
Algorithms I

Markus Lohrey

Universität Siegen

Wintersemester 2020/2021

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 1 / 194

Overview, Literature

See https://www.eti.uni-siegen.de/ti/lehre/ws2021/algo1/ for
slides, videos, exercise sheets, etc.

Overview:

1 Basics

2 Divide & Conquer

3 Sorting

4 Greedy algorithms

5 Dynamic programming

6 Graph algorithms

Literature:

Cormen, Leiserson Rivest, Stein. Introduction to Algorithms (3.
Auflage); MIT Press 2009

Schöning, Algorithmik. Spektrum Akademischer Verlag 2001

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 2 / 194

https://www.eti.uni-siegen.de/ti/lehre/ws2021/algo1/

Basics

Landau Symbols

Let f , g : N → N be functions.

g ∈ O(f) ⇔ ∃c > 0 ∃n0 ∀n ≥ n0 : g(n) ≤ c · f (n)
In other words: g is not growing faster than f .

g ∈ o(f) ⇔ ∀c > 0 ∃n0 ∀n ≥ n0 : g(n) ≤ c · f (n)
In other words: g is growing strictly slower than f .

g ∈ Ω(f) ⇔ f ∈ O(g)
In other words: g is growing at least as fast than f .

g ∈ ω(f) ⇔ f ∈ o(g)
In other words: g is growing strictly faster than f .

g ∈ Θ(f) ⇔ (f ∈ O(g) ∧ g ∈ O(f))
In other words: g and f have the same asymptotic growth.

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 3 / 194

Basics

Landau Symbols

Reformulation of g ∈ o(f) (assuming that f (n) > 0 for all n ∈ N):

∀c > 0 ∃n0 ∀n ≥ n0 :
g(n)

f (n)
≤ c .

This means that limn→∞
g(n)
f (n) = 0.

Examples:

2n ∈ Θ(n)

2n /∈ o(n)

2n ∈ o(n2)

loga(n) ∈ O(logb(n)) for all real numbers a, b > 1

(loga(n))
k ∈ o(nǫ) for all a, k > 1 and ǫ > 0

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 4 / 194

Basics

Logarithms

We assume some familiarity with logarithms.

Recall that following laws for all b, c > 1 and x , y ≥ 0:

blogb x = x

logb(x · y) = logb(x) + logb(y)

logb(x
y) = y · logb(x)

logb(x) =
logc(x)

logc(b)

Due to the last fact, we can write O(log n) instead of O(logb n) (and
similarly for Ω, Θ, o, and ω.

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 5 / 194

Basics

Some important formulas

Geometric sum:
n
∑

k=0

xk =
1− xn+1

1− x
for all x ∈ R

Geometric series:

∞
∑

k=0

xk =
1

1− x
for all x ∈ R with |x | < 1

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 6 / 194

Basics

Jensen’s Inequality

Let f : D → R be a function, where D ⊆ R is an interval.

f is convex if for all x , y ∈ D and all 0 ≤ λ ≤ 1,
f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y).

f (z)

x λx + (1− λ)y y

f (λx + (1− λ)y)

λf (x) + (1− λ)f (y)

z

f (z)

f is concave if for all x , y ∈ D and all 0 ≤ λ ≤ 1,
f (λx + (1− λ)y) ≥ λf (x) + (1− λ)f (y).

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 7 / 194

Basics

Jensen’s Inequality

Jensen’s inequality

If f is convex, then for all x1, . . . , xn ∈ D and all λ1, . . . , λn ≥ 0 with
λ1 + · · · + λn = 1:

f

(n
∑

i=1

λi · xi
)

≤
n
∑

i=1

λi · f (xi).

If f is concave, then for all x1, . . . , xn ∈ D and all λ1, . . . , λn ≥ 0 with
λ1 + · · · + λn = 1:

f

(n
∑

i=1

λi · xi
)

≥
n
∑

i=1

λi · f (xi).

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 8 / 194

Basics

Complexity measures

We describe the running time of an algorithm A as a function in the input
length n.

Standard: Worst case complexity

Maximal running time on all inputs of length n:

tA,worst(n) = max{tA(x) | x ∈ Xn},

where Xn = {x | |x | = n}.

Criticism: Unrealistic, since in practice worst-case inputs might not arise.

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 9 / 194

Basics

Complexity measures

Alternative: average case complexity.

Needs a probability distribution on Xn.

Standard: uniform distribution, i.e., Prob(x) = 1
|Xn|

.

Average running time:

tA,∅(n) =
∑

x∈Xn

Prob(x) · tA(x)

=
1

|Xn|
∑

x∈Xn

tA(x) (for uniform distribution)

Problem: Difficult to analyse

Example: quicksort

Worst case number of comparisons of quicksort: tQ(n) ∈ Θ(n2).

Average number of comparisons: tQ,∅(n) = 1.38n log n

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 10 / 194

Basics

Machine models: Turing machines

The Turing machine (TM) is a very simple and mathematically easy to
define model of computation.

But: memory access (i.e., moving head to a certain symbol on the tape) is
very time-consuming on a Turing machine and not realistic.

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 11 / 194

Basics

Machine models: Register machine (RAM)

RAM

IC ✲ Program

Storage

0 = Akku

1 = 1.Reg

2 = 2.Reg

3 = 3.Reg

4 = 4.Reg

.

.

.

x1 x2 x3 x4 x5 x6 x7 x8 x9 . . .
Input READ ONLY

y1 y2 y3 y4 y5 y6 y7 y8 y9 . . .
Output WRITE ONLY

Assumption: Elementary operations (e.g., the arithmetic operations
+,×,−, DIV, comparison, bitwise AND and OR) need a single
computation step.

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 12 / 194

Divide & Conquer

Overview

Solving recursive equations

Mergesort

Fast multiplication of integers

Matrix multiplication a la Strassen

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 13 / 194

Divide & Conquer

Divide & Conquer: basic idea

As a first major design principle for algorithms, we will see Divide &
Conquer:

Basic idea:

Divide the input into several parts (usually of roughly equal size)

Solve the problem on each part separately (recursion).

Construct the overall solution from the sub-solutions.

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 14 / 194

Divide & Conquer

Recursive equations

Divide & Conquer leads in a very natural way to recursive equations.

Assumptions:

Input of length n will be split into a many parts of size n/b.

Dividing the input and merging the sub-solutions takes time g(n).

For an input of length 1 the computation time is g(1).

This leads to the following recursive equation for the computation time:

t(1) = g(1)

t(n) = a · t(n/b) + g(n)

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 15 / 194

Divide & Conquer

Recursive equations

Technical probem: What happens, if n is not divisible by b?

Solution 1: Replace n/b by ⌈n/b⌉.
Solution 2: Assume that n = bk for some k ≥ 0.

If this does not hold: Stretch the input.

For every n ≥ 1 there exists a k ≥ 0 with n ≤ bk < b · n.
If n is of the form bk this is clear.

Otherwise, there exists a unique k such that bk−1 < n < bk .

Hence, n < bk = b · bk−1 < b · n.

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 16 / 194

Divide & Conquer

Solving simple recursive equations

Theorem 1

Let a, b ∈ N and b > 1, g : N −→ N and assume the following equations:

t(1) = g(1)

t(n) = a · t(n/b) + g(n)

Then for all n = bk (i.e., k = logb(n)):

t(n) =

k
∑

i=0

ai · g
(n

bi

)

.

Proof: Induction over k .

k = 0 : We have n = b0 = 1 and t(1) = g(1).

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 17 / 194

Divide & Conquer

Solving simple recursive equations

k > 0 : By induction we have

t
(n

b

)

=

k−1
∑

i=0

ai · g
(n

bi+1

)

.

Hence:

t(n) = a · t
(n

b

)

+ g(n)

= a

(

k−1
∑

i=0

ai · g
(n

bi+1

)

)

+ g(n)

=

k
∑

i=1

ai · g
(n

bi

)

+ a0g
(n

b0

)

=
k
∑

i=0

ai · g
(n

bi

)

.

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 18 / 194

Divide & Conquer

Master theorem I

Theorem 2 (Master theorem I)

Let a, b, c , d ∈ N with b > 1 and assume that

t(1) = d

t(n) = a · t(n/b) + d · nc

Then, for all n of the form bk with k ≥ 0 we have:

t(n) ∈

Θ(nc) if a < bc

Θ(nc log n) if a = bc

Θ(n
log a
log b) if a > bc

Remark: log a
log b = logb a. If a > bc , then logb a > c .

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 19 / 194

Divide & Conquer

Proof of the master theorem I

Let g(n) = dnc . By Theorem 1 we have the following for k = logb n:

t(n) =
k
∑

i=0

ai · d
(n

bi

)c

= d · nc ·
k
∑

i=0

(a

bc

)i

.

Case 1: a < bc

t(n) ≤ d · nc ·
∞
∑

i=0

(a

bc

)i

= d · nc · 1

1− a
bc

∈ O(nc).

Moreover, t(n) ∈ Ω(nc), which implies t(n) ∈ Θ(nc).

Case 2: a = bc

t(n) = (k + 1) · d · nc ∈ Θ(nc log n).

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 20 / 194

Divide & Conquer

Proof of the master theorem I

Case 3: a > bc

t(n) = d · nc ·
k
∑

i=0

(a

bc

)i

= d · nc · (
a
bc
)k+1 − 1
a
bc

− 1

∈ Θ

(

nc ·
(a

bc

)logb(n)
)

= Θ

(

nc · alogb(n)
bc logb(n)

)

= Θ
(

alogb(n)
)

= Θ
(

blogb(a)·logb(n)
)

= Θ
(

nlogb(a)
)

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 21 / 194

Divide & Conquer

Stretching the input is ok

Stretching the input length to a b-power does not change the statement of
the master theorem I.

Formally: Assume that the function t satisfies the following recursive
equation

t(1) = d

t(n) = a · t(n/b) + d · nc

for all n ∈ {bm | m ≥ 0}.
Define the function t ′ : N → N by t ′(n) = t(m), where m is the smallest
number of the form bk with m ≥ n (hence: n ≤ m ≤ bn).

With the master theorem I we get

t ′(n) = t(m) ∈

Θ(mc) = Θ(nc) if a < bc

Θ(mc logm) = Θ(nc log n) if a = bc

Θ(m
log a
log b) = Θ(n

log a
log b) if a > bc

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 22 / 194

Divide & Conquer

Master theorem II

Theorem 3 (Master theorem II)

Let r > 0,
∑r

i=0 αi < 1 and assume that for a constant c,

t(n) ≤
(

r
∑

i=0

t(⌈αin⌉)
)

+ c · n.

Then we have t(n) ∈ O(n).

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 23 / 194

Divide & Conquer

Proof of the master theorem II

Choose ε > 0 and n0 > 0 such that
r
∑

i=0

⌈αin⌉ ≤ (
r
∑

i=0

αi) · n + (r + 1) ≤ (1− ε)n

for all n ≥ n0.

Choose γ such that c ≤ γε and t(n) ≤ γn for all n < n0.

By induction we get for all n ≥ n0:

t(n) ≤
(

r
∑

i=0

t(⌈αin⌉)
)

+ cn

≤
(

r
∑

i=0

γ⌈αin⌉
)

+ cn (induction)

≤ (γ(1 − ε) + c)n

≤ γn

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 24 / 194

Divide & Conquer Mergesort

Mergesort

We want to sort an array A of length n, where n = 2k for some k ≥ 0.

Algorithm mergesort

procedure mergesort(l , r)
var m : integer;
begin

if (l < r) then
m := (r + l) div 2;
mergesort(l ,m);
mergesort(m + 1, r);
merge(l ,m, r);

endif
endprocedure

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 25 / 194

Divide & Conquer Mergesort

Mergesort

Algorithm merge

procedure merge(l ,m, r)
var i , j , k : integer;
begin

i = l ; j := m + 1;
for k := 1 to r − l + 1 do

if i = m + 1 or (i ≤ m and j ≤ r and A[j] ≤ A[i]) then
B [k] := A[j]; j := j + 1

else
B [k] := A[i]; i := i + 1

endif
endfor
for k := 0 to r − l do

A[l + k] := B [k + 1]
endfor

endprocedure
Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 26 / 194

Divide & Conquer Mergesort

Mergesort

Example of merge(l ,m, r):

A 1 3 5 6 8 2 4 7 9 10

l m r

i j

B

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 27 / 194

Divide & Conquer Mergesort

Mergesort

Example of merge(l ,m, r):

A 1 3 5 6 8 2 4 7 9 10

l m r

i j

B 1

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 27 / 194

Divide & Conquer Mergesort

Mergesort

Example of merge(l ,m, r):

A 1 3 5 6 8 2 4 7 9 10

l m r

i j

B 1 2

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 27 / 194

Divide & Conquer Mergesort

Mergesort

Example of merge(l ,m, r):

A 1 3 5 6 8 2 4 7 9 10

l m r

i j

B 1 2 3

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 27 / 194

Divide & Conquer Mergesort

Mergesort

Example of merge(l ,m, r):

A 1 3 5 6 8 2 4 7 9 10

l m r

i j

B 1 2 3 4

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 27 / 194

Divide & Conquer Mergesort

Mergesort

Example of merge(l ,m, r):

A 1 3 5 6 8 2 4 7 9 10

l m r

i j

B 1 2 3 4 5

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 27 / 194

Divide & Conquer Mergesort

Mergesort

Example of merge(l ,m, r):

A 1 3 5 6 8 2 4 7 9 10

l m r

i j

B 1 2 3 4 5 6

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 27 / 194

Divide & Conquer Mergesort

Mergesort

Example of merge(l ,m, r):

A 1 3 5 6 8 2 4 7 9 10

l m r

i j

B 1 2 3 4 5 6 7

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 27 / 194

Divide & Conquer Mergesort

Mergesort

Example of merge(l ,m, r):

A 1 3 5 6 8 2 4 7 9 10

l m r

i j

B 1 2 3 4 5 6 7 8

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 27 / 194

Divide & Conquer Mergesort

Mergesort

Example of merge(l ,m, r):

A 1 3 5 6 8 2 4 7 9 10

l m r

i j

B 1 2 3 4 5 6 7 8 9

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 27 / 194

Divide & Conquer Mergesort

Mergesort

Example of merge(l ,m, r):

A 1 3 5 6 8 2 4 7 9 10

l m r

i j

B 1 2 3 4 5 6 7 8 9 10

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 27 / 194

Divide & Conquer Mergesort

Mergesort

Merge(l ,m, r) works in time O(r − l + 1).

Total runng time of mergesort: tms(n) = 2 · tms(n/2) + d · n for a
constant d .

Master theorem 1 yields tms(n) ∈ Θ(n log n).

We will see later that O(n log n) is asymptotically optimal for sorting
algorithms that are only based on the comparison of elements.

Drawback of Mergesort: no in-place sorting algorithm

A sorting algorithm works in-place, if at every time instant only a
constant number of elements from the input array A is stored outside
of A.

We will see in-place sorting algorithms with a running of O(n log n).

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 28 / 194

Divide & Conquer Multiplication of natural numbers

Multiplication of natural numbers

We want to multiply two n-bit natural numbers, where n = 2k for some
k ≥ 0.

School method: Θ(n2) bit operations.

Alternative approach:

r = A B

s = C D

Here, A (C) are the first n/2 bits and B (D) are the last n/2 bits of r (s),
i.e.,

r = A 2n/2 + B ; s = C 2n/2 + D

r s = AC 2n + (AD + B C) 2n/2 + B D

Master theorem I: tmult(n) = 4 · tmult(n/2) + Θ(n) ∈ Θ(n2)
No improvement!
Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 29 / 194

Divide & Conquer Multiplication of natural numbers

Fast multiplication by A. Karatsuba, 1960

Compute recursively AC , (A − B)(D − C) and BD.

Then, we get

rs = AC 2n + AD 2n/2 + B C 2n/2 + B D

= AC 2n + AD 2n/2 − B D 2n/2 − AC 2n/2 + B C 2n/2

+B D 2n/2 + AC 2n/2 + B D

= AC 2n + (A− B) (D − C) 2n/2 + (B D + AC) 2n/2 + B D

By the master theorem I, the total number of bit operations is:

tmult(n) = 3 · tmult(n/2) + Θ(n) ∈ Θ(n
log 3
log 2) = Θ(n1.58496...).

Using divide & conquer we reduced the exponent from 2 (school method)
to 1.58496... .

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 30 / 194

Divide & Conquer Multiplication of natural numbers

How fast can we multiply?

In 1971, Arnold Schönhage and Volker Strassen presented an algorithm
which multiplies two n-bit number in time O(n log n log log n) on a
multitape Turing-machine.

The Schönhage-Strassen algorithm uses the so-called fast Fourier
transformation (FFT); see Algorithms II.

In practice, the Schönhage-Strassen algorithm beats Karatsuba’s algorithm
for numbers with approx. 10.000 digits.

In 2019, Harvey and van der Hoeven finally came up with a multiplication
algorithm running in time O(n log n).
https://hal.archives-ouvertes.fr/hal-02070778/document

https://web.maths.unsw.edu.au/~davidharvey/papers/nlogn/

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 31 / 194

https://hal.archives-ouvertes.fr/hal-02070778/document
https://web.maths.unsw.edu.au/~davidharvey/papers/nlogn/

Divide & Conquer Matrix multiplication

Matrix multiplication using naive divide & conquer

Let A = (ai ,j)1≤i ,j≤n and B = (bi ,j)1≤i ,j≤n be two (n × n)-matrices.

For the product matrix AB = (ci ,j)1≤i ,j≤n = C we have

ci ,j =
n
∑

k=1

ai ,kbk,j

 Θ(n3) scalar multiplications.

