≥ · · · ≥ w(en).

Let T = {ei1 , . . . , eik} with i1 < i2 < · · · < ik the solution computed by
the generic greedy algorithm.

Assumption: There exists a maximal set S = {ej1 , . . . , ejl} ∈ U with
w(S) > w(T ), where j1 < j2 < · · · < jl .

Since (E ,U) is a matroid, we have k = l .
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Greedy algorithms Matroids

Matroids

Since w(S) > w(T ), there exists 1 ≤ p ≤ k with w(ejp ) > w(eip ).

Since the weights where sorted in descending order, we must have jp < ip.

We now apply the exchange property to the sets

A = {ei1 , . . . , eip−1} ∈ U and B = {ej1 , . . . , ejp} ∈ U.

Since |A| < |B |, there exists an element ejq ∈ B \ A with A ∪ {ejq} ∈ U.

We get jq ≤ jp < ip.

But then, the generic greedy algorithm would have put ejq into the
solution, which is a contradiction.
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Greedy algorithms Matroids

Matroids

Now assume that (E ,U) is not a matroid, i.e., the exchange property does
not hold.

Let A,B ∈ U with |A| < |B | such that for all b ∈ B \ A: A ∪ {b} 6∈ U.

Let r = |B | and hence |A| ≤ r − 1.

Define the weight function w : E → R as follows:

w(x) =











r + 1 for x ∈ A

r for x ∈ B \ A
0 otherwise

The generic greedy algorithm must compute a solution T with A ⊆ T and
T ∩ (B \ A) = ∅.
We get w(T ) = (r + 1) · |A| ≤ (r + 1)(r − 1) = r2 − 1.

Let S ∈ U be a maximal subset with B ⊆ S .

We get w(S) ≥ w(B) ≥ r2.
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Greedy algorithms Kruskal’s algorithm for spanning trees

Spanning subtrees

Let G = (V ,E ) be a finite undirected graph.

A path from u ∈ V to v ∈ V is a sequence of nodes (u1, u2, . . . , un) with
u1 = u, un = v and (ui , ui+1) ∈ E for all 1 ≤ i ≤ n− 1.

G is connected, if for all u, v ∈ V with u 6= v there exists a path from u to
v .

A circuit is a path (u1, u2, . . . , un) with n ≥ 3, ui 6= uj for all 1 ≤ i < j ≤ n
and (un, u1) ∈ E .

G is a tree, if it is connected and has no circuits.

Excercise: for every tree T = (V ,E ) we have |E | = |V | − 1.

Let G = (V ,E ) be connected. A spanning subtree of G is a subset F ⊆ E
of edges such that (V ,F ) is a tree.

Excercise: every connected graph has a spanning subtree.
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Greedy algorithms Kruskal’s algorithm for spanning trees

Spanning subtrees

Example:
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Greedy algorithms Kruskal’s algorithm for spanning trees

Matroid of circuit-free edge sets

Let G = (V ,E ) be again connected, and let w : E → R be a weight
function.

The weight of a spanning subtree F ⊆ E is

w(F ) =
∑

e∈F

w(e).

Goal: Compute a spanning subtree of maximal weight.

The following lemma allows us to use the canonical greedy algorithm:

Lemma 13

The subset system (E , {A ⊆ E | (V ,A) has no circuit}) is a matroid.
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Greedy algorithms Kruskal’s algorithm for spanning trees

Matroid of circuit-free edge sets

Proof: Let A,B ⊆ E be edge sets without circuits such that |A| < |B |.
Let V1,V2 . . . ,Vn be the connected components of the (V ,A).

We have |A| =∑n
i=1(|Vi | − 1), because the subtree of (V ,A) induced by

Vi is a tree and therefore has |Vi | − 1 many edges.

For every edge e = (u, v) ∈ B one of the following two cases holds:

1 There is 1 ≤ i ≤ n with u, v ∈ Vi .

2 There are i 6= j with u ∈ Vi and v ∈ Vj .

But in B there can exist at most
∑n

i=1(|Vi | − 1) = |A| many edges of type
1 (otherwise B would contain a circuit in one of the sets Vi).

Hence, there exists an edge e ∈ B , which connects two connected
components of (V ,A).

Thus, A ∪ {e} contains no circuit.
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Greedy algorithms Kruskal’s algorithm for spanning trees

Kruskals algorithm

Algorithm Kruskals algorithm

procedure kruskal (edge-weighted connected graph (V ,E ,w))
begin

sort E by decreasing weights e1, e2, . . . , en with
w(e1) ≥ w(e2) ≥ · · · ≥ w(en)
F := ∅
for k := 1 to n do

if ek connects two different connected components of (V ,F ) then
F := F ∪ {ek}

endfor
return (F )

endprocedure
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Greedy algorithms Kruskal’s algorithm for spanning trees

Kruskal’s algorithm

Example for Kruskal’s algorithm:

2 3

4

5 32

4

6 7
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Greedy algorithms Kruskal’s algorithm for spanning trees

Running time of Kruskal’s algorithm

Note: Since G is connected, we have |V | − 1 ≤ |E | ≤ |V |2.
Sorting the edges by weight needs time O(|E | log |E |) = O(|E | log |V |).
The connected components of (V ,F ) can be maintained by a partition of
the node set V .

We start with the partition {{v} | v ∈ V }.
In every iteration of the for-loop (|E | many) we test whether the end
points of the edge ek belong to different sets A, B of the partition.

If this holds, then we replace in the partition the sets A and B by the set
A ∪ B .