Divide & conquer: A,B are divided in 4 submatrices of roughly equal size.
Then, the product AB = C can be computed as follows:

(

A11

A21

A12

A22

) (

B11

B21

B12

B22

)

=

(

C11

C21

C12

C22

)

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 32 / 194

Divide & Conquer Matrix multiplication

Matrix multiplication using naive divide-and-conquer

(

A11

A21

A12

A22

) (

B11

B21

B12

B22

)

=

(

C11

C21

C12

C22

)

where

C11 = A11B11 + A12B21

C12 = A11B12 + A12B22

C21 = A21B11 + A22B21

C22 = A21B12 + A22B22

We get

t(n) = 8 · t(n/2) + Θ(n2) ∈ Θ(n3).

No improvement!

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 33 / 194

Divide & Conquer Matrix multiplication

Matrix multiplication by Volker Strassen (1969)

Compute the product of two 2× 2 matrices with 7 multiplications:

M1 := (A12 − A22)(B21 + B22)

M2 := (A11 + A22)(B11 + B22)

M3 := (A11 − A21)(B11 + B12)

M4 := (A11 + A12)B22

M5 := A11(B12 − B22)

M6 := A22(B21 − B11)

M7 := (A21 + A22)B11

C11 = M1 +M2 −M4 +M6

C12 = M4 +M5

C21 = M6 +M7

C22 = M2 −M3 +M5 −M7

Running time: t(n) = 7 · t(n/2) + Θ(n2).

Master theorem I (a = 7, b = 2, c = 2):

t(n) ∈ Θ(nlog2 7) = Θ(n2,81...) .

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 34 / 194

Divide & Conquer Matrix multiplication

The story of fast matrix multiplication

Strassen 1969: n2,81...

Pan 1979: n2,796...

Bini, Capovani, Romani, Lotti 1979: n2,78...

Schönhage 1981: n2,522...

Romani 1982: n2,517...

Coppersmith, Winograd 1981: n2.496...

Strassen 1986: n2,479...

Coppersmith, Winograd 1987: n2.376...

Stothers 2010: n2,374...

Williams 2014: n2,372873...

Le Gall 2014: n2,3728639...

Alman, Williams 2020: n2,3728596...

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 35 / 194

Sorting

Overview

Lower bounds for comparison-based sorting algorithms

Quicksort

Heapsort

Sorting in linearer time

Median computation

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 36 / 194

Sorting Lower bound for comparison-based sorting algorithms

Comparison-based sorting algorithms

A sorting algorithm is comparison-based if the elements of the input array
belong to a data type that only supports the comparison of two elements.

We assume in the following considerations that the input array A[1, . . . , n]
has the following properties:

A[i] ∈ {1, . . . , n} for all 1 ≤ i ≤ n.

A[i] 6= A[j] for i 6= j

In other words: The input is a permutation of the list [1, 2, . . . , n].

The sorting algorithm has to sort this list.

Another point of view: The sorting algorithm has to compute the
permutation [i1, i2, . . . , in] such that A[ik] = k for all 1 ≤ k ≤ n.

Example: On input [2, 3, 1] the output should be [3, 1, 2].

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 37 / 194

Sorting Lower bound for comparison-based sorting algorithms

Lower bound for the worst case

Theorem 4

For every comparison-based sorting algorithm and every n there exists an
array of length n, on which the algorithm makes at least

n log2(n)− log2(e)n ≥ n log2(n)− 1, 443n

many comparisons.

Proof: We execute the algorithm on an array A[1, . . . , n] without knowing
the concrete values A[i].

This yields a decision tree that can be constructed as follows:

Assume that the algorithm compares A[i] and A[j] in the first step.

We label the root of the decision tree with i : j .

The left (right) subtree is obtained by continuing the algorithm under the
assumption that A[i] < A[j] (A[i] > A[j]).
Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 38 / 194

Sorting Lower bound for comparison-based sorting algorithms

Lower bound for the worst case

This yields a binary tree with n! many leaves because every input
permutation must lead to a different leaf.

Example: Here is a decision tree for sorting an array of length 3.

2 : 3

1 : 2 1 : 3

1, 2, 3 1 : 3

2, 1, 3 2, 3, 1

1, 3, 2 1 : 2

3, 1, 2 3, 2, 1

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 39 / 194

Sorting Lower bound for comparison-based sorting algorithms

Lower bound for the worst case

Note: The depth (= max. number of edges on a path from the root to a
leaf) of the decision tree is the maximal number of comparisons of the
algorithm on an input array of length n.

A binary tree with N leaves has depth ≥ log2(N).

Stirling’s formula (we only need n! >
√
2πn (n/e)n) implies

log2(n!) ≥ log2(
√
2πn (n/e)n))

= n log2(n)− log2(e)n +Θ(log n)

≥ n log2(n)− 1, 443n.

Thus, there exists an input array for which the algorithm makes at least
n log2(n)− 1, 443n many comparisons.

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 40 / 194

Sorting Lower bound for comparison-based sorting algorithms

Lower bound for the average case

A comparison-based sorting algorithm even makes n log2(n)− 2, 443n
many comparisons on almost all input permutations of [1, . . . , n].

Theorem 5

For every comparison-based sorting algorithm and every n the following
holds: The portion of all permutations of [1, . . . , n] on which the algorithm
makes at least

log2(n!)− n ≥ n log2(n)− 2, 443n

many comparisons is at least 1− 2−n+1.

For the proof we need the following simple lemma.

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 41 / 194

Sorting Lower bound for comparison-based sorting algorithms

Lower bound for the average case

Lemma 6

Let A ⊆ {0, 1}∗ with |A| = N, and let 1 ≤ n < log2(N). Then, at least
(1− 2−n+1) · N many words in A have length ≥ log2(N) − n.

Proof:

Case 1. N = 2m for some m.

Let M be the number of w ∈ {0, 1}∗ with |w | < log2(N)− n = m − n.

M ≤
m−n
∑

k=0

2k = 2m−n+1 − 1 < 2−n+1 · 2m = 2−n+1 · N

Hence, at least

N −M > N − 2−n+1 · N = (1− 2−n+1) · N

words in A have length ≥ log2(N)− n.
Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 42 / 194

Sorting Lower bound for comparison-based sorting algorithms

Lower bound for the average case

Case 2. N is not of the form 2m.

Let us write N = 2m + r with 0 < r < 2m.

Let M be the number of w ∈ {0, 1}∗ with |w | ≤ ⌊log2(N)⌋ − n = m − n.

M ≤
m−n
∑

k=0

2k = 2m−n+1 − 1 < 2−n+1 · 2m < 2−n+1 · N

Hence, at least

N −M > N − 2−n+1 · N = (1− 2−n+1) · N

words in A have length ≥ ⌊log2(N)⌋ + 1− n ≥ log2(N)− n.

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 43 / 194

Sorting Lower bound for comparison-based sorting algorithms

Lower bound for the average case

Consider again the decision tree. It has n! leaves, and every leaf
corresponds to a permutation of [1, . . . , n].

Thus, each of the n! many permutations can be encoded by a word over
the alphabet {0, 1}:

0 means: go in the decision tree to the left child.

1 means: go in the decision tree to the right child.

By Lemma 6 (with N = n!), the decision tree has at least (1− 2−n+1) · n!
many root-leaf paths of length ≥ log2(n!)− n ≥ n · log2(n)− 2, 443n.

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 44 / 194

Sorting Lower bound for comparison-based sorting algorithms

Lower bound for the average case

Corollary

Every comparison-based sorting algorithm makes on average at least
n log2(n)− 2, 443n many comparisons when sorting a random permutation
of [1, . . . , n] (for n large enough).

Proof: Due to Theorem 5 at least

(1− 2−n+1) · (log2(n!)− n) + 2−n+1 =

log2(n!)− n − log2(n!)− n − 1

2n−1
≥

n log2(n)− 2, 443n +Θ(log2 n)−
log2(n!)− n − 1

2n−1
≥

n log2(n)− 2, 443n

many comparisons are done in the average.

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 45 / 194

Sorting Quicksort

Quicksort

The Quicksort-algorithm (Tony Hoare, 1962):

Choose an array-element P = A[p] (the pivot element).

Partitioning: Permute the array entries such that on the left (resp.,
right) of the pivot element P all elements are ≤ P (resp., > P)
(needs n − 1 comparisons).

Apply the algorithm recursively to the subarrays to the left and right
of the pivot element.

Critical: choice of the pivot elements.

Running time is optimal, if the pivot element is the middle element of
the array entries {A[1], . . . ,A[n]} (median).

Good choice in practice: median-out-of-three

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 46 / 194

Sorting Quicksort

Partitioning

First, we present a procedure for partitioning a subarray A[ℓ, . . . , r] with
respect to a pivot element P = A[p], where ℓ < r and ℓ ≤ p ≤ r .

The procedure returns an index m ∈ {ℓ, . . . , r} with the following
properties:

A[m] = P

A[k] ≤ P for all ℓ ≤ k ≤ m − 1

A[k] > P for all m + 1 ≤ k ≤ r

swap(i , j) swaps the array entries at positions i and j :
x := A[i]; A[i] := A[j]; A[j] := x

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 47 / 194

Sorting Quicksort

Partitioning

Algorithm Partition

function partition(A[ℓ . . . r] : array of integer, p : integer) : integer
begin

swap(p, r);
P := A[r];
i := ℓ− 1;
for j := ℓ to r − 1 do

if A[j] ≤ P then
i := i + 1;
swap(i , j)

endif
endfor
swap(i + 1, r)
return i + 1

endfunction

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 48 / 194

Sorting Quicksort

Partitioning

Note: partition(A[ℓ . . . r]) makes r − ℓ many comparisons.

Example with P = 5.

A 4 8 1 7 2 3 9 6 4 5

l r

i j

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 49 / 194

Sorting Quicksort

Partitioning

Note: partition(A[ℓ . . . r]) makes r − ℓ many comparisons.

Example with P = 5.

A 4 8 1 7 2 3 9 6 4 5

l r

i j

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 49 / 194

Sorting Quicksort

Partitioning

Note: partition(A[ℓ . . . r]) makes r − ℓ many comparisons.

Example with P = 5.

A 4 8 1 7 2 3 9 6 4 5

l r

i j

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 49 / 194

Sorting Quicksort

Partitioning

Note: partition(A[ℓ . . . r]) makes r − ℓ many comparisons.

Example with P = 5.

A 4 8 1 7 2 3 9 6 4 5

l r

i j

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 49 / 194

Sorting Quicksort

Partitioning

Note: partition(A[ℓ . . . r]) makes r − ℓ many comparisons.

Example with P = 5.

A 4 8 1 7 2 3 9 6 4 5

l r

i j

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 49 / 194

Sorting Quicksort

Partitioning

Note: partition(A[ℓ . . . r]) makes r − ℓ many comparisons.

Example with P = 5.

A 4 1 8 7 2 3 9 6 4 5

l r

i j

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 49 / 194

Sorting Quicksort

Partitioning

Note: partition(A[ℓ . . . r]) makes r − ℓ many comparisons.

Example with P = 5.

A 4 1 8 7 2 3 9 6 4 5

l r

i j

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 49 / 194

Sorting Quicksort

Partitioning

Note: partition(A[ℓ . . . r]) makes r − ℓ many comparisons.

Example with P = 5.

A 4 1 8 7 2 3 9 6 4 5

l r

i j

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 49 / 194

Sorting Quicksort

Partitioning

Note: partition(A[ℓ . . . r]) makes r − ℓ many comparisons.

Example with P = 5.

A 4 1 8 7 2 3 9 6 4 5

l r

i j

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 49 / 194

Sorting Quicksort

Partitioning

Note: partition(A[ℓ . . . r]) makes r − ℓ many comparisons.

Example with P = 5.

A 4 1 2 7 8 3 9 6 4 5

l r

i j

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 49 / 194

Sorting Quicksort

Partitioning

Note: partition(A[ℓ . . . r]) makes r − ℓ many comparisons.

Example with P = 5.

A 4 1 2 7 8 3 9 6 4 5

l r

i j

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 49 / 194

Sorting Quicksort

Partitioning

Note: partition(A[ℓ . . . r]) makes r − ℓ many comparisons.

Example with P = 5.

A 4 1 2 7 8 3 9 6 4 5

l r

i j

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 49 / 194

Sorting Quicksort

Partitioning

Note: partition(A[ℓ . . . r]) makes r − ℓ many comparisons.

Example with P = 5.

A 4 1 2 3 8 7 9 6 4 5

l r

i j

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 49 / 194

Sorting Quicksort

Partitioning

Note: partition(A[ℓ . . . r]) makes r − ℓ many comparisons.

Example with P = 5.

A 4 1 2 3 8 7 9 6 4 5

l r

i j

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 49 / 194

Sorting Quicksort

Partitioning

Note: partition(A[ℓ . . . r]) makes r − ℓ many comparisons.

Example with P = 5.

A 4 1 2 3 8 7 9 6 4 5

l r

i j

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 49 / 194

Sorting Quicksort

Partitioning

Note: partition(A[ℓ . . . r]) makes r − ℓ many comparisons.

Example with P = 5.

A 4 1 2 3 8 7 9 6 4 5

l r

i j

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 49 / 194

Sorting Quicksort

Partitioning

Note: partition(A[ℓ . . . r]) makes r − ℓ many comparisons.

Example with P = 5.

A 4 1 2 3 8 7 9 6 4 5

l r

i j

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 49 / 194

Sorting Quicksort

Partitioning

Note: partition(A[ℓ . . . r]) makes r − ℓ many comparisons.

Example with P = 5.

A 4 1 2 3 4 7 9 6 8 5

l r

ji

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 49 / 194

Sorting Quicksort

Partitioning

Note: partition(A[ℓ . . . r]) makes r − ℓ many comparisons.

Example with P = 5.

A 4 1 2 3 4 5 9 6 8 7

l r

i + 1

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 49 / 194

Sorting Quicksort

Correctness of partitioning

The following invariants hold before every iteration of the for-loop:

A[r] = P

A[k] ≤ P for all ℓ ≤ k ≤ i

A[k] > P for all i + 1 ≤ k ≤ j − 1

These invariants trivially hold before the first iteration of the for-loop,
when i = ℓ− 1 and j = ℓ.

Assume now that the above invariant holds before a certain iteration of the
for-loop and let A′, i ′, j ′ = j +1 be the values of A, i , j after the iteration.

Case 1. A[j] > P .

Then A′ = A, i ′ = i and j ′ = j + 1.

In particular A′[j ′ − 1] = A[j] > P .

Hence the invariants also hold for A′, i ′, j ′.
Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 50 / 194

Sorting Quicksort

Correctness of partitioning

Case 2. A[j] ≤ P .

Then i ′ = i + 1, j ′ = j + 1, A′[i ′] = A[j] ≤ P , A′[j ′ − 1] = A[i + 1] and
A′[k] = A[k] for i ′ 6= k 6= j ′ − 1.

Note: if i + 1 ≤ j − 1 (i.e., i ′ + 1 ≤ j ′ − 1) then A′[j ′ − 1] = A[i + 1] > P .

Hence, the above invariants also hold for A′, i ′ and j ′.

Taking the invariants at the end of the for-loop (when j = r) yields:

A[r] = P

A[k] ≤ P for all ℓ ≤ k ≤ i

A[k] > P for all i + 1 ≤ k ≤ r − 1

Hence, after swap(i + 1, r) we have:

A[k] ≤ P for all ℓ ≤ k ≤ i + 1

A[k] > P for all i + 2 ≤ k ≤ r

A[i + 1] = P

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 51 / 194

Sorting Quicksort

Quicksort

Algorithm Quicksort

procedure quicksort(A[ℓ . . . r] : array of integer)
begin

if ℓ < r then
p := index of the median of A[ℓ], A[(ℓ+ r) div 2], A[r];
m := partition(A[ℓ . . . r], p);
quicksort(A[ℓ . . .m − 1]);
quicksort(A[m + 1 . . . r]);

endif
endprocedure

Worst-case running time: O(n2).

The worst-case arises when after each call of partition(A[ℓ . . . r], p), one of
the subarrays (A[ℓ . . .m − 1] or A[m + 1 . . . r]) is empty.
Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 52 / 194

Sorting Quicksort

Quicksort: average case analysis

Average case analysis under the assumption that the pivot element is
chosen randomly.

Alternatively: Input array is chosen randomly.

Let Q(n) be the avergage number of comparisons for an input array of
length n.

Theorem 7

We have Q(n) = 2(n + 1)H(n) − 4n, where

H(n) :=
n
∑

k=1

1

k

is the n-th harmonic number.

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 53 / 194

Sorting Quicksort

Quicksort: average case analysis

Proof:

For n = 0 we have Q(0) = 0 = 2 · 1 · 0− 4 · 0.
For n = 1 we have Q(1) = 0 = 2 · 2 · 1− 4 · 1.
For n ≥ 2 we have:

Q(n) = (n − 1) +
1

n

n
∑

i=1

[Q(i − 1) +Q(n − i)]

= (n − 1) +
2

n

n
∑

i=1

Q(i − 1)

Note:

(n − 1) = number of comparisons for partitioning.
Q(i − 1) +Q(n − i) = average number of comparisons for the
recursive sorting of the two subarrays.
The factor 1/n comes from the fact that every pivot element is
chosen with probability 1/n.

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 54 / 194

Sorting Quicksort

Quicksort: average case analysis

We get:

nQ(n) = n(n− 1) + 2
n
∑

i=1

Q(i − 1)

Hence:

nQ(n)− (n − 1)Q(n − 1) = n(n − 1) + 2
n
∑

i=1

Q(i − 1)

−(n − 1)(n − 2)− 2

n−1
∑

i=1

Q(i − 1)

= n(n − 1)− (n − 2)(n − 1) + 2Q(n − 1)

= 2(n − 1) + 2Q(n − 1)

We obtain:

nQ(n) = 2(n − 1) + 2Q(n − 1) + (n − 1)Q(n − 1)

= 2(n − 1) + (n + 1)Q(n − 1)
Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 55 / 194

Sorting Quicksort

Quicksort: average case analysis

Dividing both sides by n(n + 1) gives:

Q(n)

n + 1
=

2(n − 1)

n(n + 1)
+

Q(n − 1)

n

Using induction on n we get:

Q(n)

n+ 1
=

n
∑

k=1

2(k − 1)

k(k + 1)

= 2

n
∑

k=1

(k − 1)

k(k + 1)

= 2

[

n
∑

k=1

2

k + 1
−

n
∑

k=1

1

k

]

since
2

k + 1
− 1

k
=

(k − 1)

k(k + 1)

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 56 / 194

Sorting Quicksort

Quicksort: average case analysis

Recall that H(n) =
n
∑

k=1

1

k
.

Q(n)

n+ 1
= 2

[

2
n+1
∑

k=2

1

k
−

n
∑

k=1

1

k

]

= 2

[

2

(

1

n+ 1
+ H(n)− 1

)

− H(n)

]

= 2H(n) +
4

n + 1
− 4.

Finally, we get for Q(n):

Q(n) = 2(n + 1)H(n) + 4− 4(n + 1)

= 2(n + 1)H(n) − 4n. �

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 57 / 194

Sorting Quicksort

Quicksort: average case analysis

One has H(n)− ln n ≈ 0,57721 . . . = Euler’s constant. Hence:

Q(n) ≈ 2(n + 1)(0,58 + ln n)− 4n

≈ 2n ln n − 2,8n ≈ 1,38n log2 n − 2,8n.

Theoretical optimum: log2(n!) ≈ n log2 n − 1,44n.

In the average, quicksort is only 38% worse than the optimum.

An average analysis of the media-out-of-three method yields
1,18n log2 n− 2,2n.

It is in the average only 18% worse than the optimum.

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 58 / 194

Sorting Heapsort

Heaps

Definition 8

A (max-)heap is an array A[1 . . . n] with the following properties:

A[i] ≥ A[2i] for all i ≥ 1 with 2i ≤ n

A[i] ≥ A[2i + 1] for all i ≥ 1 with 2i + 1 ≤ n

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 59 / 194

Sorting Heapsort

Heaps

Example:

16 14 10 8 7 9 3 2 4 1

1 2 3 4 5 6 7 8 9 10

16

14 10

8 7 9 3

2 4 1

1

2 3

4 5 6 7

8 9 10

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 60 / 194

Sorting Heapsort

Sinking process

In a first step we will permute the entries of the array A[1, . . . , n] such
that the heap condition is satisfied.

Assume that the subarray A[i + 1, . . . , n] already satisfies the heap
condition.

In order to enforce the heap condition also for i we let A[i] sink:

x

y z

i

2i 2i + 1

With 2 comparisons one can compute max{x , y , z}.

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 61 / 194

Sorting Heapsort

Sinking process

In a first step we will permute the entries of the array A[1, . . . , n] such
that the heap condition is satisfied.

Assume that the subarray A[i + 1, . . . , n] already satisfies the heap
condition.

In order to enforce the heap condition also for i we let A[i] sink:

x

y z

i

2i 2i + 1

With 2 comparisons one can compute max{x , y , z}.
If x is the max., then the sinking process stops.

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 61 / 194

Sorting Heapsort

Sinking process

In a first step we will permute the entries of the array A[1, . . . , n] such
that the heap condition is satisfied.

Assume that the subarray A[i + 1, . . . , n] already satisfies the heap
condition.

In order to enforce the heap condition also for i we let A[i] sink:

x

y z

i

2i 2i + 1

With 2 comparisons one can compute max{x , y , z}.
If y is the max., then x and y are swapped and we continue at 2i .

y

x z

i

2i 2i + 1

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 61 / 194

Sorting Heapsort

Sinking process

In a first step we will permute the entries of the array A[1, . . . , n] such
that the heap condition is satisfied.

Assume that the subarray A[i + 1, . . . , n] already satisfies the heap
condition.

In order to enforce the heap condition also for i we let A[i] sink:

x

y z

i

2i 2i + 1

With 2 comparisons one can compute max{x , y , z}.
If z is the max., then x and z are swapped and we continue at 2i + 1.

z

y x

i

2i 2i + 1

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 61 / 194

Sorting Heapsort

Reheap

Algorithm Reheap

procedure reheap(i , n: integer) (∗ i is the root ∗)
var m: integer;
begin

if i ≤ n/2 then
m := max{A[i],A[2i],A[2i + 1]}; (∗ 2 comparisons! ∗)
if (m 6= A[i]) ∧ (m = A[2i]) then

swap(i , 2i); (∗ swap x , y ∗)
reheap(2i , n)

elsif (m 6= A[i]) ∧ (m = A[2i + 1]) then
swap(i , 2i + 1); (∗ swap x , z ∗)
reheap(2i + 1, n)

endif
endif

endprocedure

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 62 / 194

Sorting Heapsort

Building the heap

Algorithm Build Heap

procedure build-heap(n: integer)
begin

for i :=
⌊

n
2

⌋

downto 1 do
reheap(i , n)

endfor
endprocedure

Invariant: Before the call of reheap(i , n) the subarray A[i + 1, . . . , n]
satisfies the heap condition.

Clearly, this hods for i =
⌊

n
2

⌋

.

Assume that the invariant holds for i .

Thus, the heap condition can only fail for i .

After the sinking process for A[i], the heap condition also holds for i .
Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 63 / 194

Sorting Heapsort

Time analysis for building the heap

Theorem 9

Built-heap runs in time O(n).

Proof: Sinking of A[i] needs 2 · height(subtree under A[i]) comparisons.

We carry out the computation for n = 2k − 1.

Then we have a complete binary tree of height k − 1.

There are

20 trees of height k − 1,

21 trees of height k − 2,
...

2k−1−i trees of height i ,
...

2k−1 trees of height 0.

k = 4

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 64 / 194

Sorting Heapsort

Time analysis for building the heap

Hence, building the heap needs at most

2 ·
k−1
∑

i=0

2k−1−i i = 2k ·
k−1
∑

i=0

i · 2−i ≤ (n + 1) ·
∑

i≥0

i · 2−i

many comparisons.

Claim:
∑

j≥0 j · 2−j = 2

Proof of the claim: For every |z | < 1 we have

∑

j≥0

z j =
1

1− z
.

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 65 / 194

Sorting Heapsort

Time analysis for building the heap

Taking derivatives yields

∑

j≥0

j · z j−1 =
1

(1− z)2
,

and hence

∑

j≥0

j · z j = z

(1− z)2
.

Setting z = 1/2 yields
∑

j≥0

j · 2−j = 2.

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 66 / 194

Sorting Heapsort

Standard Heapsort (W. J. Williams, 1964)

Algorithm Heapsort

procedure heapsort(n: integer)
begin

build-heap(n)
for i := n downto 2 do

swap(1, i);
reheap(1, i − 1)

endfor
endprocedure

Theorem 10

Standard Heapsort sorts an array with n elements and needs at most
2n log2 n+O(n) comparisons.

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 67 / 194

Sorting Heapsort

Standard Heapsort

Proof:

Correctness: After build-heap(n), A[1] is the maximal element of the
array.

This element will be moved with swap(1, n) to its correct position (n).

By induction, the subarray A[1, . . . , n − 1] will be sorted in the remaining
steps.

Running time: Building the heap needs O(n) comparison. Each of the
remaining n− 1 many reheap-calls needs at most 2 log2 n comparisons.

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 68 / 194

Sorting Heapsort

Example for Standard Heapsort

1 2 3 4 5 6 7 8 9 10

10

9 8

6 5 7 3

2 4 1

1

2 3

4 5 6 7

8 9 10

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 69 / 194

Sorting Heapsort

Example for Standard Heapsort

10

1 2 3 4 5 6 7 8 9 10

1

9 8

6 5 7 3

2 4

1

2 3

4 5 6 7

8 9

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 69 / 194

Sorting Heapsort

Example for Standard Heapsort

10

1 2 3 4 5 6 7 8 9 10

9

1 8

6 5 7 3

2 4

1

2 3

4 5 6 7

8 9

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 69 / 194

Sorting Heapsort

Example for Standard Heapsort

10

1 2 3 4 5 6 7 8 9 10

9

6 8

1 5 7 3

2 4

1

2 3

4 5 6 7

8 9

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 69 / 194

Sorting Heapsort

Example for Standard Heapsort

10

1 2 3 4 5 6 7 8 9 10

9

6 8

4 5 7 3

2 1

1

2 3

4 5 6 7

8 9

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 69 / 194

Sorting Heapsort

Example for Standard Heapsort

9 10

1 2 3 4 5 6 7 8 9 10

1

6 8

4 5 7 3

2

1

2 3

4 5 6 7

8

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 69 / 194

Sorting Heapsort

Example for Standard Heapsort

9 10

1 2 3 4 5 6 7 8 9 10

8

6 1

4 5 7 3

2

1

2 3

4 5 6 7

8

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 69 / 194

Sorting Heapsort

Example for Standard Heapsort

9 10

1 2 3 4 5 6 7 8 9 10

8

6 7

4 5 1 3

2

1

2 3

4 5 6 7

8

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 69 / 194

Sorting Heapsort

Example for Standard Heapsort

8 9 10

1 2 3 4 5 6 7 8 9 10

2

6 7

4 5 1 3

1

2 3

4 5 6 7

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 69 / 194

Sorting Heapsort

Example for Standard Heapsort

8 9 10

1 2 3 4 5 6 7 8 9 10

7

6 2

4 5 1 3

1

2 3

4 5 6 7

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 69 / 194

Sorting Heapsort

Example for Standard Heapsort

8 9 10

1 2 3 4 5 6 7 8 9 10

7

6 3

4 5 1 2

1

2 3

4 5 6 7

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 69 / 194

Sorting Heapsort

Example for Standard Heapsort

7 8 9 10

1 2 3 4 5 6 7 8 9 10

2

6 3

4 5 1

1

2 3

4 5 6

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 69 / 194

Sorting Heapsort

Example for Standard Heapsort

7 8 9 10

1 2 3 4 5 6 7 8 9 10

6

2 3

4 5 1

1

2 3

4 5 6

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 69 / 194

Sorting Heapsort

Example for Standard Heapsort

7 8 9 10

1 2 3 4 5 6 7 8 9 10

6

5 3

4 2 1

1

2 3

4 5 6

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 69 / 194

Sorting Heapsort

Example for Standard Heapsort

6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1

5 3

4 2

1

2 3

4 5

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 69 / 194

Sorting Heapsort

Example for Standard Heapsort

6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

5

1 3

4 2

1

2 3

4 5

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 69 / 194

Sorting Heapsort

Example for Standard Heapsort

6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

5

4 3

1 2

1

2 3

4 5

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 69 / 194

Sorting Heapsort

Example for Standard Heapsort

5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

2

4 3

1

1

2 3

4

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 69 / 194

Sorting Heapsort

Example for Standard Heapsort

5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

4

2 3

1

1

2 3

4

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 69 / 194

Sorting Heapsort

Example for Standard Heapsort

4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1

2 3

1

2 3

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 69 / 194

Sorting Heapsort

Example for Standard Heapsort

4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

3

2 1

1

2 3

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 69 / 194

Sorting Heapsort

Example for Standard Heapsort

3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1

2

1

2

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 69 / 194

Sorting Heapsort

Example for Standard Heapsort

3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

2

1

1

2

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 69 / 194

Sorting Heapsort

Example for Standard Heapsort

2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1
1

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 69 / 194

Sorting Heapsort

Example for Standard Heapsort

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 69 / 194

Sorting Heapsort

Bottom-Up Heapsort

Remark: An analysis of the average case complexity of Heapsort yields
2n log2 n many comparisons in the average. Hence, standard Heapsort
cannot compete with Quicksort.

Bottom-up Heapsort needs significantly fewer comparisons.

After swap(1, i) one first determines the potential path from the root to a
leaf along which the elemente A[i] will sink; the sink path.

For this, one follows the path that always goes to the larger child. This
needs at most log n instead of 2 log2 n comparisons.

In most cases, A[i] will sink deep into the heap. It is therefore more
efficient to compute the actual position of A[i] on the sink path
bottom-up.

The hope is that the bottom-up computations need in total only O(n)
comparisons.

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 70 / 194

Sorting Heapsort

The sink path

x0

x1 y1
>

y2 x2
<

y3 x3
<

...

xk−1

xk yk
>

Elements will sink along the path [x0, x1, x2, . . . , xk−1, xk] which can be
computed with only log2 n comparisons.

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 71 / 194

Sorting Heapsort

Finding the right position on the sink path

We now compute the correct position p on the sink path starting from the
leaf and going up.

If this position p is found, then all elements x0, . . . , xp have to be rotated
cyclically (x0 goes to the position of xp, and every x1, . . . , xp moves up one
position).

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 72 / 194

Sorting Heapsort

Finding the right position on the sink path

We now compute the correct position p on the sink path starting from the
leaf and going up.

If this position p is found, then all elements x0, . . . , xp have to be rotated
cyclically (x0 goes to the position of xp, and every x1, . . . , xp moves up one
position).

3

9 8

6 5 7 4

1 2

1

2 3

4 5 6 7

8 9

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 72 / 194

Sorting Heapsort

Finding the right position on the sink path

We now compute the correct position p on the sink path starting from the
leaf and going up.

If this position p is found, then all elements x0, . . . , xp have to be rotated
cyclically (x0 goes to the position of xp, and every x1, . . . , xp moves up one
position).

9 8

6 5 7 4

1 2

1

2 3

4 5 6 7

8 9

> 3?

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 72 / 194

Sorting Heapsort

Finding the right position on the sink path

We now compute the correct position p on the sink path starting from the
leaf and going up.

If this position p is found, then all elements x0, . . . , xp have to be rotated
cyclically (x0 goes to the position of xp, and every x1, . . . , xp moves up one
position).

9 8

6 5 7 4

1 2

1

2 3

4 5 6 7

8 9

> 3?

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 72 / 194

Sorting Heapsort

Finding the right position on the sink path

We now compute the correct position p on the sink path starting from the
leaf and going up.

If this position p is found, then all elements x0, . . . , xp have to be rotated
cyclically (x0 goes to the position of xp, and every x1, . . . , xp moves up one
position).

9

6 8

3 5 7 4

1 2

1

2 3

4 5 6 7

8 9

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 72 / 194

Sorting Heapsort

Average Analyse of Heapsort

Theorem 11

Standard heapsort makes on a portion of at least 1− 2−(n−1) many input
permutations at least 2n log2(n)−Θ(n) many comparisons.

Bottom-up heapsort makes on a portion of at least 1− 2−(n−1) many
input permutations at most n log2(n) + Θ(n) many comparisons.

Proof: information-theoretic argument

A sorting algorithm computes from a permutation of [1, . . . , n] the sorted
list [1, . . . , n].

One can specify (or encode) the input permutation by running the
algorithm and in addition output information in form of a {0, 1}-string
that allows us to run the algorithm backwards starting with the output
permutation [1, . . . , n].

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 73 / 194

Sorting Heapsort

Average Analyse of Heapsort

In the case of standard heapsort: we output the sink paths, i.e., every time
an element is swapped with the left (resp., right) child, we output a 0
(resp., 1). This makes heapsort reversible.

But: We have to know when one sink paths (a {0, 1}-string) stops and the
next sink path starts.

Alternative 1: We encode a string w = a1a2 · · · at−1at ∈ {0, 1}∗ by

c1(w) = a10a20 · · · at−10at1.

Note: |c1(w)| = 2|w |.
Alternative 2: We encode a string w = a1a2 · · · at−1at ∈ {0, 1}∗ by

c2(w) = c1(binary representation of t)a1 · · · at

Thus, |c2(w)| = |w |+ 2 log2(|w |).
Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 74 / 194

Sorting Heapsort

Average Analyse of Heapsort

Example:

c1(0110) = 00101001

c2(0110) = c1(100)0110 = 1000010110

Note: For the empty word ε we have

c2(ε) = c1(0)ε = 01,

since 0 = binary representation of the number 0.

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 75 / 194

Sorting Heapsort

Average Analyse of Heapsort

We encode the sink path w = a1a2 · · · at ∈ {0, 1}∗ by

c ′2(w) = c1(binary representation of log2(n)− t)a1 · · · at .

Note: t ≤ log2(n), because every sink path has length ≤ log2 n.

Our proof showing that building the heap only needs O(n) many
comparisons also shows: In phase 1, we will output a {0, 1}-string of
length O(n).

We now analyse the {0, 1}-string produced in phase 2.

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 76 / 194

Sorting Heapsort

Average Analyse of Heapsort

Let t1, . . . , tn be the lengths of the sink paths during phase 2.

Hence, we produce in phase 2 a {0, 1}-string of length

n
∑

i=1

(ti + 2 log2(log2(n)− ti)) =

n
∑

i=1

ti + 2

n
∑

i=1

log2(log2(n)− ti)).

Define the average

t̄ =

∑n
i=1 ti
n

.

The function f with f (x) = log2(log2(n)− x) is concave on (−∞, log2(n)).