For this, we will later develop a so-called union-find data structure, which
realizes the above operations in total time O(α(|V |) · |E |) for an extremely
slow-growing function α.

This gives the running time O(|E | log |V |) for Kruskal’s algorithm.
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Greedy algorithms Shortest paths and Dijkstra’s algorithm

Shortest paths

Another example for a greedy strategy: Computation of shortest paths in
an edge-weighted directed graph G = (V ,E , γ).

V is the set of nodes

E ⊆ V × V is the set of edges, where (x , x) 6∈ E for all x ∈ V .

γ : E → N is the weight function.

Weight of a path (v0, v1, v2, . . . , vn):

n−1
∑

i=0

γ(vi , vi+1)

For u, v ∈ V , d(u, v) denotes the minimum of the weight of all paths from
u to v (d(u, v) = ∞ if such a path does not exist, and d(u, u) = 0).

Goal: Given G = (V ,E , γ) and a source node u ∈ V , compute for every
v ∈ V a path u = v0, v1, v2, . . . , vn−1, vn = v with minimal weight d(u, v).
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Greedy algorithms Shortest paths and Dijkstra’s algorithm

Dijkstra’s algorithm

B := ∅ (tree nodes); R := {u} (boundary); U := V \ {u} (unknown nodes);
p(u) := nil; D(u) := 0;
while R 6= ∅ do
x := nil; α := ∞;
forall y ∈ R do
if D(y) < α then
x := y ; α := D(y)

endif
endfor
B := B ∪ {x}; R := R \ {x}
forall (x , y) ∈ E do
if y ∈ U then
D(y) := D(x) + γ(x , y); p(y) := x ; U := U \ {y}; R := R ∪ {y}

elsif y ∈ R and D(x) + γ(x , y) < D(y) then
D(y) := D(x) + γ(x , y); p(y) := x

endif
endfor

endwhile
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Greedy algorithms Shortest paths and Dijkstra’s algorithm

Example for Dijkstra’s algorithm

tree nodes

boundary

unknown nodes

source node

0

1 3∞

∞ ∞

∞

3

42

3 6

1

6

13

8

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 104 / 161



Greedy algorithms Shortest paths and Dijkstra’s algorithm

Example for Dijkstra’s algorithm

tree nodes

boundary

unknown nodes

initial node

0

1 37

∞ ∞

14

3

42

3 6

1

6

13

8

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 104 / 161



Greedy algorithms Shortest paths and Dijkstra’s algorithm

Example for Dijkstra’s algorithm

tree nodes

boundary

unknown nodes

initial node

0

1 37

11 7

14

3

42

3 6

1

6

13

8

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 104 / 161



Greedy algorithms Shortest paths and Dijkstra’s algorithm

Example for Dijkstra’s algorithm

tree nodes

boundary

unknown nodes

initial node

0

1 37

11 7

13

3

42

3 6

1

6

13

8

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 104 / 161



Greedy algorithms Shortest paths and Dijkstra’s algorithm

Example for Dijkstra’s algorithm

tree nodes

boundary

unknown nodes

initial node

0

1 37

9 7

13

3

42

3 6

1

6

13

8

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 104 / 161



Greedy algorithms Shortest paths and Dijkstra’s algorithm

Example for Dijkstra’s algorithm

tree nodes

boundary

unknown nodes

initial node

0

1 37

9 7

12

3

42

3 6

1

6

13

8

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 104 / 161



Greedy algorithms Shortest paths and Dijkstra’s algorithm

Example for Dijkstra’s algorithm

tree nodes

boundary

unknown nodes

initial node

0

1 37

9 7

12

3

42

3 6

1

6

13

8

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 104 / 161



Greedy algorithms Shortest paths and Dijkstra’s algorithm

Correctness of Dijkstra’s algorithm

Theorem 14 (Correctness of Dijkstra’s algorithm)

Dijkstra’s algorithm computes shortest paths from the source node to all
other nodes.

Proof: We show that the following invariants are preserved by the
loop-body of the while-loop:

1 The sets B , R , and U form a partition of the node set V .

2 R = {y | ∃x ∈ B : (x , y) ∈ E} \ B
3 for all x ∈ B , D(x) = d(u, x)

4 for all y ∈ R , D(y) = min{D(x) + γ(x , y) | x ∈ B , (x , y) ∈ E}
Consider an execution of the body of the while-Schleife, where the node x
is moved from R to B .

(1)–(4) hold before the execution of the loop-body.

It is clear that (1) and (2) are preserved.
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Greedy algorithms Shortest paths and Dijkstra’s algorithm

Correctness of Dijkstra’s algorithm

(3): Because of (3) and (4) there exists a node z ∈ B with

D(x) = D(z) + γ(z , x) = d(u, z) + γ(z , x).

Hence, there is path from u to x with weight D(x).

Assume that there is a path from u to x with weight < D(x).

Let w ∈ R be the first node on this path, which does not belong to B
(must exist since x 6∈ B) and let v ∈ B be the predecessor of w on the
path (exists, since u ∈ B).

Since the whole path has weight < D(x), we get

D(w) = min{D(w ′) + γ(w ′,w) | w ′ ∈ B , (w ′,w) ∈ E}
≤ D(v) + γ(v ,w) < D(x),

which contradicts the choice of x ∈ R .

Hence, we must have d(u, x) = D(x).
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Greedy algorithms Shortest paths and Dijkstra’s algorithm

Correctness of Dijkstra’s algorithm

(4): Let B ′,R ′,U ′,D ′ be the values of the variables B ,R ,U,D after the
execution of the loop-body.