Jensen’s inequality (slide 7) implies:

log2(log2(n)− t̄) ≥
n
∑

i=1

1

n
· log2(log2(n)− ti)).

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 77 / 194

Sorting Heapsort

Average Analyse of Heapsort

Therefore:
n
∑

i=1

ti + 2

n
∑

i=1

log2(log2(n)− ti)) ≤ nt̄ + 2n log2(log2(n)− t̄).

To sum up: The input permutation σ on [1, . . . , n] can be encoded by a
{0, 1}-string of length

I (σ) ≤ cn + nt̄ + 2n log2(log2(n)− t̄),

where c is a constant (for phase 1).

Lemma 6 implies

cn+ nt̄ + 2n log2(log2(n)− t̄) ≥ I (σ) ≥ log2(n!)− n ≥ n log2(n)− 2, 443n

for at least (1− 2−n+1)n! many input permutations.

With d = 2, 443 + c we get:

t̄ ≥ log2(n)− 2 log2(log2(n)− t̄)− d . (1)

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 78 / 194

Sorting Heapsort

Average Analyse von Heapsort

Since t̄ ≥ 0 we obtain

t̄ ≥ log2(n)− 2 log2(log2(n))− d . (2)

From (1) and (2) we get the better estimate

t̄ ≥ log2(n)− 2 log2(2 log2(log2(n)) + d)− d . (3)

This estimate can be again applied to (1), and so on.

In general, we get for all i ≥ 1:

t̄ ≥ log2(n)− αi − d ,

where α1 = 2 log2(log2(n)) and αi+1 = 2 log2(αi + d).

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 79 / 194

Sorting Heapsort

Average Analyse von Heapsort

We prove this statement by induction on i ≥ 1.

i = 1: t̄ ≥ log2(n)− 2 log2(log2(n))− d = log2(n)− α1 − d holds by (2).

i ≥ 1. Assume that t̄ ≥ log2(n)− αi − d holds.

We get

t̄
(1)

≥ log2(n)− 2 log2(log2(n)− t̄)− d

≥ log2(n)− 2 log2(log2(n)− (log2(n)− αi − d))− d

= log2(n)− 2 log2(αi + d)− d

= log2(n)− αi+1 − d

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 80 / 194

Sorting Heapsort

Average Analyse von Heapsort

For all x ≥ max{10, d} we have:

2 log2(x + d) ≤ 2 log2(2x) = 2 log2(x) + 2 ≤ 0, 9 · x .

Hence, as long as αi ≥ max{10, d} holds, we have αi+1 ≤ 0, 9 · αi .

Therefore, there exists a constant α with

t̄ ≥ log2(n)− α− d . (4)

Thus, for at least (1− 2−n+1)n! many input permutations we have

n
∑

i=1

ti ≥ n log2 n −Θ(n).

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 81 / 194

Sorting Heapsort

Average Analyse of Heapsort

The statement of Theorem 11 for standard Heapsort follows easily:

In phase 2, standard Heapsort makes 2
∑n

i=1 ti many comparisons.

Hence, standard Heapsort makes for at least (1− 2−n+1)n! many input
permutations at least 2n log2 n −Θ(n) many comparisons.

Bottom-up heapsort makes in phase 2 at most

n log2(n) +
n
∑

i=1

(log2(n)− ti) = 2n log2(n)−
n
∑

i=1

ti

many comparisons.

Hence, bottom-up Heapsort makes for at least (1− 2−n+1)n! many input
permutations at most

Θ(n) + 2n log2(n)−
n
∑

i=1

ti ≤ n log2(n) + Θ(n)

many comparisons.
Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 82 / 194

Sorting Heapsort

Variant by Svante Carlsson, 1986

One can show that bottom-up Heapsort makes in the worst case at most
1.5n log n +O(n) many comparisons.

Carlsson proposed to determine the correct position on the sink path using
binary search.

This yields a worst-case bound of n log n+O(n log log n) many comparison.

On the other hand, in practice binary search on the sink path does not
seem to pay off.

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 83 / 194

Sorting Sorting in linearer time

Counting-Sort

Recall: The lower bound of Ω(n log n) only holds for comparison-based
sorting algorithms.

If we make further assumptions on the array elements, we can sort in time
O(n).

Assumption: The array elements A[1], . . . ,A[n] are natural numbers in
the range [0, k].

Counting sort (see next slide) sorts under this assumption in time
O(k + n).

Hence, if k ∈ O(n), then counting sort works in linear time.

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 84 / 194

Sorting Sorting in linearer time

Counting Sort

Algorithm Counting-Sort

procedure counting-sort(array A[1, n] with A[1], . . .A[n] ∈ [0, k])
begin

var Arrays C [0, k], B [1, n]
for i := 0 to k do

C [i] := 0
for i := 1 to n do

C [A[i]] := C [A[i]] + 1
for i := 1 to k do

C [i] := C [i] + C [i − 1]
for i := n downto 1 do

B [C [A[i]]] := A[i];
C [A[i]] := C [A[i]]− 1

endprocedure

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 85 / 194

Sorting Sorting in linearer time

Counting Sort

After the first three for-loops, C [i] = number of array entries that are ≤ i .

The statement B [C [A[i]]] := A[i] puts the array element A[i] at the right
position C [A[i]].

Example:

A 4 2 3 4 1 2 5 4 2 3

1 2 3 4 5 6 7 8 9 10

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 86 / 194

Sorting Sorting in linearer time

Counting Sort

After the first three for-loops, C [i] = number of array entries that are ≤ i .

The statement B [C [A[i]]] := A[i] puts the array element A[i] at the right
position C [A[i]].

Example:

A 4 2 3 4 1 2 5 4 2 3

1 2 3 4 5 6 7 8 9 10

Array C after third for-loop:

C 0 1 4 6 9 10

0 1 2 3 4 5

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 86 / 194

Sorting Sorting in linearer time

Counting Sort

After the first three for-loops, C [i] = number of array entries that are ≤ i .

The statement B [C [A[i]]] := A[i] puts the array element A[i] at the right
position C [A[i]].

Example:

A 4 2 3 4 1 2 5 4 2 3

1 2 3 4 5 6 7 8 9 10

B [C [A[10]]] := A[10]

C 0 1 4 6 9 10

0 1 2 3 4 5

B 3

1 2 3 4 5 6 7 8 9 10

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 86 / 194

Sorting Sorting in linearer time

Counting Sort

After the first three for-loops, C [i] = number of array entries that are ≤ i .

The statement B [C [A[i]]] := A[i] puts the array element A[i] at the right
position C [A[i]].

Example:

A 4 2 3 4 1 2 5 4 2 3

1 2 3 4 5 6 7 8 9 10

C [A[10]] := C [A[10]] − 1

C 0 1 4 5 9 10

0 1 2 3 4 5

B 3

1 2 3 4 5 6 7 8 9 10

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 86 / 194

Sorting Sorting in linearer time

Counting Sort

After the first three for-loops, C [i] = number of array entries that are ≤ i .

The statement B [C [A[i]]] := A[i] puts the array element A[i] at the right
position C [A[i]].

Example:

A 4 2 3 4 1 2 5 4 2 3

1 2 3 4 5 6 7 8 9 10

B [C [A[9]]] := A[9]

C 0 1 4 5 9 10

0 1 2 3 4 5

B 2 3

1 2 3 4 5 6 7 8 9 10

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 86 / 194

Sorting Sorting in linearer time

Counting Sort

After the first three for-loops, C [i] = number of array entries that are ≤ i .

The statement B [C [A[i]]] := A[i] puts the array element A[i] at the right
position C [A[i]].

Example:

A 4 2 3 4 1 2 5 4 2 3

1 2 3 4 5 6 7 8 9 10

C [A[9]] := C [A[9]] − 1

C 0 1 3 5 9 10

0 1 2 3 4 5

B 2 3

1 2 3 4 5 6 7 8 9 10

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 86 / 194

Sorting Sorting in linearer time

Counting Sort

After the first three for-loops, C [i] = number of array entries that are ≤ i .

The statement B [C [A[i]]] := A[i] puts the array element A[i] at the right
position C [A[i]].

Example:

A 4 2 3 4 1 2 5 4 2 3

1 2 3 4 5 6 7 8 9 10

B [C [A[8]]] := A[8]

C 0 1 3 5 9 10

0 1 2 3 4 5

B 2 3 4

1 2 3 4 5 6 7 8 9 10

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 86 / 194

Sorting Sorting in linearer time

Counting Sort

After the first three for-loops, C [i] = number of array entries that are ≤ i .

The statement B [C [A[i]]] := A[i] puts the array element A[i] at the right
position C [A[i]].

Example:

A 4 2 3 4 1 2 5 4 2 3

1 2 3 4 5 6 7 8 9 10

C [A[8]] := C [A[8]] − 1

C 0 1 3 5 8 10

0 1 2 3 4 5

B 2 3 4

1 2 3 4 5 6 7 8 9 10

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 86 / 194

Sorting Sorting in linearer time

Counting Sort

After the first three for-loops, C [i] = number of array entries that are ≤ i .

The statement B [C [A[i]]] := A[i] puts the array element A[i] at the right
position C [A[i]].

Example:

A 4 2 3 4 1 2 5 4 2 3

1 2 3 4 5 6 7 8 9 10

B [C [A[7]]] := A[7]

C 0 1 3 5 8 10

0 1 2 3 4 5

B 2 3 4 5

1 2 3 4 5 6 7 8 9 10

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 86 / 194

Sorting Sorting in linearer time

Counting Sort

After the first three for-loops, C [i] = number of array entries that are ≤ i .

The statement B [C [A[i]]] := A[i] puts the array element A[i] at the right
position C [A[i]].

Example:

A 4 2 3 4 1 2 5 4 2 3

1 2 3 4 5 6 7 8 9 10

C [A[7]] := C [A[7]] − 1

C 0 1 3 5 8 9

0 1 2 3 4 5

B 2 3 4 5

1 2 3 4 5 6 7 8 9 10

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 86 / 194

Sorting Sorting in linearer time

Counting Sort

After the first three for-loops, C [i] = number of array entries that are ≤ i .

The statement B [C [A[i]]] := A[i] puts the array element A[i] at the right
position C [A[i]].

Example:

A 4 2 3 4 1 2 5 4 2 3

1 2 3 4 5 6 7 8 9 10

B [C [A[6]]] := A[6]

C 0 1 3 5 8 9

0 1 2 3 4 5

B 2 2 3 4 5

1 2 3 4 5 6 7 8 9 10

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 86 / 194

Sorting Sorting in linearer time

Counting Sort

After the first three for-loops, C [i] = number of array entries that are ≤ i .

The statement B [C [A[i]]] := A[i] puts the array element A[i] at the right
position C [A[i]].

Example:

A 4 2 3 4 1 2 5 4 2 3

1 2 3 4 5 6 7 8 9 10

C [A[6]] := C [A[6]] − 1

C 0 1 2 5 8 9

0 1 2 3 4 5

B 2 2 3 4 5

1 2 3 4 5 6 7 8 9 10

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 86 / 194

Sorting Sorting in linearer time

Counting Sort

After the first three for-loops, C [i] = number of array entries that are ≤ i .

The statement B [C [A[i]]] := A[i] puts the array element A[i] at the right
position C [A[i]].

Example:

A 4 2 3 4 1 2 5 4 2 3

1 2 3 4 5 6 7 8 9 10

B [C [A[5]]] := A[5]

C 0 1 2 5 8 9

0 1 2 3 4 5

B 1 2 2 3 4 5

1 2 3 4 5 6 7 8 9 10

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 86 / 194

Sorting Sorting in linearer time

Counting Sort

After the first three for-loops, C [i] = number of array entries that are ≤ i .

The statement B [C [A[i]]] := A[i] puts the array element A[i] at the right
position C [A[i]].

Example:

A 4 2 3 4 1 2 5 4 2 3

1 2 3 4 5 6 7 8 9 10

C [A[5]] := C [A[5]] − 1

C 0 0 2 5 8 9

0 1 2 3 4 5

B 1 2 2 3 4 5

1 2 3 4 5 6 7 8 9 10

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 86 / 194

Sorting Sorting in linearer time

Counting Sort

After the first three for-loops, C [i] = number of array entries that are ≤ i .

The statement B [C [A[i]]] := A[i] puts the array element A[i] at the right
position C [A[i]].

Example:

A 4 2 3 4 1 2 5 4 2 3

1 2 3 4 5 6 7 8 9 10

B [C [A[4]]] := A[4]

C 0 0 2 5 8 9

0 1 2 3 4 5

B 1 2 2 3 4 4 5

1 2 3 4 5 6 7 8 9 10

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 86 / 194

Sorting Sorting in linearer time

Counting Sort

After the first three for-loops, C [i] = number of array entries that are ≤ i .

The statement B [C [A[i]]] := A[i] puts the array element A[i] at the right
position C [A[i]].

Example:

A 4 2 3 4 1 2 5 4 2 3

1 2 3 4 5 6 7 8 9 10

C [A[4]] := C [A[4]] − 1

C 0 0 2 5 7 9

0 1 2 3 4 5

B 1 2 2 3 4 4 5

1 2 3 4 5 6 7 8 9 10

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 86 / 194

Sorting Sorting in linearer time

Counting Sort

After the first three for-loops, C [i] = number of array entries that are ≤ i .

The statement B [C [A[i]]] := A[i] puts the array element A[i] at the right
position C [A[i]].

Example:

A 4 2 3 4 1 2 5 4 2 3

1 2 3 4 5 6 7 8 9 10

B [C [A[3]]] := A[3]

C 0 0 2 5 7 9

0 1 2 3 4 5

B 1 2 2 3 3 4 4 5

1 2 3 4 5 6 7 8 9 10

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 86 / 194

Sorting Sorting in linearer time

Counting Sort

After the first three for-loops, C [i] = number of array entries that are ≤ i .

The statement B [C [A[i]]] := A[i] puts the array element A[i] at the right
position C [A[i]].

Example:

A 4 2 3 4 1 2 5 4 2 3

1 2 3 4 5 6 7 8 9 10

C [A[3]] := C [A[3]] − 1

C 0 0 2 4 7 9

0 1 2 3 4 5

B 1 2 2 3 3 4 4 5

1 2 3 4 5 6 7 8 9 10

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 86 / 194

Sorting Sorting in linearer time

Counting Sort

After the first three for-loops, C [i] = number of array entries that are ≤ i .

The statement B [C [A[i]]] := A[i] puts the array element A[i] at the right
position C [A[i]].

Example:

A 4 2 3 4 1 2 5 4 2 3

1 2 3 4 5 6 7 8 9 10

B [C [A[2]]] := A[2]

C 0 0 2 4 7 9

0 1 2 3 4 5

B 1 2 2 2 3 3 4 4 5

1 2 3 4 5 6 7 8 9 10

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 86 / 194

Sorting Sorting in linearer time

Counting Sort

After the first three for-loops, C [i] = number of array entries that are ≤ i .

The statement B [C [A[i]]] := A[i] puts the array element A[i] at the right
position C [A[i]].

Example:

A 4 2 3 4 1 2 5 4 2 3

1 2 3 4 5 6 7 8 9 10

C [A[2]] := C [A[2]] − 1

C 0 0 1 4 7 9

0 1 2 3 4 5

B 1 2 2 2 3 3 4 4 5

1 2 3 4 5 6 7 8 9 10

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 86 / 194

Sorting Sorting in linearer time

Counting Sort

After the first three for-loops, C [i] = number of array entries that are ≤ i .

The statement B [C [A[i]]] := A[i] puts the array element A[i] at the right
position C [A[i]].

Example:

A 4 2 3 4 1 2 5 4 2 3

1 2 3 4 5 6 7 8 9 10

B [C [A[1]]] := A[1]

C 0 0 1 4 7 9

0 1 2 3 4 5

B 1 2 2 2 3 3 4 4 4 5

1 2 3 4 5 6 7 8 9 10

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 86 / 194

Sorting Sorting in linearer time

Counting Sort

After the first three for-loops, C [i] = number of array entries that are ≤ i .

The statement B [C [A[i]]] := A[i] puts the array element A[i] at the right
position C [A[i]].

Example:

A 4 2 3 4 1 2 5 4 2 3

1 2 3 4 5 6 7 8 9 10

C [A[1]] := C [A[1]] − 1

C 0 0 1 4 6 9

0 1 2 3 4 5

B 1 2 2 2 3 3 4 4 4 5

1 2 3 4 5 6 7 8 9 10

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 86 / 194

Sorting Sorting in linearer time

Counting Sort

Remark: Counting sort is a stable sorting algorithm.

This means: If A[i] = A[j] for i < j , then in the sorted array B the array
entry A[i] is to the left of A[j].

This is relevant if the array entries consist of (i) keys that are used for
sorting and (ii) additional informations.

Stability of counting sort will be needed for radix sort on the next slide.

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 87 / 194

Sorting Sorting in linearer time

Radix Sort

We use counting sort to sort an array A[1, n], where A[1], . . . ,A[n] are
d -ary numbers in base k (where the least significant digit is the left most
digit).

Radix sort sorts such an array in time O(d(n + k)).

If in addition d ∈ O(1) and k ∈ O(n) (which means that we can represent
number of size O(nd)), then radix sort works in linear time.

Algorithm Radix Sort

procedure radix sort(array A[1, n] with A[1], . . . ,A[n])
begin

for i := 1 to d do
sort the array A with counting sort with respect to the i -th digit.

endfor
endprocedure

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 88 / 194

Sorting Sorting in linearer time

Radix Sort

Example: We sort the list

[5923, 8221, 6723, 3736, 1341, 7943, 3298, 6915, 2832]

with radix sort.

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 89 / 194

Sorting Sorting in linearer time

Radix Sort

Example: We sort the list

[5923, 8221, 6723, 3736, 1341, 7943, 3298, 6915, 2832]

with radix sort.

5 9 2 3
8 2 2 1
6 7 2 3
3 7 3 6
1 3 4 1
7 9 4 3
3 2 9 8
6 9 1 5
2 8 3 2

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 89 / 194

Sorting Sorting in linearer time

Radix Sort

Example: We sort the list

[5923, 8221, 6723, 3736, 1341, 7943, 3298, 6915, 2832]

with radix sort.

5 9 2 3
8 2 2 1
6 7 2 3
3 7 3 6
1 3 4 1
7 9 4 3
3 2 9 8
6 9 1 5
2 8 3 2

8 2 2 1
1 3 4 1
2 8 3 2
5 9 2 3
6 7 2 3
7 9 4 3
6 9 1 5
3 7 3 6
3 2 9 8

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 89 / 194

Sorting Sorting in linearer time

Radix Sort

Example: We sort the list

[5923, 8221, 6723, 3736, 1341, 7943, 3298, 6915, 2832]

with radix sort.

5 9 2 3
8 2 2 1
6 7 2 3
3 7 3 6
1 3 4 1
7 9 4 3
3 2 9 8
6 9 1 5
2 8 3 2

8 2 2 1
1 3 4 1
2 8 3 2
5 9 2 3
6 7 2 3
7 9 4 3
6 9 1 5
3 7 3 6
3 2 9 8

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 89 / 194

Sorting Sorting in linearer time

Radix Sort

Example: We sort the list

[5923, 8221, 6723, 3736, 1341, 7943, 3298, 6915, 2832]

with radix sort.

5 9 2 3
8 2 2 1
6 7 2 3
3 7 3 6
1 3 4 1
7 9 4 3
3 2 9 8
6 9 1 5
2 8 3 2

8 2 2 1
1 3 4 1
2 8 3 2
5 9 2 3
6 7 2 3
7 9 4 3
6 9 1 5
3 7 3 6
3 2 9 8

6 9 1 5
8 2 2 1
5 9 2 3
6 7 2 3
2 8 3 2
3 7 3 6
1 3 4 1
7 9 4 3
3 2 9 8

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 89 / 194

Sorting Sorting in linearer time

Radix Sort

Example: We sort the list

[5923, 8221, 6723, 3736, 1341, 7943, 3298, 6915, 2832]

with radix sort.

5 9 2 3
8 2 2 1
6 7 2 3
3 7 3 6
1 3 4 1
7 9 4 3
3 2 9 8
6 9 1 5
2 8 3 2

8 2 2 1
1 3 4 1
2 8 3 2
5 9 2 3
6 7 2 3
7 9 4 3
6 9 1 5
3 7 3 6
3 2 9 8

6 9 1 5
8 2 2 1
5 9 2 3
6 7 2 3
2 8 3 2
3 7 3 6
1 3 4 1
7 9 4 3
3 2 9 8

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 89 / 194

Sorting Sorting in linearer time

Radix Sort

Example: We sort the list

[5923, 8221, 6723, 3736, 1341, 7943, 3298, 6915, 2832]

with radix sort.

5 9 2 3
8 2 2 1
6 7 2 3
3 7 3 6
1 3 4 1
7 9 4 3
3 2 9 8
6 9 1 5
2 8 3 2

8 2 2 1
1 3 4 1
2 8 3 2
5 9 2 3
6 7 2 3
7 9 4 3
6 9 1 5
3 7 3 6
3 2 9 8

6 9 1 5
8 2 2 1
5 9 2 3
6 7 2 3
2 8 3 2
3 7 3 6
1 3 4 1
7 9 4 3
3 2 9 8

8 2 2 1
3 2 9 8
1 3 4 1
6 7 2 3
3 7 3 6
2 8 3 2
6 9 1 5
5 9 2 3
7 9 4 3

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 89 / 194

Sorting Sorting in linearer time

Radix Sort

Example: We sort the list

[5923, 8221, 6723, 3736, 1341, 7943, 3298, 6915, 2832]

with radix sort.

5 9 2 3
8 2 2 1
6 7 2 3
3 7 3 6
1 3 4 1
7 9 4 3
3 2 9 8
6 9 1 5
2 8 3 2

8 2 2 1
1 3 4 1
2 8 3 2
5 9 2 3
6 7 2 3
7 9 4 3
6 9 1 5
3 7 3 6
3 2 9 8

6 9 1 5
8 2 2 1
5 9 2 3
6 7 2 3
2 8 3 2
3 7 3 6
1 3 4 1
7 9 4 3
3 2 9 8

8 2 2 1
3 2 9 8
1 3 4 1
6 7 2 3
3 7 3 6
2 8 3 2
6 9 1 5
5 9 2 3
7 9 4 3

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 89 / 194

Sorting Sorting in linearer time

Radix Sort

Example: We sort the list

[5923, 8221, 6723, 3736, 1341, 7943, 3298, 6915, 2832]

with radix sort.

5 9 2 3
8 2 2 1
6 7 2 3
3 7 3 6
1 3 4 1
7 9 4 3
3 2 9 8
6 9 1 5
2 8 3 2

8 2 2 1
1 3 4 1
2 8 3 2
5 9 2 3
6 7 2 3
7 9 4 3
6 9 1 5
3 7 3 6
3 2 9 8

6 9 1 5
8 2 2 1
5 9 2 3
6 7 2 3
2 8 3 2
3 7 3 6
1 3 4 1
7 9 4 3
3 2 9 8

8 2 2 1
3 2 9 8
1 3 4 1
6 7 2 3
3 7 3 6
2 8 3 2
6 9 1 5
5 9 2 3
7 9 4 3

1 3 4 1
2 8 3 2
3 2 9 8
3 7 3 6
5 9 2 3
6 7 2 3
6 9 1 5
7 9 4 3
8 2 2 1

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 89 / 194

Sorting Computation of the Median

Computation of the Media

Input: array A[1, . . . , n] of numbers and 1 ≤ k ≤ n.

Output: k-th smallest element, i.e., the number m ∈ {A[i] | 1 ≤ i ≤ n}
such that

|{i | A[i] < m}| ≤ k − 1 and |{i | A[i] > m}| ≤ n − k

The median ist obtained for k = ⌈n/2⌉.
Naive approach:

sort the array A in time O(n log n),

output the k-th element of the sorted array.

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 90 / 194

Sorting Computation of the Median

Median of the medians

Goal: Compute the k-th smallest element in linear time.

Idea: Compute a pivot element (as in quick sort) as the median of the
medians of blocks of length 5.

We split the array in blocks of length 5.

For each block we compute the median (6 comparisons are sufficient).

Compute recursively the median P of the array of medians and take P
as the pivot element.

Number of comparisons: T (n5).

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 91 / 194

Sorting Computation of the Median

Quick sort step

Partition the array with the pivot element P such that for suitable
positions m1 < m2 we have:

A[i] < P for 1 ≤ i ≤ m1

A[i] = P for m1 < i ≤ m2

A[i] > P für m2 < i ≤ n

Number of comparisons: ≤ n (actually 2n/5 comparisons suffice here, see
Slide 96).

Case distinction:

1 k ≤ m1: search for the k-th element recursively in A[1], . . . ,A[m1].

2 m1 < k ≤ m2: return P .

3 k > m2: search for the (k −m2)-th element in A[m2 + 1], . . . ,A[n].

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 92 / 194

Sorting Computation of the Median

Example for median search

15 14 5 4 16 10 1 12 6 23 25 8 19 18 20 21 24 7 3 13 17 9 2 22 11

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 93 / 194

Sorting Computation of the Median

Example for median search

15 14 5 4 16 10 1 12 6 23 25 8 19 18 20 21 24 7 3 13 17 9 2 22 11

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 93 / 194

Sorting Computation of the Median

Example for median search

15 14 5 4 16 10 1 12 6 23 25 8 19 18 20 21 24 7 3 13 17 9 2 22 11

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 93 / 194

Sorting Computation of the Median

Example for median search

15 14 5 4 16 10 1 12 6 23 25 8 19 18 20 21 24 7 3 13 17 9 2 22 11

14 10 19 13 11

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 93 / 194

Sorting Computation of the Median

Example for median search

15 14 5 4 16 10 1 12 6 23 25 8 19 18 20 21 24 7 3 13 17 9 2 22 11

14 10 19 13 11

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 93 / 194

Sorting Computation of the Median

Example for median search

15 14 5 4 16 10 1 12 6 23 25 8 19 18 20 21 24 7 3 13 17 9 2 22 11

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 93 / 194

Sorting Computation of the Median

Example for median search

5 4 10 1 12 6 8 7 3 9 2 11 13 15 14 16 23 25 19 18 20 21 24 17 22

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 93 / 194

Sorting Computation of the Median

30 – 70 splitting

The choice of the pivot element P as the median of the medians (of
blocks of length 5) ensures the following inequalites for m1 and m2:

3

10
n ≤ m2 and m1 ≤

7

10
n

Proof:

There are m2 many elements ≤ P and n−m1 many elements ≥ P .

Since there n
5 many blocks of length 5, there are at least n

10 medians
of 5-blocks that are ≤ P as well as at least n

10 medians of 5-blocks
that are ≥ P .

In each each 5-block with median M, there are 3 elements ≤ M and 3
elements ≥ M.

Hence there are at least 3
10n many elements ≤ P as well at at least

3
10n many elements ≥ P .

Hence, 3
10n ≤ m2 and 3

10n ≤ n −m1.

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 94 / 194

Sorting Computation of the Median

Total time for median search

By the previous slide, the recursive step needs at most T (7n10) comparisons.

T (n) is the totoal number of comparisons comparisons for an array of
length n.

We get the following recurrence for T (n):

T (n) ≤ T
(⌈n

5

⌉)

+ T

(⌈

7n

10

⌉)

+O(n)

The master theorem II gives T (n) ∈ O(n).

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 95 / 194

Sorting Computation of the Median

Estimating the constant

Why are 2n
5 comparisons enough for the partitioning step?

We have to compare every array element with the pivot element P (the
median of the medians of the 5-blocks).

For every median M of a 5-block we know whether M ≤ P or M ≥ P
(from the computation of the median of the medians of the 5-blocks).

Assume that M ≤ P .

In the 5-block B , of which M is the median, there are 3 elements that ≤ M
and we determined those elements (when we computed the median of B).

Hence, we have to compare in the partitioning step only 2 elements from
B with P .

An analogous argument works for the case M ≥ P .

Hence, we need only 2n
5 comparisons in the partitioning step.

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 96 / 194

Sorting Computation of the Median

Estimating the constant

T (n) ≤ T
(n

5

)

+ T

(

7n

10

)

+
6n

5
+

2n

5
,

where:

6n
5 is the number of comparisons to compute the medians of the
blocks of length 5.
2n
5 is the number of comparisons for the partitioning step.

By induction we obtain T (n) ≤ 16n:

T (n) ≤ 16n is certainly true for sufficiently small n.

For “large” n we have

T (n) ≤ T
(n

5

)

+ T

(

7n

10

)

+
6n

5
+

2n

5
≤ 16n

5
+

112n

10
+

6n

5
+

2n

5
= 16n

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 97 / 194

Sorting Computation of the Median

Quick select

Quick select is a randomized algorithm for computing the median:

Algorithm

function quickselect(A[ℓ . . . r] : array of integer, k : integer) : integer
begin

if ℓ = r then return A[ℓ]
else

p := random(ℓ, r);
m := partition(A[ℓ . . . r], p);
k ′ := (m − ℓ+ 1);
if k = k ′ then return A[m]
elsif k < k ′ then return quickselect(A[ℓ . . .m − 1], k)
else return quickselect(A[m + 1 . . . r], k − k ′)
endif

endif
endfunction
Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 98 / 194

Sorting Computation of the Median

Analysis of quick select

Let Q(n) be the average number of comparisons made by quick select on
an array with n elements.

We have:

Q(n) ≤ (n − 1) +
1

n

n
∑

i=1

Q(max{i − 1, n − i}),

where:

(n − 1) is the number of comparisons for partitioning the array, and

Q(max{i − 1, n − i}) is the (maximal) average number of
comparisons for a recursive call on one of the two subarrays.

Here, we make the pessimistic assumption that we continue searching in
the larger subarray.

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 99 / 194

Sorting Computation of the Median

Analysis of quick select

We get:

Q(n) ≤ (n − 1) +
1

n

n
∑

i=1

Q(max{i − 1, n − i})

= (n − 1) +
1

n

n−1
∑

i=0

Q(max{i , n − i − 1})

= (n − 1) +
1

n

n−1
∑

i=⌈ n
2⌉

Q(i) +

n−1
∑

i=⌊ n
2⌋

Q(i)

For the last equality note that:

⌊n

2

⌋

≥
⌈n

2

⌉

− 1 = n−
⌊n

2

⌋

− 1 and
⌊n

2

⌋

− 1 <
⌈n

2

⌉

= n−
(

⌊n

2

⌋

− 1
)

− 1

Claim: Q(n) ≤ 4n:

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 100 / 194

Sorting Computation of the Median

Analysis of quick select

Proof by induction on n: OK for n = 1.

Let n ≥ 2 and let Q(i) ≤ 4i for all i < n.

Case 1: n is even.

Q(n) ≤ (n − 1) +
2

n

n−1
∑

i= n
2

Q(i)

≤ (n − 1) +
8

n

n−1
∑

i= n
2

i

= (n − 1) +
8

n

(

(n − 1)n

2
− (n2 − 1)n2

2

)

= (n − 1) + 4

(

(n − 1)−
(n

2
− 1
) 1

2

)

= (n − 1) + 4(n − 1)− (n − 2) = 4n − 3 ≤ 4n

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 101 / 194

Sorting Computation of the Median

Analysis of quick select

Case 2: n is odd.

Q(n) ≤ (n − 1) +
2

n

n−1
∑

i=⌈ n
2⌉

Q(i) +
1

n
Q
(⌊n

2

⌋)

≤ (n − 1) +
8

n

n−1
∑

i=⌈ n
2⌉

i + 2

= (n − 1) +
8

n
·
(

(n − 1)n

2
− (
⌈

n
2

⌉

− 1)
⌈

n
2

⌉

2

)

+ 2

≤ (n − 1) +
8

n
·
(

(n − 1)n

2
− (n2 − 1)n2

2

)

+ 2

= 4n − 3 + 2

≤ 4n.

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 102 / 194

Sorting Computation of the Median

Best known bounds for median search

Dor and Zwick proved in 1995 that one can find the median with
2, 95n + o(n) many comparisons; this is still the best algorithm.

The best known lower bound was shown by Brent and John 1985:
Finding the median requires 2n + o(n) comparisons.

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 103 / 194

Greedy algorithms

Overview

Matroids and the generic greedy algorithm

Kruskal’s algorithm for spanning trees

Dijkstra’s algorithm for shortest paths

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 104 / 194

Greedy algorithms

Greedy algorithms

Algorithms that take in each step the locally best optimal choice are called
greedy.

For some problems this yields a globally optimal solution.

Problems where greedy algorithms always find an optimal solution can be
characterized via the notion of a matroid.

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 105 / 194

Greedy algorithms Matroids

Optimization problems

Let E be a finite set and U ⊆ 2E a set of subsets of E .

A pair (E ,U) is a subset system, if the following holds:

∅ ∈ U

If A ⊆ B ∈ U then A ∈ U as well.

A set A ∈ U is maximal (with respect to ⊆) if for all B ∈ U the following
holds: if A ⊆ B , then A = B .

The optimization problems associated with (E ,U) is:

Input: A weight function w : E → R

Output: A maximal set A ∈ U with w(A) ≥ w(B) for all maximal sets
B ∈ U, where

w(C) =
∑

a∈C

w(a)

We call A an optimal solution.

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 106 / 194

Greedy algorithms Matroids

Optimization problems

In order to solve such optimization problems, one can try to use the
following generic greedy algorithm:

Algorithm generic greedy algorithm

procedure find-optimal (subset system (E ,U), w : E → R)
begin

order set E by descending weights as e1, e2, . . . , en with
w(e1) ≥ w(e2) ≥ · · · ≥ w(en)
T := ∅
for k := 1 to n do

if T ∪ {ek} ∈ U then T := T ∪ {ek}
endfor
return (T)

endprocedure

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 107 / 194

Greedy algorithms Matroids

Matroids

Note: The solution computed by the generic greedy algorithm is always a
maximal subset.

Unfortunately there exist subset systems for which the generic greedy
algorithm does not find an optimal solution (will be shown later).

A subset system (E ,U) is a matroid, if the following property (exchange
property) holds:

∀A,B ∈ U : |A| < |B | =⇒ ∃x ∈ B \ A : A ∪ {x} ∈ U

Remark: If (E ,U) is a matroid, then all maximal sets in U have the same
cardinality.

Example: Let E be a finite set and k ≤ |E |. Then

(E , {A ⊆ E | |A| ≤ k})

is a matroid.
Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 108 / 194

Greedy algorithms Matroids

Matroids

Theorem 12

Let (E ,U) be a subset system. The generic greedy algorithm computes for
every weight function w : E → R an optimal solution if and only if (E ,U)
is a matroid.

Proof: First assume that (E ,U) is a matroid.

Let w : E → R be a weight function and let E = {e1, e2, . . . , en} with

w(e1) ≥ w(e2) ≥ · · · ≥ w(en).

Let T = {ei1 , . . . , eik} ∈ U with i1 < i2 < · · · < ik the solution computed
by the generic greedy algorithm.