Note: B ′ = B ∪ {x}, D(z) = D ′(z) for all z ∈ B and D(x) = D ′(x).

Let y ∈ R ′.

Case 1: y ∈ R \ {x} and (x , y) ∈ E . We have

D ′(y) = min{D(y),D(x) + γ(x , y)}
= min{min{D(z) + γ(z , y) | z ∈ B , (z , y) ∈ E},D(x) + γ(x , y)}
= min{min{D ′(z) + γ(z , y) | z ∈ B , (z , y) ∈ E},D ′(x) + γ(x , y)}
= min{D ′(z) + γ(z , y) | z ∈ B ′, (z , y) ∈ E}

Case 2: y ∈ R \ {x} and (x , y) 6∈ E . We have

D ′(y) = D(y)

= min{D(z) + γ(z , y) | z ∈ B , (z , y) ∈ E}
= min{D ′(z) + γ(z , y) | z ∈ B ′, (z , y) ∈ E}.
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Greedy algorithms Shortest paths and Dijkstra’s algorithm

Correctness of Dijkstra’s algorithm

Case 3: y 6∈ R . We have (x , y) ∈ E , but there is no edge (z , y) ∈ E with
z ∈ B (by (2)).

Hence, we have

D ′(y) = D(x) + γ(x , y)

= D ′(x) + γ(y , x)

= min{D ′(z) + γ(z , y) | z ∈ B ′, (z , y) ∈ E}.

Remark: Dijkstra’s algorithm in general does not produce a correct result
if negative edge weights are allowed.

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 108 / 161



Greedy algorithms Shortest paths and Dijkstra’s algorithm

Dijkstra with abstract data types for the boundary

In order to analyze the running time of Dijkstra’s algorithm, it is uselful to
reformulate the algorithm with an abstract data type for the boundary R .

The following operations are needed for the boundary R :

insert insert a new element into R .
decrease-key decrease the key value of an element of R .
delete-min find the element from R with the smallest key value

and remove it from R .
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Greedy algorithms Shortest paths and Dijkstra’s algorithm

Dijkstra with abstract data types for the boundary

B := ∅; R := {u}; U := V \ {u}; p(u) := nil; D(u) := 0;
while (R 6= ∅) do

x := delete-min(R);
B := B ∪ {x};
forall (x , y) ∈ E do

if y ∈ U then
U := U \ {y}; p(y) := x ; D(y) := D(x) + γ(x , y);
insert(R , y , D(y));

elsif y ∈ R and D(x) + γ(x , y) < D(y) then
p(y) := x ; D(y) := D(x) + γ(x , y);
decrease-key(R , y , D(y));

endif
endfor

endwhile
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Greedy algorithms Shortest paths and Dijkstra’s algorithm

Running time of Dijkstra’s algorithm

Number of operations (n = number of nodes, e = number of edges):

insert n
decrease-key e
delete-min n

The total running time depends of the data structure that is used for the
boundary:

1 Array of size n:
single insert/decrease-key: O(1)
single delete-min: O(n)
total running time: O(n + e + n2) = O(n2)

2 Heap (balanced binary tree of depth O(log(n)):
single insert/decrease-key/delete-min: O(log(n))
total running time: O(n log(n) + e log(n)) = O(e log(n)).

If O(e) ⊆ o(n2/ log n), then the heap beats the array.
For instance, for planar graphs one has e ≤ 3n − 6 for n ≥ 3.
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Data structures Fibonacci heaps

Fibonacci heaps (Fredman & Tarjan 1984)

Fibonacci heaps beat arrays as well as heaps: O(e + n log n)

A Fibonacci heap H is a list of rooted trees, i.e., a forest.

V is the set of nodes

Every node v ∈ V has a key key (v) ∈ N.

Heap condition: ∀x ∈ V : y is a child of x ⇒ key (x) ≤ key (y)

Some of the nodes of V are marked. The root of a tree is never marked.
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Data structures Fibonacci heaps

Example for a Fibonacci heap

(key values are in the circles, marked nodes are grey)

23 7 21 3 17 24

18 52 38 30 26 46

39 41 35
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Data structures Fibonacci heaps

Fibonacci heaps

The parent-child relation has to be realized by pointers, since the
trees in a Fibonacci heap are not necessarily balanced.

That means that pointer manipulations (expensive!) replace the index
manipulations (cheap!) in standard heaps.

Operations:
1 merge
2 insert
3 delete-min
4 decrease-key
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Data structures Fibonacci heaps

Implementation of merge and insert

merge: Concatenation of two lists — constant time

insert: Special case of merge — constant time

merge and insert produce long lists of one-element trees.

Every such list is a Fibonacci heap.
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Data structures Fibonacci heaps

Implementation of delete-min

Let H be a Fibonacci heap consisting of T trees and n nodes.

for a nodes x ∈ V let rank(x) be the number of children of x .

for a tree B in H let rank(B) be the rank of the root of B .

Let rmax(n) be the maximal rank that can appear in a Fibonacci heap
with n nodes.

Clearly, rmax(n) ≤ n. Later, we will show that rmax(n) ∈ O(log n).
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Data structures Fibonacci heaps

Implementation of delete-min

1 Search for the root x with minimal key. Time: O(T )

2 Remove x and replace the subtree rooted in x by its rank(x) many
subtrees. Remove possible markings from the new roots.
Time: O(rank(x)) ⊆ O(rmax(n)).

3 Define an array L[0, . . . , rmax(n)], where L[i ] is a list of all trees of
rank i .
Time: O(T + rmax(n)).

4 for i := 0 to rmax(n)− 1 do
while |L[i ]| ≥ 2 do
remove two trees from L[i ]
make the root with the larger key to a child of the other root
add the resulting tree to L[i + 1]

endwhile endfor

Time: O(T + rmax(n))
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Data structures Fibonacci heaps

Example for delete-min

23 7 21 3 17 24

18 52 38 30 26 46

39 41 35

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 118 / 161



Data structures Fibonacci heaps

Example for delete-min

23 7 21 18 52 38 17 24

39 41 30 26 46

35

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 118 / 161



Data structures Fibonacci heaps

Example for delete-min

7 21 18 52 38 17 24

23 39 41 30 26 46

35

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 118 / 161



Data structures Fibonacci heaps

Example for delete-min

7 21 18 38 17 24

23 52 39 41 30 26 46

35

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 118 / 161



Data structures Fibonacci heaps

Example for delete-min

7 18 38 17 24
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Data structures Fibonacci heaps

Remarks for delete-min

delete-min needs time O(T + rmax(n)), where T is the number of
trees before the operation.

After the execution delete-min, there exists for every i ≤ rmax(n) at
most one tree of rank i .

Hence, the number of trees after delete-min is bounded by rmax(n).
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Data structures Fibonacci heaps

Implementation of decrease-key

Let x be the node for which the key is reduced.

1 If x is a root, then we can reduced key (x) without any other
modifications.

Now assume that x is not a root and let x = y0, y1, . . . , ym be the
path from x to the root ym (m ≥ 1).

Let yk (1 ≤ k ≤ m) be the first node on this path, which is not x and
which is not marked (note: ym is not marked).

2 For all 0 ≤ i < k , we cut off yi from its parent node yi+1 and remove
the marking from yi (y0 = x can be marked).

yi (0 ≤ i < k) is now an unmarked root of a new tree.

3 If yk is not a root, then we mark yk (this tells us later that yk lost a
child).
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Data structures Fibonacci heaps

Example for decrease-key
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Data structures Fibonacci heaps

Example for decrease-key

decrease-key(node with key 39, 6)
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Data structures Fibonacci heaps

Example for decrease-key
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Data structures Fibonacci heaps

Example for decrease-key

decrease-key(node with key 38, 29)
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Data structures Fibonacci heaps

Example for decrease-key

decrease-key(node with key 38, 29)

7 29 6 17 24

23 21 18 41 30 26 46

52 35
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Data structures Fibonacci heaps

Example for decrease-key

decrease-key(node with key 38, 29)

7 18 29 6 17 24

23 21 41 30 26 46

52 35
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Data structures Fibonacci heaps

Remarks for decrease-key

Time: O(k) +O(1)

decrease-key reduces the number of marked nodes by at least k − 2
(k ≥ 1).

decrease-key increases the number of trees by k .
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Data structures Fibonacci heaps

Definition of Fibonacci heaps

Definition 15

A Fibonacci heap is a list of rooted trees as described before, which can be
obtained from the empty list by an arbitrary sequence of merge, insert,
delete-min, and decrease-key operations

Lemma 16 (Fibonacci heap lemma)

Let x be a node of a Fibonacci heap with rank(x) = k.

1 If c1, . . . , ck are the children of x, and ci became a child of x before
ci+1 became a child of x, then rank(ci ) ≥ i − 2.

2 The subtree rooted in x contains at least Fk+1 many nodes. Here,
Fk+1 is the (k + 1)-th Fibonacci number
(F0 = F1 = 1,Fk+1 = Fk + Fk−1 for k ≥ 1).
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Data structures Fibonacci heaps

Proof of the Fibonacci heap lemma

Part 1:

At the time instant t, where ci became a child of x , the nodes c1, . . . , ci−1

were already children of x , i.e., the rank of x at time t was at least i − 1.

Since only trees with equal rank are merged to a single tree (in
delete-min), that rank of ci at time t was at least i − 1 as well.

In the meantime (i.e. after time t), ci can loose at most one child: If ci
looses one child due to a decrease-key, then ci will be marked, and after
loosing second child, ci will be cut off from the parent node x .

Hence, rank(ci ) ≥ i − 2.
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Data structures Fibonacci heaps

Proof of the Fibonacci heap lemma

Part 2:

Proof by induction on the height of the subtree rooted at x .

If x is a leaf, then k = 0 and the subtree rooted in x contains 1 = F1 node.

If x is not a leaf then we can count the number of nodes in the subtree
rooted at x as follows:

1 2 (for x and c1) plus

2 the number of nodes in the subtree rooted at ci (for 2 ≤ i ≤ k),
which has rank ci−2 (by part 1) and therefore contains by induction
at least Fi−1 many nodes.

Hence the subtree rooted in x contains at least

2 +
k
∑

i=2

Fi−1 = 2 +
k−1
∑

i=1

Fi = Fk+1

many nodes.
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Data structures Fibonacci heaps

Growth of the Fibonacci numbers

Theorem 17

For all k ≥ 0 we have:

Fk =
1√
5

(

1 +
√
5

2

)k+1

− 1√
5

(

1−
√
5

2

)k+1

The Fibonacci numbers grow exponentially.