Assumption: There exists a maximal set S = {ej1 , . . . , ejl} ∈ U with
w(S) > w(T), where j1 < j2 < · · · < jl .

Since (E ,U) is a matroid, we have k = l .

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 109 / 194

Greedy algorithms Matroids

Matroids

Since w(S) > w(T), there exists 1 ≤ p ≤ k with w(ejp) > w(eip).

Since the weights where sorted in descending order, we must have jp < ip.

We now apply the exchange property to the sets

A = {ei1 , . . . , eip−1} ∈ U and B = {ej1 , . . . , ejp} ∈ U.

Since |A| < |B |, there exists an element ejq ∈ B \ A with A ∪ {ejq} ∈ U.

We get jq ≤ jp < ip and thus jq ∈ {1, . . . , ip − 1} \ {i1, . . . , ip−1}.
Choose 1 ≤ r ≤ p such that ir−1 < jq < ir (where we set i0 = 0).

Since A ∪ {ejq} ∈ U we get {ei1 , . . . , eir−1 , ejq} ∈ U.

But then, the generic greedy algorithm would have added ejq to the
solution T in the jq-th iteration of the for-loop — a contradiction.

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 110 / 194

Greedy algorithms Matroids

Matroids

Now assume that (E ,U) is not a matroid, i.e., the exchange property does
not hold.

Let A,B ∈ U with |A| < |B | such that for all b ∈ B \ A: A ∪ {b} 6∈ U.

Let r = |B | and hence |A| ≤ r − 1.

Define the weight function w : E → R as follows:

w(x) =

r + 1 for x ∈ A

r for x ∈ B \ A
0 otherwise

The generic greedy algorithm must compute a solution T with A ⊆ T and
T ∩ (B \ A) = ∅.
We get w(T) = (r + 1) · |A| ≤ (r + 1)(r − 1) = r2 − 1.

Let S ∈ U be a maximal subset with B ⊆ S .

Since w(x) ≥ 0 for all x , we get w(S) ≥ w(B) ≥ r2.
Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 111 / 194

Greedy algorithms Kruskal’s algorithm for spanning trees

Spanning subtrees

Let G = (V ,E) be a finite undirected graph (the set of edges E is a
subset of

(

V
2

)

= {{x , y} | x , y ∈ V , x 6= y} of 2-element subsets of V).

A path from u ∈ V to v ∈ V is a sequence of nodes (u1, u2, . . . , un) with
u1 = u, un = v and {ui , ui+1} ∈ E for all 1 ≤ i ≤ n − 1.

G is connected, if for all u, v ∈ V with u 6= v there is a path from u to v .

A circuit is a path (u1, u2, . . . , un) with n ≥ 3, ui 6= uj for all 1 ≤ i < j ≤ n
and {un, u1} ∈ E .

G is a tree, if it is connected and has no circuits.

Excercise: For every tree T = (V ,E) we have |E | = |V | − 1. Every graph
G = (V ,E) with at least |V | edges has a circuit.

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 112 / 194

Greedy algorithms Kruskal’s algorithm for spanning trees

Spanning subtrees

Let G = (V ,E) be a connected graph. A spanning subtree of G is a subset
F ⊆ E of edges such that (V ,F) is a tree.

Excercise: every connected graph has a spanning subtree.

Example:

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 113 / 194

Greedy algorithms Kruskal’s algorithm for spanning trees

Spanning subtrees

Let G = (V ,E) be a connected graph. A spanning subtree of G is a subset
F ⊆ E of edges such that (V ,F) is a tree.

Excercise: every connected graph has a spanning subtree.

Example:

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 113 / 194

Greedy algorithms Kruskal’s algorithm for spanning trees

Matroid of circuit-free edge sets

Let G = (V ,E) be again connected, and let w : E → R be a weight
function.

The weight of a spanning subtree F ⊆ E is

w(F) =
∑

e∈F

w(e).

Goal: Compute a spanning subtree of maximal weight.

The following lemma allows us to use the generic greedy algorithm:

Lemma 13

The subset system (E , {A ⊆ E | (V ,A) has no circuit}) is a matroid.

Note: Since G = (V ,E) is connected, the maximal subsets of the subset
system (E , {A ⊆ E | (V ,A) has no circuit}) are the spanning subtrees.

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 114 / 194

Greedy algorithms Kruskal’s algorithm for spanning trees

Matroid of circuit-free edge sets

Proof: Let A,B ⊆ E be edge sets without circuits such that |A| < |B |.

Let V1,V2 . . . ,Vn be the connected components of the (V ,A): Every
graph (Vi ,A ∩

(

Vi

2

)

) is connected and in (V ,A) there is no path from
a node u ∈ Vi to a node v /∈ Vi .

We have |A| =∑n
i=1(|Vi | − 1), because the subgraph (Vi ,A ∩

(

Vi

2

)

) of
(V ,A) induced by Vi is a tree and therefore has |Vi | − 1 many edges.

For every edge e = {u, v} ∈ B one of the following two cases holds:

1 There is 1 ≤ i ≤ n with u, v ∈ Vi .

2 There are i 6= j with u ∈ Vi and v ∈ Vj .

V1 V2 V3 V4 V5

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 115 / 194

Greedy algorithms Kruskal’s algorithm for spanning trees

Matroid of circuit-free edge sets

Proof: Let A,B ⊆ E be edge sets without circuits such that |A| < |B |.

Let V1,V2 . . . ,Vn be the connected components of the (V ,A): Every
graph (Vi ,A ∩

(

Vi

2

)

) is connected and in (V ,A) there is no path from
a node u ∈ Vi to a node v /∈ Vi .

We have |A| =∑n
i=1(|Vi | − 1), because the subgraph (Vi ,A ∩

(

Vi

2

)

) of
(V ,A) induced by Vi is a tree and therefore has |Vi | − 1 many edges.

For every edge e = {u, v} ∈ B one of the following two cases holds:

1 There is 1 ≤ i ≤ n with u, v ∈ Vi .

2 There are i 6= j with u ∈ Vi and v ∈ Vj .

V1 V2 V3 V4 V5

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 115 / 194

Greedy algorithms Kruskal’s algorithm for spanning trees

Matroid of circuit-free edge sets

Assume that B contains more than
∑n

i=1(|Vi | − 1) = |A| many edges of
type 1.

Then there would be an i ∈ {1, . . . , n} such that B contains at least |Vi |
edges within Vi .

But then B would contain a circuit in Vi , which cannot be the case.

Hence: B contains ≤∑n
i=1(|Vi | − 1) = |A| many edges of type 1.

Since |B | > |A|, there exists an edge e ∈ B \ A, which connects two
connected components of (V ,A).

Thus, A ∪ {e} contains no circuit.

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 116 / 194

Greedy algorithms Kruskal’s algorithm for spanning trees

Kruskals algorithm

Algorithm Kruskals algorithm

procedure kruskal (edge-weighted connected graph (V ,E ,w))
begin

sort E by decreasing weights e1, e2, . . . , en with
w(e1) ≥ w(e2) ≥ · · · ≥ w(en)
F := ∅
for k := 1 to n do

if ek connects two different connected components of (V ,F) then
F := F ∪ {ek}

endfor
return (F)

endprocedure

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 117 / 194

Greedy algorithms Kruskal’s algorithm for spanning trees

Kruskal’s algorithm

Example for Kruskal’s algorithm:

2 3

4

5 32

4

6 7

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 118 / 194

Greedy algorithms Kruskal’s algorithm for spanning trees

Kruskal’s algorithm

Example for Kruskal’s algorithm:

2 3

4

5 32

4

6 7

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 118 / 194

Greedy algorithms Kruskal’s algorithm for spanning trees

Kruskal’s algorithm

Example for Kruskal’s algorithm:

2 3

4

5 32

4

6 7

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 118 / 194

Greedy algorithms Kruskal’s algorithm for spanning trees

Kruskal’s algorithm

Example for Kruskal’s algorithm:

2 3

4

5 32

4

6 7

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 118 / 194

Greedy algorithms Kruskal’s algorithm for spanning trees

Kruskal’s algorithm

Example for Kruskal’s algorithm:

2 3

4

5 32

4

6 7

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 118 / 194

Greedy algorithms Kruskal’s algorithm for spanning trees

Kruskal’s algorithm

Example for Kruskal’s algorithm:

2 3

4

5 32

4

6 7

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 118 / 194

Greedy algorithms Kruskal’s algorithm for spanning trees

Kruskal’s algorithm

Example for Kruskal’s algorithm:

2 3

4

5 32

4

6 7

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 118 / 194

Greedy algorithms Kruskal’s algorithm for spanning trees

Kruskal’s algorithm

Example for Kruskal’s algorithm:

2 3

4

5 32

4

6 7

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 118 / 194

Greedy algorithms Kruskal’s algorithm for spanning trees

Kruskal’s algorithm

Example for Kruskal’s algorithm:

2 3

4

5 32

4

6 7

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 118 / 194

Greedy algorithms Kruskal’s algorithm for spanning trees

Kruskal’s algorithm

Example for Kruskal’s algorithm:

2 3

4

5 32

4

6 7

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 118 / 194

Greedy algorithms Kruskal’s algorithm for spanning trees

Running time of Kruskal’s algorithm

Note: Since G is connected, we have |V | − 1 ≤ |E | ≤ |V |2.
Sorting the edges by weight needs time O(|E | log |E |) = O(|E | log |V |).
The connected components V1,V2 . . . ,Vn of the current graph (V ,F)
form a partition of V : V =

⋃n
i=1 Vi , Vi ∩ Vj = ∅ for i 6= j , Vi 6= ∅ for all i .

We start with the singleton connected components {v} for all v ∈ V .

In every iteration of the for-loop (|E | many) we test whether the end
points of the edge ek belong to different sets Vi , Vj (i 6= j) of the partition.

If this holds, then we replace in the partition the sets Vi and Vj by the set
Vi ∪ Vj .

For this, so-called union-find data structures exist, which realizes the
above operations in total time O(α(|V |) · |E |) for an extremely
slow-growing function α.

This gives the running time O(|E | log |V |) for Kruskal’s algorithm.

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 119 / 194

Greedy algorithms Shortest paths and Dijkstra’s algorithm

Shortest paths

Another example for a greedy strategy: Computation of shortest paths in
an edge-weighted directed graph G = (V ,E , γ).

V is the set of nodes

E ⊆ V × V is the set of edges, where (x , x) 6∈ E for all x ∈ V .

γ : E → N is the weight function.

Weight of a path (v0, v1, v2, . . . , vn):

n−1
∑

i=0

γ(vi , vi+1)

For u, v ∈ V , d(u, v) denotes the minimum of the weight of all paths from
u to v (d(u, v) = ∞ if such a path does not exist, and d(u, u) = 0).

Goal: Given G = (V ,E , γ) and a source node u ∈ V , compute for every
v ∈ V a path u = v0, v1, v2, . . . , vn−1, vn = v with minimal weight d(u, v).

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 120 / 194

Greedy algorithms Shortest paths and Dijkstra’s algorithm

Dijkstra’s algorithm

B := ∅ (tree nodes); R := {u} (boundary); U := V \ {u} (unknown nodes);
p(u) := nil; D(u) := 0;
while R 6= ∅ do
x := nil; α := ∞;
forall y ∈ R do
if D(y) < α then
x := y ; α := D(y)

endif
endfor
B := B ∪ {x}; R := R \ {x}
forall (x , y) ∈ E do
if y ∈ U then
D(y) := D(x) + γ(x , y); p(y) := x ; U := U \ {y}; R := R ∪ {y}

elsif y ∈ R and D(x) + γ(x , y) < D(y) then
D(y) := D(x) + γ(x , y); p(y) := x

endif
endfor

endwhile

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 121 / 194

Greedy algorithms Shortest paths and Dijkstra’s algorithm

Example for Dijkstra’s algorithm

tree nodes

boundary

unknown nodes

source node

0

1 3∞

∞ ∞

∞

3

42

3 6

1

6

13

8

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 122 / 194

Greedy algorithms Shortest paths and Dijkstra’s algorithm

Example for Dijkstra’s algorithm

tree nodes

boundary

unknown nodes

initial node

0

1 37

∞ ∞

14

3

42

3 6

1

6

13

8

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 122 / 194

Greedy algorithms Shortest paths and Dijkstra’s algorithm

Example for Dijkstra’s algorithm

tree nodes

boundary

unknown nodes

initial node

0

1 37

11 7

14

3

42

3 6

1

6

13

8

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 122 / 194

Greedy algorithms Shortest paths and Dijkstra’s algorithm

Example for Dijkstra’s algorithm

tree nodes

boundary

unknown nodes

initial node

0

1 37

11 7

13

3

42

3 6

1

6

13

8

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 122 / 194

Greedy algorithms Shortest paths and Dijkstra’s algorithm

Example for Dijkstra’s algorithm

tree nodes

boundary

unknown nodes

initial node

0

1 37

9 7

13

3

42

3 6

1

6

13

8

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 122 / 194

Greedy algorithms Shortest paths and Dijkstra’s algorithm

Example for Dijkstra’s algorithm

tree nodes

boundary

unknown nodes

initial node

0

1 37

9 7

12

3

42

3 6

1

6

13

8

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 122 / 194

Greedy algorithms Shortest paths and Dijkstra’s algorithm

Example for Dijkstra’s algorithm

tree nodes

boundary

unknown nodes

initial node

0

1 37

9 7

12

3

42

3 6

1

6

13

8

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 122 / 194

Greedy algorithms Shortest paths and Dijkstra’s algorithm

Correctness of Dijkstra’s algorithm

Theorem 14 (Correctness of Dijkstra’s algorithm)

Dijkstra’s algorithm computes shortest paths from the source node to all
other nodes.

Proof: We show that the following invariants are preserved by the
loop-body of the while-loop:

1 The sets B , R , and U form a partition of the node set V .

2 R = {y | ∃x ∈ B : (x , y) ∈ E} \ B
3 for all x ∈ B , D(x) = d(u, x)

4 for all y ∈ R , D(y) = min{D(x) + γ(x , y) | x ∈ B , (x , y) ∈ E}
Consider an execution of the body of the while-Schleife, where the node x
is moved from R to B .

(1)–(4) hold before the execution of the loop-body.

It is clear that (1) and (2) are preserved.
Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 123 / 194

Greedy algorithms Shortest paths and Dijkstra’s algorithm

Correctness of Dijkstra’s algorithm

(3): Because of (3) and (4) there exists a node z ∈ B with

D(x) = D(z) + γ(z , x) = d(u, z) + γ(z , x).

Hence, there is path from u to x with weight D(x).

Assume that there is a path from u to x with weight < D(x).

Let w ∈ R be the first node on this path, which does not belong to B
(must exist since x 6∈ B) and let v ∈ B be the predecessor of w on the
path (exists, since u ∈ B).

Since the whole path has weight < D(x), we get

D(w) = min{D(y) + γ(y ,w) | y ∈ B , (y ,w) ∈ E}
≤ D(v) + γ(v ,w) < D(x),

which contradicts the choice of x ∈ R .

Hence, we must have d(u, x) = D(x).
Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 124 / 194

Greedy algorithms Shortest paths and Dijkstra’s algorithm

Correctness of Dijkstra’s algorithm

u

v
w

x

BRU

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 125 / 194

Greedy algorithms Shortest paths and Dijkstra’s algorithm

Correctness of Dijkstra’s algorithm

(4): Let B ′,R ′,U ′,D ′ be the values of the variables B ,R ,U,D after the
execution of the loop-body.

Note: B ′ = B ∪ {x}, D(z) = D ′(z) for all z ∈ B and D(x) = D ′(x).

Let y ∈ R ′.

Case 1: y ∈ R \ {x} and (x , y) ∈ E . We have

D ′(y) = min{D(y),D(x) + γ(x , y)}
= min{min{D(z) + γ(z , y) | z ∈ B , (z , y) ∈ E},D(x) + γ(x , y)}
= min{min{D ′(z) + γ(z , y) | z ∈ B , (z , y) ∈ E},D ′(x) + γ(x , y)}
= min{D ′(z) + γ(z , y) | z ∈ B ′, (z , y) ∈ E}

Case 2: y ∈ R \ {x} and (x , y) 6∈ E . We have

D ′(y) = D(y)

= min{D(z) + γ(z , y) | z ∈ B , (z , y) ∈ E}
= min{D ′(z) + γ(z , y) | z ∈ B ′, (z , y) ∈ E}.

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 126 / 194

Greedy algorithms Shortest paths and Dijkstra’s algorithm

Correctness of Dijkstra’s algorithm

Case 3: y 6∈ R . We have (x , y) ∈ E , but there is no edge (z , y) ∈ E with
z ∈ B (by invariant (2)).

Hence, we have

D ′(y) = D(x) + γ(x , y)

= D ′(x) + γ(y , x)

= min{D ′(z) + γ(z , y) | z ∈ B ′, (z , y) ∈ E},
which concludes the proof.

Remarks:

One can extend our correctness proof for Dijkstra’s algorithm in order
to show: For every node v ∈ B , the sequence of nodes vi with v0 = v
and vi = p(vi−1) for i ≥ 1 terminates in node u (say, vk = u) and
(vk , vk−1, . . . , v0) is a path of minimal weight from u to v .

Dijkstra’s algorithm in general does not produce a correct result if
negative edge weights are allowed.

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 127 / 194

Greedy algorithms Shortest paths and Dijkstra’s algorithm

Dijkstra with abstract data types for the boundary

In order to analyze the running time of Dijkstra’s algorithm, it is uselful to
reformulate the algorithm with an abstract data type for the boundary R .