Consequence: rmax(n) ∈ O(log n).
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Data structures Fibonacci heaps

Summary of the running times

merge, insert: constant time

delete-min: O(T + rmax(n)) ⊆ O(T + log n), where T is the current
number of trees.

decrease-key: O(1) +O(k) (k ≥ 1), where at least k − 2 markings
are removed from the Fibonacci heap.
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Data structures Fibonacci heaps

Amortized time

Definition 18

For a Fibonacci heap H we define its potential pot (H) as
pot (H) := T + 2M, where T is its number of trees and M is the number
of marked nodes.
For an operation op let ∆pot (op ) be the difference of the potential after
and before the execution of the operation.

∆pot (op ) = pot (heap after op )− pot (heap before op ) .

The amortized time of the operation is op is

tamort(op ) = t(op ) + ∆pot (op ) .
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Data structures Fibonacci heaps

Amortized time

The potential has the following properties:

pot (H) ≥ 0

pot (H) ∈ O(|H|)
pot (nil) = 0

Let op 1, op 2, op 3, . . . , opm be sequence of m operations, and assume that
the initial Fibonacci heap is empty.

We have

m
∑

i=1

t(op i) ≤
m
∑

i=1

tamort(op i) .

Remark: The difference between these two sums is the potential of the
generated Fibonacci heap.

Hence, it suffices to bound tamort(op ).
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Data structures Fibonacci heaps

Amortized time

Convention: By multiplying all terms in the following computations with
a suitable constant, we can assume that

merge and insert need one time step,

that delete-min needs T + log n time steps, and

that decrease-key needs k + 1 time steps.

This allows to omit the O-notation.
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Data structures Fibonacci heaps

Amortized time

tamort(merge) = t(merge) = 1, because the potential of the
concatenation of two lists is the sum of the potentials of the two lists.

tamort(insert) = t(insert)+∆pot (op ) = 1 + 1 = 2.

For delete-min we have t(delete-min) ≤ T + log n, where T is the
number of trees before the execution of delete-min.

After delete-min is the number of trees bounded by rmax(n).

The number of marked nodes can only get smaller.

Hence, we have ∆pot (op ) ≤ rmax(n)− T and
tamort(delete-min) ≤ T + log n − T + rmax(n) ∈ O(log n) .
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Data structures Fibonacci heaps

Amortized time

For decrease-key we have t(decrease-key) ≤ k + 1 (k ≥ 1), where
at least k − 2 markings will be removed.

Moreover, k new trees are added to the Fibonacci heap.
We get

∆pot (op ) = ∆(T ) + 2∆(M)

≤ k + 2 · (2− k)

= 4− k ,

and hence tamort(decrease-key) ≤ k + 1 + 4− k = 5 ∈ O(1).
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Data structures Fibonacci heaps

Amortized time

Theorem 19

The following amortized time bounds hold for a Fibonacci heap:

tamort(merge) ∈ O(1)

tamort(insert) ∈ O(1)

tamort(delete-min) ∈ O(log n)

tamort(decrease-key) ∈ O(1)
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Data structures Fibonacci heaps

Fibonacci heaps for Dijkstra

Back to Dijkstra’s algorithm:

For Dijkstra’s algorithm let V be the boundary and let key (v) be the
current estimate for d(u, v).

Let n be the number of nodes and e be the number of edges of the input
graph.

Dijkstra’s algorithm will execute at most n insert-, e decrease-key- and n
delete-min-operations.
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Data structures Fibonacci heaps

Fibonacci heaps for Dijkstra

tDijkstra ≤ n · tamort(insert)

+ e · tamort(decrease-key)

+ n · tamort(delete-min)

∈ O(n + e + n log n)

= O(e + n log n)

Remember that:

with arrays we got tDijkstra ∈ O(n2), and

with standard heaps we got tDijkstra ∈ O(e log(n)).
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Dynamic Programming

Idea of dynamic programming

Compute a table of all subsolutions of a problem, until the overall solution
is computed.

Every subsolutions is computed using the already existing entries in the
table.

Dynamic programming is tightly related to backtracking.

In contrast to backtracking, dynamic programming used iteration instead
of recursion. By storing computed subsolutions in table we avoid to solve
the same subproblem several times.
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Dynamic Programming Computing a long product of matrices

Example: Computing a long product of matrices

Multiplication from left to right:

(10 × 1) (1× 10) (10× 1) (1× 10) (10× 1)
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Dynamic Programming Computing a long product of matrices

Example: Computing a long product of matrices

Multiplication from left to right:

(10 × 1) (1× 10) (10× 1) (1× 10) (10× 1)

(10 × 10) (10× 1) (1× 10) (10× 1)

100 multiplications
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Dynamic Programming Computing a long product of matrices

Example: Computing a long product of matrices

Multiplication from left to right:

(10 × 1) (1× 10) (10× 1) (1× 10) (10× 1)

(10 × 10) (10× 1) (1× 10) (10× 1)

100 multiplications

(10× 1) (1× 10) (10× 1)

100 multiplications
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Dynamic Programming Computing a long product of matrices

Example: Computing a long product of matrices

Multiplication from left to right:

(10 × 1) (1× 10) (10× 1) (1× 10) (10× 1)

(10 × 10) (10× 1) (1× 10) (10× 1)

100 multiplications

(10× 1) (1× 10) (10× 1)

100 multiplications

(10× 10) (10× 1)

100 multiplications
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Dynamic Programming Computing a long product of matrices

Example: Computing a long product of matrices

Multiplication from left to right:

(10 × 1) (1× 10) (10× 1) (1× 10) (10× 1)

(10 × 10) (10× 1) (1× 10) (10× 1)

100 multiplications

(10× 1) (1× 10) (10× 1)