The following operations are needed for the boundary R :

insert insert a new element into R .
decrease-key decrease the key value of an element of R .
delete-min find the element from R with the smallest key value

and remove it from R .

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 128 / 194

Greedy algorithms Shortest paths and Dijkstra’s algorithm

Dijkstra with abstract data types for the boundary

B := ∅; R := {u}; U := V \ {u}; p(u) := nil; D(u) := 0;
while (R 6= ∅) do

x := delete-min(R);
B := B ∪ {x};
forall (x , y) ∈ E do

if y ∈ U then
U := U \ {y}; p(y) := x ; D(y) := D(x) + γ(x , y);
insert(R , y , D(y));

elsif y ∈ R and D(x) + γ(x , y) < D(y) then
p(y) := x ; D(y) := D(x) + γ(x , y);
decrease-key(R , y , D(y));

endif
endfor

endwhile

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 129 / 194

Greedy algorithms Shortest paths and Dijkstra’s algorithm

Running time of Dijkstra’s algorithm

Number of operations (n = number of nodes, e = number of edges):

insert n
decrease-key e
delete-min n

The total running time depends of the data structure that is used for the
boundary:

1 Array of size n:
single insert/decrease-key: O(1)
single delete-min: O(n)
total running time: O(n + e + n2) = O(n2)

2 Heap (balanced binary tree of depth O(log(n)):
single insert/decrease-key/delete-min: O(log(n))
total running time: O(n log(n) + e log(n)) = O(e log(n)).

If O(e) ⊆ o(n2/ log n), then the heap beats the array.
For instance, for planar graphs one has e ≤ 3n − 6 for n ≥ 3.

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 130 / 194

Greedy algorithms Fibonacci heaps

Fibonacci heaps (Fredman & Tarjan 1984)

Fibonacci heaps beat arrays as well as heaps: O(e + n log n)

A Fibonacci heap H is a list of rooted trees, i.e., a forest.

V is the set of nodes

Every node v ∈ V has a key key (v) ∈ N.

Heap condition: ∀x ∈ V : y is a child of x ⇒ key (x) ≤ key (y)

Some of the nodes of V are marked. The root of a tree is never marked.

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 131 / 194

Greedy algorithms Fibonacci heaps

Example for a Fibonacci heap

(key values are in the circles, marked nodes are grey)

23 7 21 3 17 24

18 52 38 30 26 46

39 41 35

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 132 / 194

Greedy algorithms Fibonacci heaps

Fibonacci heaps

The parent-child relation has to be realized by pointers, since the
trees in a Fibonacci heap are not necessarily balanced.

That means that pointer manipulations (expensive!) replace the index
manipulations (cheap!) in standard heaps.

Operations:

1 merge

2 insert

3 delete-min

4 decrease-key

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 133 / 194

Greedy algorithms Fibonacci heaps

Implementation of merge and insert

merge: Concatenation of two lists — constant time

insert: Special case of merge — constant time

merge and insert produce long lists of one-element trees.

Every such list is a Fibonacci heap.

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 134 / 194

Greedy algorithms Fibonacci heaps

Implementation of delete-min

Let H be a Fibonacci heap consisting of T trees and n nodes.

for a nodes x ∈ V let rank(x) be the number of children of x .

for a tree B in H let rank(B) be the rank of the root of B .

Let rmax(n) be the maximal rank that can appear in a Fibonacci heap
with n nodes.

Clearly, rmax(n) ≤ n. Later, we will show that rmax(n) ∈ O(log n).

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 135 / 194

Greedy algorithms Fibonacci heaps

Implementation of delete-min

1 Search for the root x with minimal key. Time: O(T)

2 Remove x and replace the subtree rooted in x by its rank(x) many
subtrees. Remove possible markings from the new roots.
Time: O(rank(x)) ⊆ O(rmax(n)).

3 Define an array L[0, . . . , rmax(n)], where L[i] is a list of all trees of
rank i .
Time: O(T + rmax(n)).

4 for i := 0 to rmax(n)− 1 do
while |L[i]| ≥ 2 do
remove two trees from L[i]
make the root with the larger key to a child of the other root
add the resulting tree to L[i + 1]

endwhile endfor

Time: O(T + rmax(n))

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 136 / 194

Greedy algorithms Fibonacci heaps

Example for delete-min

23 7 21 3 17 24

18 52 38 30 26 46

39 41 35

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 137 / 194

Greedy algorithms Fibonacci heaps

Example for delete-min

23 7 21 18 52 38 17 24

39 41 30 26 46

35

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 137 / 194

Greedy algorithms Fibonacci heaps

Example for delete-min

7 21 18 52 38 17 24

23 39 41 30 26 46

35

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 137 / 194

Greedy algorithms Fibonacci heaps

Example for delete-min

7 21 18 38 17 24

23 52 39 41 30 26 46

35

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 137 / 194

Greedy algorithms Fibonacci heaps

Example for delete-min

7 18 38 17 24

23 21 39 41 30 26 46

52 35

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 137 / 194

Greedy algorithms Fibonacci heaps

Example for delete-min

7 18 17 24

23 21 39 38 30 26 46

52 41 35

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 137 / 194

Greedy algorithms Fibonacci heaps

Example for delete-min

7

18

17 24

23 21

39 38

30 26 46

52

41

35

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 137 / 194

Greedy algorithms Fibonacci heaps

Remarks for delete-min

delete-min needs time O(T + rmax(n)), where T is the number of
trees before the operation.

After the execution of delete-min, there exists for every i ≤ rmax(n)
at most one tree of rank i .

Hence, the number of trees after delete-min is bounded by rmax(n).

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 138 / 194

Greedy algorithms Fibonacci heaps

Implementation of decrease-key

Let x be the node for which the key is reduced.

1 If x is a root, then we can reduce key (x) without any other
modifications.

Now assume that x is not a root and let x = y0, y1, . . . , ym be the
path from x to the root ym (m ≥ 1).

Let yk (1 ≤ k ≤ m) be the first node on this path, which is not x and
which is not marked (note: ym is not marked).

2 For all 0 ≤ i < k , we cut off yi from its parent node yi+1 and remove
the marking from yi (y0 = x can be marked).

yi (0 ≤ i < k) is now an unmarked root of a new tree.

3 If yk is not a root, then we mark yk (this tells us later that yk lost a
child).

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 139 / 194

Greedy algorithms Fibonacci heaps

Implementation of decrease-key

ym

ym−1

yk+1

yk

yk−1

y1

y0

(dark gray nodes are marked, light gray nodes can be marked)

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 140 / 194

Greedy algorithms Fibonacci heaps

Implementation of decrease-key

ym

ym−1

yk+1

yk

yk−1 y1 y0

(dark gray nodes are marked, light gray nodes can be marked)

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 140 / 194

Greedy algorithms Fibonacci heaps

Example for decrease-key

7

18

17 24

23 21

39 38

30 26 46

52

41

35

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 141 / 194

Greedy algorithms Fibonacci heaps

Example for decrease-key

decrease-key(node with key 39, 6)

7

18

17 24

23 21

39 38

30 26 46

52

41

35

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 141 / 194

Greedy algorithms Fibonacci heaps

Example for decrease-key

decrease-key(node with key 39, 6)

7 6 17 24

23 21 18

38

30 26 46

52

41

35

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 141 / 194

Greedy algorithms Fibonacci heaps

Example for decrease-key

decrease-key(node with key 38, 29)

7 6 17 24

23 21 18

38

30 26 46

52

41

35

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 141 / 194

Greedy algorithms Fibonacci heaps

Example for decrease-key

decrease-key(node with key 38, 29)

7 29 6 17 24

23 21 18 41 30 26 46

52 35

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 141 / 194

Greedy algorithms Fibonacci heaps

Example for decrease-key

decrease-key(node with key 38, 29)

7 18 29 6 17 24

23 21 41 30 26 46

52 35

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 141 / 194

Greedy algorithms Fibonacci heaps

Remarks for decrease-key

Time: O(k)

decrease-key reduces the number of marked nodes by at least k − 2
(k ≥ 1).

decrease-key increases the number of trees by k .

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 142 / 194

Greedy algorithms Fibonacci heaps

Definition of Fibonacci heaps

Definition (Fibonacci heap)

A Fibonacci heap is a list of rooted trees as described before, which can be
obtained from the empty list by an arbitrary sequence of merge, insert,
delete-min, and decrease-key operations

Lemma 15 (Fibonacci heap lemma)

Let x be a node of a Fibonacci heap with rank(x) = k.

1 If c1, . . . , ck are the children of x, and ci became a child of x before
ci+1 became a child of x, then rank(ci) ≥ i − 2.

2 The subtree rooted in x contains at least Fk+1 many nodes. Here,
Fk+1 is the (k + 1)-th Fibonacci number
(F0 = F1 = 1,Fk+1 = Fk + Fk−1 for k ≥ 1).

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 143 / 194

Greedy algorithms Fibonacci heaps

Proof of the Fibonacci heap lemma

Part 1:

At the time instant t, where ci became a child of x , the nodes c1, . . . , ci−1

were already children of x , i.e., the rank of x at time t was at least i − 1.

Since only trees with equal rank are merged to a single tree (in
delete-min), that rank of ci at time t was at least i − 1 as well.

In the meantime (i.e. after time t), ci can loose at most one child: If ci
looses one child due to a decrease-key, then ci will be marked, and after
loosing second child, ci will be cut off from the parent node x .

Hence, rank(ci) ≥ i − 2.

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 144 / 194

Greedy algorithms Fibonacci heaps

Proof of the Fibonacci heap lemma

Part 2:

Proof by induction on the height of the subtree rooted at x .

If x is a leaf, then k = 0 and the subtree rooted in x contains 1 = F1 node.

If x is not a leaf then we can count the number of nodes in the subtree
rooted at x as follows:

1 2 (for x and c1) plus

2 the number of nodes in the subtree rooted at ci (for 2 ≤ i ≤ k),
which has rank ≥ i − 2 (by part 1) and therefore contains by
induction at least Fi−1 many nodes.

Hence the subtree rooted in x contains at least

2 +
k
∑

i=2

Fi−1 = 2 +
k−1
∑

i=1

Fi

many nodes.
Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 145 / 194

Greedy algorithms Fibonacci heaps

Proof of the Fibonacci heap lemma

x

c1 c2 ci ck

≥ F1 nodes
≥ Fi−1 nodes

≥ Fk−1 nodes

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 146 / 194

Greedy algorithms Fibonacci heaps

Proof of the Fibonacci heap lemma

The following claim concludes the proof of part 2.

Claim: 2 +
k−1
∑

i=1

Fi = Fk+1 for all k ≥ 1.

Induction on k ≥ 1:

k = 1: 2 +
k−1
∑

i=1

Fi = 2 = F2

k > 1: By induction we get

2 +
k−1
∑

i=1

Fi = 2 +
k−2
∑

i=1

Fi + Fk−1 = Fk + Fk−1 = Fk+1

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 147 / 194

Greedy algorithms Fibonacci heaps

Growth of the Fibonacci numbers

Theorem 16

For all k ≥ 0 we have:

Fk =
1√
5

(

1 +
√
5

2

)k+1

− 1√
5

(

1−
√
5

2

)k+1

Asymptotically we get Fk ≈ 0, 72 · (1, 62)k (and Fk+1 ≈ 1, 17 · (1, 62)k).

If rank(x) = k and the Fibonacci heap has n nodes in total, then

n ≥ size of subtree rooted in x ≥ Fk+1 ≈ 1, 17 · (1, 62)k

Hence, k ∈ O(log n).

Consequence: rmax(n) ∈ O(log n).

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 148 / 194

Greedy algorithms Fibonacci heaps

Summary of the running times

merge, insert: constant time

delete-min: O(T + rmax(n)) ⊆ O(T + log n), where T is the current
number of trees.

decrease-key: O(k) (k ≥ 1), where at least k − 2 markings are
removed from the Fibonacci heap and k trees are added.

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 149 / 194

Greedy algorithms Fibonacci heaps

Amortized time

Definition (potential, amortized time)

For a Fibonacci heap H we define its potential pot (H) as
pot (H) := T + 2M, where T is its number of trees and M is the number
of marked nodes.

For an operation op let ∆pot (op) be the difference of the potential after
and before the execution of the operation.

∆pot (op) = pot (heap after op)− pot (heap before op) .

The amortized time of the operation is op is

tamort(op) = t(op) + ∆pot (op) .

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 150 / 194

Greedy algorithms Fibonacci heaps

Amortized time

The potential has the following properties:

pot (H) ≥ 0

pot (H) ∈ O(|H|)
pot (nil) = 0

Let op 1, op 2, op 3, . . . , opm be sequence of m operations, and assume that
the initial Fibonacci heap is empty.

For 1 ≤ i ≤ m let Hi be the Fibonacci heap after op i .

Let H0 be the initial Fibonacci heap (before op 1); hence pot (H0) = 0.

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 151 / 194

Greedy algorithms Fibonacci heaps

Amortized time

We have

m
∑

i=1

tamort(op i) =

m
∑

i=1

(t(op i) + ∆(op i))

=

m
∑

i=1

(t(op i) + pot (Hi)− pot (Hi−1))

= pot (Hm)− pot (H0) +

m
∑

i=1

t(op i)

= pot (Hm) +
m
∑

i=1

t(op i)

≥
m
∑

i=1

t(op i) .

Hence, it suffices to bound tamort(op).
Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 152 / 194

Greedy algorithms Fibonacci heaps

Amortized time

Convention: By multiplying all terms in the following computations with
a suitable constant, we can assume that

merge and insert need one time step,

that delete-min needs at most T + log n time steps, and

that decrease-key needs k time steps (k ≥ 1).

This allows to omit the O-notation.

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 153 / 194

Greedy algorithms Fibonacci heaps

Amortized time

tamort(merge) = t(merge) = 1, because the potential of the
concatenation of two lists is the sum of the potentials of the two lists.

tamort(insert) = t(insert)+∆pot (op) = 1 + 1 = 2.

For delete-min we have t(delete-min) ≤ T + log n, where T is the
number of trees before the execution of delete-min.

After delete-min, the number of trees bounded by rmax(n).

The number of marked nodes can only get smaller.

Hence, we have ∆pot (op) ≤ rmax(n)− T and
tamort(delete-min) ≤ T + log n − T + rmax(n) ∈ O(log n) .

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 154 / 194

Greedy algorithms Fibonacci heaps

Amortized time

For decrease-key we have t(decrease-key) ≤ k (k ≥ 1), where at
least k − 2 markings will be removed.

Moreover, k new trees are added to the Fibonacci heap.

We get

∆pot (op) = ∆(T) + 2∆(M)

≤ k + 2 · (2− k)

= 4− k ,

and hence tamort(decrease-key) ≤ k + 4− k = 4 ∈ O(1).

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 155 / 194

Greedy algorithms Fibonacci heaps

Amortized time

Theorem 17

The following amortized time bounds hold for a Fibonacci heap with n
nodes:

tamort(merge) ∈ O(1)

tamort(insert) ∈ O(1)

tamort(delete-min) ∈ O(log n)

tamort(decrease-key) ∈ O(1)

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 156 / 194

Greedy algorithms Fibonacci heaps

Fibonacci heaps for Dijkstra

Back to Dijkstra’s algorithm:

For Dijkstra’s algorithm let V be the boundary and let key (v) be the
current estimate for d(u, v).

Let n be the number of nodes and e be the number of edges of the
input graph.

Dijkstra’s algorithm will execute at most n insert-, e decrease-key-
and n delete-min-operations.

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 157 / 194

Greedy algorithms Fibonacci heaps

Fibonacci heaps for Dijkstra

tDijkstra ≤ n · tamort(insert)

+ e · tamort(decrease-key)

+ n · tamort(delete-min)

∈ O(n + e + n log n)

= O(e + n log n)

Remember that:

with arrays we got tDijkstra ∈ O(n2), and

with standard heaps we got tDijkstra ∈ O(e log(n)).

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 158 / 194

Dynamic Programming

Overview

Computing long products of (non-square) matrices

Optimal binary search trees

Warshall’s and Floyd’s algorithm

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 159 / 194

Dynamic Programming

Idea of dynamic programming

Compute a table of all subsolutions of a problem, until the overall solution
is computed.

Every subsolutions is computed using the already existing entries in the
table.

Dynamic programming is tightly related to backtracking.

In contrast to backtracking, dynamic programming used iteration instead
of recursion. By storing computed subsolutions in table we avoid to solve
the same subproblem several times.