100 multiplications

(10× 10) (10× 1)

100 multiplications

(10× 1)

100 multiplications

In total: 400 multiplications
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Dynamic Programming Computing a long product of matrices

Example: Computing a long product of matrices

Multiplication from right to left:

(10 × 1) (1× 10) (10× 1) (1× 10) (10× 1)
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Dynamic Programming Computing a long product of matrices

Example: Computing a long product of matrices

Multiplication from right to left:

(10 × 1) (1× 10) (10× 1) (1× 10) (10× 1)

(10 × 1) (1× 10) (10× 1) (1× 1)

10 multiplications
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Dynamic Programming Computing a long product of matrices

Example: Computing a long product of matrices

Multiplication from right to left:

(10 × 1) (1× 10) (10× 1) (1× 10) (10× 1)

(10 × 1) (1× 10) (10× 1) (1× 1)

10 multiplications

(10 × 1) (1× 10) (10 × 1)

10 multiplications
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Dynamic Programming Computing a long product of matrices

Example: Computing a long product of matrices

Multiplication from right to left:

(10 × 1) (1× 10) (10× 1) (1× 10) (10× 1)

(10 × 1) (1× 10) (10× 1) (1× 1)

10 multiplications

(10 × 1) (1× 10) (10 × 1)

10 multiplications

(10 × 1) (1× 1)

10 multiplications
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Dynamic Programming Computing a long product of matrices

Example: Computing a long product of matrices

Multiplication from right to left:

(10 × 1) (1× 10) (10× 1) (1× 10) (10× 1)

(10 × 1) (1× 10) (10× 1) (1× 1)

10 multiplications

(10 × 1) (1× 10) (10 × 1)

10 multiplications

(10 × 1) (1× 1)

10 multiplications

(10× 1)

10 multiplications

In total: 40 multiplications
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Dynamic Programming Computing a long product of matrices

Example: Computing a long product of matrices

Multiplication in optimal order

(10 × 1) (1× 10) (10× 1) (1× 10) (10× 1)
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Dynamic Programming Computing a long product of matrices

Example: Computing a long product of matrices

Multiplication in optimal order

(10 × 1) (1× 10) (10× 1) (1× 10) (10× 1)

(10 × 1) (1× 10) (10× 1) (1× 1)

10 multiplications
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Dynamic Programming Computing a long product of matrices

Example: Computing a long product of matrices

Multiplication in optimal order

(10 × 1) (1× 10) (10× 1) (1× 10) (10× 1)

(10 × 1) (1× 10) (10× 1) (1× 1)

10 multiplications

(10 × 1) (1× 1) (1× 1)

10 multiplications
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Dynamic Programming Computing a long product of matrices

Example: Computing a long product of matrices

Multiplication in optimal order

(10 × 1) (1× 10) (10× 1) (1× 10) (10× 1)

(10 × 1) (1× 10) (10× 1) (1× 1)

10 multiplications

(10 × 1) (1× 1) (1× 1)

10 multiplications

(10 × 1) (1× 1)

1 Multiplikation
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Dynamic Programming Computing a long product of matrices

Example: Computing a long product of matrices

Multiplication in optimal order

(10 × 1) (1× 10) (10× 1) (1× 10) (10× 1)

(10 × 1) (1× 10) (10× 1) (1× 1)

10 multiplications

(10 × 1) (1× 1) (1× 1)

10 multiplications

(10 × 1) (1× 1)

1 Multiplikation

(10× 1)

10 multiplications

In total: 31 multiplications
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Dynamic Programming Computing a long product of matrices

Computing a long product of matrices

Let A(n,m) be a matrix with n rows and m columns.

Assumption: Computing A(n,m) := B(n,q) · C(q,m) needs n · q ·m scalar
multiplications.

Input: sequence of matrices M1
(n0,n1)

,M2
(n1,n2)

,M3
(n2,n3)

, . . . ,MN
(nN−1,nN )

.

cost(M1, . . . ,MN) := minimal number of scalar multiplications in order to
compute M1 · · ·MN (minimum is taken over all possible bracketings).

Dynamic programming approach:

cost(M i , . . . ,M j) =

mink{cost(M i , . . . ,Mk) + cost(Mk+1, . . . ,M j) + ni−1 · nk · nj}
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Dynamic Programming Computing a long product of matrices

Computing a long product of matrices

for i := 1 to N do
cost[i , i ] := 0;
for j := i + 1 to N do
cost[i , j ] := ∞;

endfor
endfor
for d := 1 to N − 1 do
for i := 1 to N − d do
j := i + d ;
for k := i to j − 1 do
t := cost[i , k ] + cost[k + 1, j ] + n[i − 1] · n[k ] · n[j ];
if t < cost[i , j ] then
cost[i , j ] := t;
best[i , j ] := k ;

endif
endfor

endfor
endfor

return best
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Dynamic Programming Optimal binary search trees

Optimal search trees

We will see a straightforward dynamic programming algorithm for
computing optimal search trees with a running time of of Θ(n3).

An algorithm of Donald E. Knuth reduces the time to Θ(n2)
(→ Algorithms II).
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Dynamic Programming Optimal binary search trees

Optimal search trees

Let V = {v1, . . . , vn} be linearly ordered set of keys, v1 < v2 < · · · < vn.

For every key v ∈ V we have given an access probability (also called the
weight) γ(v).

The idea is that with every key some additional information is associated
(think about personnel numbers, and additional informations like name,
birthday, salary, etc). Then γ(vi ) is the probability that the information
associated with key vi is accessed.

A binary search tree for v1 < v2 < · · · < vn is a binary tree with node set
{v1, v2, . . . , vn}, such that:
For every node v with left (resp., right) subtree L (resp. R) and all u ∈ L
(resp. w ∈ R) we have: u < v (v < w).
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Dynamic Programming Optimal binary search trees

Optimal search trees

Every node v of a search tree B has a level ℓB(v):
ℓB(v) := 1+ distance (in number of edges) from v to root.

Finding a node at level ℓ requires ℓ comparisons (start in root and then
walk down the path to the node).

Problem: Find a binary search tree B with minimal weighted inner path
length

P(B) :=
∑

v∈V

ℓB(v) · γ(v).

The weighted inner path length is the average cost for accessing a node.

Dynamic programming works because subtrees of optimal binary search
trees have to be optimal again.
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Dynamic Programming Optimal binary search trees

Optimal search trees

Notation:

node set = {1, . . . , n}, i.e., we identify node vi with i .

P [i , j]: weighted inner path length of an optimal search tree for the
node set {i , . . . , j}.
R [i , j]: root of an optimal search tree for {i , . . . , j}.
Since there might be several optimal search trees we take for R [i , j]
for the largest root among all optimal search trees.

Γ[i , j] :=
∑j

k=i γ(k): total weight of the node set {i , . . . , j}.
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Dynamic Programming Optimal binary search trees

Computing optimal search trees in time O(n3)

Using dynamic programming we can compute all values P [i , j] and R [i , j].

For a binary search tree B with left subtree B0, right subtree B1, and total
weight Γ(B) we have

P(B) := P(B0) + P(B1) + Γ(B).

We realize this idea with a cubic algorithm:

P [i , j] = Γ[i , j] + min{P [i , k − 1] + P [k + 1, j] | k ∈ {i , . . . , j}}
R [i , j] = largest key among all k for which P [i , k − 1] + P [k + 1, j] is
minimal.
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Dynamic Programming Optimal binary search trees

Optimal search trees

for i := 1 to n do
P[i , i − 1] := 0;
P[i , i ] := γ(i);
Γ[i , i ] := γ(i);
R [i , i ] := i ;

endfor

for d := 1 to n− 1 do
for i := 1 to n − d do
j := i + d ;
root := i ;
t := ∞;
for k := i to j do
if P[i , k − 1] + P[k + 1, j ] ≤ t then
t := P[i , k − 1] + P[k + 1, j ];
root := k ;

endif
endfor
Γ[i , j ] := Γ[i , j − 1] + γ(j);
P[i , j ] := t + Γ[i , j ];
R [i , j ] := root;

endfor
endfor
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Dynamic Programming Computation of regular expressions

Computation of regular expressions

Recall from GTI: Computation of regular expressions by Kleene.

A nondeterministic finite automaton (NFA) is a tuple

A = (Q,Σ, δ ⊆ Q × Σ× Q, I ,F ) (w.l.o.g. Q = {1, . . . , n}).

Let Lk [i , j] be the set of all words that label a path in A, which

leads from i to j and

thereby only visits intermediate states from {1, . . . , k} (i and j do not
necessarily belong to {1, . . . , k}).

Goal: Regular expressions for all Ln[i , j] with i ∈ I and j ∈ F .

We have

L0[i , j] =

{

{a ∈ Σ | (i , a, j) ∈ δ} if i 6= j

{a ∈ Σ | (i , a, j) ∈ δ} ∪ {ε} if i = j

Lk [i , j] = Lk−1[i , j] + Lk−1[i , k] · Lk−1[k , k]∗ · Lk−1[k , j]
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Dynamic Programming Computation of regular expressions

Computation of regular expressions

Algorithm Regular from an NFA

procedure NFA2REGEXP
Input : NEA A = (Q,Σ, δ ⊆ Q × Σ× Q, I ,F )
(Initialize: L[i , j] := {a | (i , a, j) ∈ δ ∨ a = ε ∧ i = j})
begin

for k := 1 to n do
for i := 1 to n do

for j := 1 to n do
L[i , j] := L[i , j] + L[i , k] · L[k , k]∗ · L[k , j]

endfor
endfor

endfor
end
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Dynamic Programming Warshall’s algorithm

Computing the transitiv closure

Algorithm Warshall-algorithm: computation of the transitive closure

procedure Warshall (var A : adjacency matrix)
Input : graph given by its adjacency matrix (A[i , j]) ∈ Booln×n

begin
for k := 1 to n do

for i := 1 to n do
for j := 1 to n do

if (A[i , k] = 1) and (A[k , j] = 1) then
A[i , j] := 1

endif
endfor

endfor
endfor

end

Markus Lohrey (Universität Siegen) Algorithms WS 2019/2020 150 / 161



Dynamic Programming Warshall’s algorithm

Transitiv closure?

Algorithm Is this algorithm correct?

procedure Warshall (var A : adjacency matrix)
Input : graph given by its adjacency matrix (A[i , j]) ∈ Booln×n

begin
for i := 1 to n do

for j := 1 to n do
for k := 1 to n do

if (A[i , k] = 1) and (A[k , j] = 1) then
A[i , j] := 1

endif
endfor

endfor
endfor

end
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Dynamic Programming Warshall’s algorithm

Correctness of Warshall

Correctness of Warshall’s algorithm follows from the following invariant:

1 After the k-th excecution of the body of the for-loop, we have:
A[i , j] = 1, if there is a path from i to j with intermediate nodes from
1, . . . , k .

Important: the outermost loop runs over k!

2 If A[i , j] is set to 1, then there exists a path from i to j .

If the 0/1-entries in the adjacency matrix are replaced from edge weights,
one obtains Floyd’s algorithm for computing shortest paths:
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Dynamic Programming Floyd’s algorithm

Floyd-algorithm

Algorithm Floyd: all shortest paths in a graph

procedure Floyd (var A : adjacency matrix)
Input : edge-weighted graph given by its adjacency matrix A[i , j] ∈

(N ∪∞)n×n, where A[i , j] = ∞ means that there is no edge from i to j .
begin

for k := 1 to n do
for i := 1 to n do

for j := 1 to n do
A[i , j] := min{A[i , j],A[i , k] + A[k , j]};

endfor
endfor

endfor
end
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Dynamic Programming Floyd’s algorithm

Floyd-algorithm

Floyd’s algorithm computes correct results also for graphs with negative
weights provide that there do not exist cycles with negative total weight.

Running time of Warshall and Floyd: Θ(n3).

”
Improvement“ by testing before the j-loop, whether A[i , k] = 1 (resp.,
A[i , k] < ∞) holds.

This yields a running time of O(n3):
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Dynamic Programming Floyd’s algorithm

Floyd’s algorithm

Algorithm Floyd’s algorithm in O(n3)

procedure Floyd (var A : adjacency matrix)
Input : adjacency matrix A[i , j] ∈ (N ∪∞)n×n

begin
for k := 1 to n do

for i := 1 to n do
if A[i , k] < ∞ then

for j := 1 to n do
A[i , j] := min{A[i , j],A[i , k] + A[k , j]};

endfor
endif

endfor
endfor

end
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Dynamic Programming Floyd’s algorithm

Floyd’s algorithm

Algorithm Floyd’s algorithm for negative cycles

procedure Floyd (var A : adjacency matrix)
Input : adjacency matrix A[i , j] ∈ (Z ∪ {∞,−∞})n×n

begin
for k := 1 to n do

for i := 1 to n do
if A[i , k] < ∞ then

for j := 1 to n do
if A[k , j] < ∞ then

if A[k , k] < 0 then A[i , j] := −∞
else A[i , j] := min{A[i , j],A[i , k] + A[k , j]}

endif
endif

endfor endif endfor endfor
end
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Dynamic Programming Transitiv closure and matrix multiplication

Transitiv closure and matrix multiplication

Let A = (ai ,j)1≤i ,j≤n be the adjacency matrix of a directed graph with
node set {1, . . . , n}, i.e.,

ai ,j =

{

1 if there is an edge from i to j

0 otherwise

Warshall’s algorithm computes the reflexive and transitive closure A∗ in
time O(n3).

Here, A∗ =
∑

k≥0 A
k , where A0 = In is the identity matrix and ∨ (boolean

or) is taken for the addition of boolean matrices .

We add as follows: 0 + 0 = 0, 0 + 1 = 1 + 0 = 1 + 1 = 1.

By induction we get: Ak(i , j) = 1 ⇐⇒ ∃ path of length k from i to j .

This yields A∗ =
∑n−1

k=0 A
k .
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Dynamic Programming Transitiv closure and matrix multiplication

Transitiv closure and matrix multiplication

Let B = In + A. We get A∗ = Bm for all m ≥ n − 1.

It therefore suffices to square the matrix ⌈log2(n − 1)⌉ times in order to
compute A∗.

Let M(n) be the time needed to multiply two boolean n × n-matrices and
let T (n) be the time needed to compute the reflexive and transitive
closure.

We have

T (n) ∈ O(M(n) · log n).

Using Strassen’s algorithm, we get for all ε > 0:

T (n) ∈ O(nlog2(7)+ε).
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Dynamic Programming Transitiv closure and matrix multiplication

Matrix multiplication ≤ transitiv closure

Under the plausible assumption that T (3n) ∈ O(T (n)) we get
M(n) ∈ O(T (n)):

For all boolean matrices A and B we have:




0 A 0
0 0 B
0 0 0





∗

=





In A AB
0 In B
0 0 In



 .

Under the also plausible assumption that M(2n) ≥ (2 + ε)M(n) for an
ε > 0, we can show that also T (n) ∈ O(M(n)).

Hence: The computation of the reflexive and transitive closure is up to
constant factors equally expensive as matrix multiplication.
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Dynamic Programming Transitiv closure and matrix multiplication

Computation of the transitiv closure

Input: E ∈ Bool(n × n)

Divide E into 4 submatrices A,B ,C ,D such that A and D are square
matrices and each of the 4 matrices has size roughly n/2× n/2:

E =

(

A B
C D

)

.

Compute recursively D∗:
Time: T (n/2).

Compute F = A+ BD∗C :
Time: O(M(n/2)) ≤ O(M(n)).

Compute recursively F ∗:
Time: T (n/2).

Set

E ∗ =

(

F ∗ F ∗BD∗

D∗CF ∗ D∗ + D∗CF ∗BD∗

)

.
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Dynamic Programming Transitiv closure and matrix multiplication

Computation of the transitiv closure

We obtain the recurrence

T (n) ≤ 2T (n/2) + c ·M(n) for some c > 0.

This yields

T (n) ≤ c ·
(

∑

i≥0 2
i ·M(n/2i )

)

(by induction)

≤ c ·∑i≥0

(

2
2+ε

)i

·M(n) (da M(n/2) ≤ 1
2+εM(n))

∈ O(M(n)).
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