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 160 / 194

Dynamic Programming Computing a long product of matrices

Example: Computing a long product of matrices

Multiplication from left to right:

(10 × 1) (1× 10) (10× 1) (1× 10) (10× 1)

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 161 / 194

Dynamic Programming Computing a long product of matrices

Example: Computing a long product of matrices

Multiplication from left to right:

(10 × 1) (1× 10) (10× 1) (1× 10) (10× 1)

(10 × 10) (10× 1) (1× 10) (10× 1)

100 multiplications

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 161 / 194

Dynamic Programming Computing a long product of matrices

Example: Computing a long product of matrices

Multiplication from left to right:

(10 × 1) (1× 10) (10× 1) (1× 10) (10× 1)

(10 × 10) (10× 1) (1× 10) (10× 1)

100 multiplications

(10× 1) (1× 10) (10× 1)

100 multiplications

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 161 / 194

Dynamic Programming Computing a long product of matrices

Example: Computing a long product of matrices

Multiplication from left to right:

(10 × 1) (1× 10) (10× 1) (1× 10) (10× 1)

(10 × 10) (10× 1) (1× 10) (10× 1)

100 multiplications

(10× 1) (1× 10) (10× 1)

100 multiplications

(10× 10) (10× 1)

100 multiplications

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 161 / 194

Dynamic Programming Computing a long product of matrices

Example: Computing a long product of matrices

Multiplication from left to right:

(10 × 1) (1× 10) (10× 1) (1× 10) (10× 1)

(10 × 10) (10× 1) (1× 10) (10× 1)

100 multiplications

(10× 1) (1× 10) (10× 1)

100 multiplications

(10× 10) (10× 1)

100 multiplications

(10× 1)

100 multiplications

In total: 400 multiplications
Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 161 / 194

Dynamic Programming Computing a long product of matrices

Example: Computing a long product of matrices

Multiplication from right to left:

(10 × 1) (1× 10) (10× 1) (1× 10) (10× 1)

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 162 / 194

Dynamic Programming Computing a long product of matrices

Example: Computing a long product of matrices

Multiplication from right to left:

(10 × 1) (1× 10) (10× 1) (1× 10) (10× 1)

(10 × 1) (1× 10) (10× 1) (1× 1)

10 multiplications

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 162 / 194

Dynamic Programming Computing a long product of matrices

Example: Computing a long product of matrices

Multiplication from right to left:

(10 × 1) (1× 10) (10× 1) (1× 10) (10× 1)

(10 × 1) (1× 10) (10× 1) (1× 1)

10 multiplications

(10 × 1) (1× 10) (10 × 1)

10 multiplications

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 162 / 194

Dynamic Programming Computing a long product of matrices

Example: Computing a long product of matrices

Multiplication from right to left:

(10 × 1) (1× 10) (10× 1) (1× 10) (10× 1)

(10 × 1) (1× 10) (10× 1) (1× 1)

10 multiplications

(10 × 1) (1× 10) (10 × 1)

10 multiplications

(10 × 1) (1× 1)

10 multiplications

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 162 / 194

Dynamic Programming Computing a long product of matrices

Example: Computing a long product of matrices

Multiplication from right to left:

(10 × 1) (1× 10) (10× 1) (1× 10) (10× 1)

(10 × 1) (1× 10) (10× 1) (1× 1)

10 multiplications

(10 × 1) (1× 10) (10 × 1)

10 multiplications

(10 × 1) (1× 1)

10 multiplications

(10× 1)

10 multiplications

In total: 40 multiplications
Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 162 / 194

Dynamic Programming Computing a long product of matrices

Example: Computing a long product of matrices

Multiplication in optimal order

(10 × 1) (1× 10) (10× 1) (1× 10) (10× 1)

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 163 / 194

Dynamic Programming Computing a long product of matrices

Example: Computing a long product of matrices

Multiplication in optimal order

(10 × 1) (1× 10) (10× 1) (1× 10) (10× 1)

(10 × 1) (1× 10) (10× 1) (1× 1)

10 multiplications

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 163 / 194

Dynamic Programming Computing a long product of matrices

Example: Computing a long product of matrices

Multiplication in optimal order

(10 × 1) (1× 10) (10× 1) (1× 10) (10× 1)

(10 × 1) (1× 10) (10× 1) (1× 1)

10 multiplications

(10 × 1) (1× 1) (1× 1)

10 multiplications

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 163 / 194

Dynamic Programming Computing a long product of matrices

Example: Computing a long product of matrices

Multiplication in optimal order

(10 × 1) (1× 10) (10× 1) (1× 10) (10× 1)

(10 × 1) (1× 10) (10× 1) (1× 1)

10 multiplications

(10 × 1) (1× 1) (1× 1)

10 multiplications

(10 × 1) (1× 1)

1 Multiplikation

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 163 / 194

Dynamic Programming Computing a long product of matrices

Example: Computing a long product of matrices

Multiplication in optimal order

(10 × 1) (1× 10) (10× 1) (1× 10) (10× 1)

(10 × 1) (1× 10) (10× 1) (1× 1)

10 multiplications

(10 × 1) (1× 1) (1× 1)

10 multiplications

(10 × 1) (1× 1)

1 Multiplikation

(10× 1)

10 multiplications

In total: 31 multiplications
Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 163 / 194

Dynamic Programming Computing a long product of matrices

Computing a long product of matrices

Let Zn×m be all matrices over Z with n columns and m rows.

Assumption: For A ∈ Z
n×m and B ∈ Z

m×k , computing the product A · B
needs n ·m · k scalar multiplications (multiplications in Z).

Recall: matrix multiplication is associative, i.e., A · (B · C) = (A · B) · C .

Input: matrices M1,M2, . . . ,Mℓ with Mi ∈ Z
ni−1×ni .

cost(M1, . . . ,Mℓ) := minimal number of scalar multiplications needed to
compute M1 · · ·Mℓ (minimum is taken over all possible bracketings).

Dynamic programming approach:

cost(Mi , . . . ,Mj) =

mink{cost(Mi , . . . ,Mk) + cost(Mk+1, . . . ,Mj) + ni−1 · nk · nj}

Let cost(Mi , . . . ,Mj) = cost[i , j].

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 164 / 194

Dynamic Programming Computing a long product of matrices

Computing a long product of matrices

for i := 1 to ℓ do
cost[i , i] := 0;
for j := i + 1 to ℓ do
cost[i , j] := ∞;

endfor
endfor
for d := 1 to ℓ− 1 do
for i := 1 to ℓ− d do
j := i + d ;
for k := i to j − 1 do
t := cost[i , k] + cost[k + 1, j] + ni−1 · nk · nj ;
if t < cost[i , j] then
cost[i , j] := t;
best[i , j] := k ;

endif
endfor

endfor
endfor

return best
Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 165 / 194

Dynamic Programming Optimal binary search trees

Optimal search trees

We will see a straightforward dynamic programming algorithm for
computing optimal search trees with a running time of of Θ(n3).

An algorithm of Donald E. Knuth reduces the time to Θ(n2).

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 166 / 194

Dynamic Programming Optimal binary search trees

Optimal search trees

Let V = {v1, . . . , vn} be linearly ordered set of keys, v1 < v2 < · · · < vn.

For every key v ∈ V we have given an access probability (also called the
weight) γ(v).

The idea is that with every key some additional information is associated
(think about personnel numbers, and additional informations like name,
birthday, salary, etc). Then γ(vi) is the probability that the information
associated with key vi is accessed.

Definition (binary search tree)

A binary search tree for v1 < v2 < · · · < vn is a binary tree with node set
{v1, v2, . . . , vn}, such that:

For every node v with left (resp., right) subtree L (resp. R) and all u ∈ L
(resp. w ∈ R) we have: u < v (v < w).

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 167 / 194

Dynamic Programming Optimal binary search trees

Optimal search trees

Example: A binary search tree for 1, 2, 3, 4, 5, 6, 7, 8, 9

6

3 8

7 92

1

4

5

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 168 / 194

Dynamic Programming Optimal binary search trees

Optimal search trees

Every node v of a search tree B has a level ℓB(v):
ℓB(v) := 1+ distance (in number of edges) from v to root.

Finding a node at level ℓ requires ℓ comparisons (start in root and then
walk down the path to the node).

Problem: Find a binary search tree B with minimal weighted inner path
length

P(B) :=
∑

v∈V

ℓB(v) · γ(v).

The weighted inner path length is the average cost for accessing a node.

Dynamic programming works because subtrees of optimal binary search
trees have to be optimal again.

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 169 / 194

Dynamic Programming Optimal binary search trees

Optimal search trees

Example: A binary search tree B for 1, 2, 3, 4, 5, 6, 7, 8, 9.
The weight γ(v) of a node v is written next to v .

6 0.4

3 0.2 8 0.2

7 0.04 9 0.032 0.05

1 0.01

4 0.06

5 0.01

For the weighted inner path length we get

P(B) = 1 · 0.4 + 2 · 0.2 + 2 · 0.2 + 3 · 0.05 + 3 · 0.06 +
3 · 0.04 + 3 · 0.03 + 4 · 0.01 + 4 · 0.01

= 1.82.

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 170 / 194

Dynamic Programming Optimal binary search trees

Optimal search trees

For a subtree B ′ of a binary search tree B let Γ(B ′) denote the sum of all
weights of keys in B ′.

For a binary search tree B with left subtree B0, right subtree B1, and root
r we have

P(B) = P(B0) + Γ(B0) + 1 · γ(r) + P(B1) + Γ(B1)

= P(B0) + P(B1) + Γ(B). (5)

r

B0 B1

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 171 / 194

Dynamic Programming Optimal binary search trees

Optimal search trees

Notation:

node set = {1, . . . , n}, i.e., we identify node vi with i .

P [i , j]: weighted inner path length of an optimal search tree for the
node set {i , . . . , j}.
R [i , j]: root of an optimal search tree for {i , . . . , j}.
Since there might be several optimal search trees we take for R [i , j]
for the largest root among all optimal search trees.

Γ[i , j] :=
∑j

k=i γ(k): total weight of the node set {i , . . . , j}.
From (5) we get

P [i , j] = Γ[i , j] + min{P [i , k − 1] + P [k + 1, j] | k ∈ {i , . . . , j}}
R [i , j] = largest key among all k ∈ {i , . . . , j} for which
P [i , k − 1] + P [k + 1, j] is minimal.

This yields the following dynamical programming algorithm.
Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 172 / 194

Dynamic Programming Optimal binary search trees

Optimal search trees

for i := 1 to n do
P[i , i − 1] := 0;
P[i , i] := γ(i);
Γ[i , i] := γ(i);
R [i , i] := i ;

endfor

for d := 1 to n− 1 do
for i := 1 to n − d do
j := i + d ;
root := i ;
t := ∞;
for k := i to j do
if P[i , k − 1] + P[k + 1, j] ≤ t then
t := P[i , k − 1] + P[k + 1, j];
root := k ;

endif
endfor
Γ[i , j] := Γ[i , j − 1] + γ(j);
P[i , j] := t + Γ[i , j];
R [i , j] := root;

endfor
endfor

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 173 / 194

Dynamic Programming Computation of regular expressions

Computation of regular expressions

Recall from GTI: Computation of regular expressions by Kleene.

A nondeterministic finite automaton (NFA) is a tuple

A = (Q,Σ, δ ⊆ Q × Σ× Q, I ,F) (w.l.o.g. Q = {1, . . . , n}).

Let Lk [i , j] be the set of all words that label a path in A, which

leads from i to j and

thereby only visits intermediate states from {1, . . . , k} (i and j do not
necessarily belong to {1, . . . , k}).

Goal: Regular expressions for all Ln[i , j] with i ∈ I and j ∈ F .

We have

L0[i , j] =

{

{a ∈ Σ | (i , a, j) ∈ δ} if i 6= j

{a ∈ Σ | (i , a, j) ∈ δ} ∪ {ε} if i = j

Lk [i , j] = Lk−1[i , j] + Lk−1[i , k] · Lk−1[k , k]∗ · Lk−1[k , j]

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 174 / 194

Dynamic Programming Computation of regular expressions

Computation of regular expressions

Algorithm Regular from an NFA

procedure NFA2REGEXP
Input : NEA A = (Q,Σ, δ ⊆ Q × Σ× Q, I ,F)
(Initialize: L[i , j] := {a | (i , a, j) ∈ δ ∨ a = ε ∧ i = j})
begin

for k := 1 to n do
for i := 1 to n do

for j := 1 to n do
L[i , j] := L[i , j] + L[i , k] · L[k , k]∗ · L[k , j]

endfor
endfor

endfor
end

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 175 / 194

Dynamic Programming Warshall’s algorithm

Transitiv closure

Let G = (V ,E) be a finite directed graph, i.e., E ⊆ V × V .

A non-empty path from u ∈ V to v ∈ V is a sequence of nodes
v0, v1, . . . , vk ∈ V such that k ≥ 1, v0 = u, vk = v and (vi , vi+1) ∈ E for
all i ∈ {0, . . . , k − 1}.

The transitive closure of G is the graph G+ = (V ,E+) where (u, v) ∈ E+

if and only if there is a non-empty path in G from u to v .

The reflexive transitive closure of G is the graph G ∗ = (V ,E ∗) where
(u, v) ∈ E ∗ if and only if (u, v) ∈ E+ or u = v .

In other words: E ∗ = E+ ∪ {(v , v) | v ∈ V }.

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 176 / 194

Dynamic Programming Warshall’s algorithm

Adjacency matrix

In the following we assume that the node set is V = {1, . . . , n}.

Then, G (and similarly G+ and G ∗) can be represented by its adjacency
matrix A = (ai ,j)1≤i ,j≤n ∈ Booln×n where

ai ,j =

{

1 if (i , j) ∈ E

0 otherwise

Let us denote with A+ (respectively A∗) the adjacency matrix of G+

(respectively G ∗).

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 177 / 194

Dynamic Programming Warshall’s algorithm

Computing the transitiv closure

Warshall’s algorithm is based on the following observation, where for a
non-empty path (v0, v1, . . . , vm−1, vm) we denote with v1, . . . , vm−1 the
intermediate nodes of the path:

The following two statements are equivalent for all i , j , k ∈ {1, . . . , n}.

There is a non-empty path from i to j such that all intermediate
nodes belong to {1, . . . , k}.
One the of the following is true:

There is a non-empty path from i to j such that all intermediate nodes
belong to {1, . . . , k − 1}.
There are (i) a non-empty path from i to k such that all intermediate
nodes belong to {1, . . . , k − 1} and (ii) a non-empty path from k to j
such that all intermediate nodes belong to {1, . . . , k − 1}.

This observation allows to apply dynamical programming.

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 178 / 194

Dynamic Programming Warshall’s algorithm

Computing the transitiv closure

Algorithm Warshall-algorithm: computation of the transitive closure

procedure Warshall (var A : adjacency matrix)
Input : graph given by its adjacency matrix (A[i , j]) ∈ Booln×n

begin
for k := 1 to n do

for i := 1 to n do
for j := 1 to n do

if (A[i , k] = 1) and (A[k , j] = 1) then
A[i , j] := 1

endif
endfor

endfor
endfor

end

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 179 / 194

Dynamic Programming Warshall’s algorithm

Transitiv closure?

Algorithm Is this algorithm correct?

procedure Warshall (var A : adjacency matrix)
Input : graph given by its adjacency matrix (A[i , j]) ∈ Booln×n

begin
for i := 1 to n do

for j := 1 to n do
for k := 1 to n do

if (A[i , k] = 1) and (A[k , j] = 1) then
A[i , j] := 1

endif
endfor

endfor
endfor

end

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 180 / 194

Dynamic Programming Warshall’s algorithm

Correctness of Warshall

Correctness of Warshall’s algorithm follows from the following invariant:

1 After the k-th excecution of the body of the for-loop, we have:
A[i , j] = 1, if there is a non-empty path from i to j with intermediate
nodes from 1, . . . , k .

Important: the outermost loop runs over k .

2 If A[i , j] is set to 1, then there exists a non-empty path from i to j .

If the 0/1-entries in the adjacency matrix are replaced by edge weights
from N, one obtains Floyd’s algorithm for computing distances in
edge-weighted graphs.

In contrast to Dijkstra’s algorithm, Floyd’s algorithm computes for every
pair (u, v) of nodes the distance from u to v):

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 181 / 194

Dynamic Programming Floyd’s algorithm

Floyd’s algorithm

Algorithm Floyd: all shortest paths in a graph

procedure Floyd (var A : adjacency matrix)
Input : edge-weighted graph given by its adjacency matrix A[i , j] ∈

(N ∪∞)n×n, where A[i , j] = ∞ means that there is no edge from i to j .
begin

for k := 1 to n do
for i := 1 to n do

for j := 1 to n do
A[i , j] := min{A[i , j],A[i , k] + A[k , j]};

endfor
endfor

endfor
end

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 182 / 194

Dynamic Programming Floyd’s algorithm

Floyd’s algorithm

Correctness of Floyd’s algorithm can be shown analogously to Warshall’s
algorithm: after the k-th excecution of the body of the for-loop, A[i , j] is
the minimal weight of path from i to j with intermediate nodes from
1, . . . , k .

Running time of Warshall and Floyd: Θ(n3).

Simple
”
improvement“: Before entering the j-loop, we test whether

A[i , k] = 1 (for Warshall), respectively

A[i , k] < ∞ (for Floyd)

holds.

This yields a running time of O(n3):

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 183 / 194

Dynamic Programming Floyd’s algorithm

Floyd’s algorithm

Algorithm Floyd’s algorithm in O(n3)

procedure Floyd (var A : adjacency matrix)
Input : adjacency matrix A[i , j] ∈ (N ∪∞)n×n

begin
for k := 1 to n do

for i := 1 to n do
if A[i , k] < ∞ then

for j := 1 to n do
A[i , j] := min{A[i , j],A[i , k] + A[k , j]};

endfor
endif

endfor
endfor

end

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 184 / 194

Dynamic Programming Floyd’s algorithm

Floyd’s algorithm

Floyd’s algorithm computes correct results also for graphs with negative
weights provided that there do not exist cycles with negative total weight.

If negative cycles exist in the graph, then a problem arises!

What is the weight of the optimal path from 1 to 3 in the following graph?

1 2 31 1

-1

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 185 / 194

Dynamic Programming Floyd’s algorithm

Floyd’s algorithm

Floyd’s algorithm computes correct results also for graphs with negative
weights provided that there do not exist cycles with negative total weight.

If negative cycles exist in the graph, then a problem arises!

What is the weight of the optimal path from 1 to 3 in the following graph?

1 2 31 1

-1

Answer: −∞

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 185 / 194

Dynamic Programming Floyd’s algorithm

Floyd’s algorithm

Algorithm Floyd’s algorithm for negative cycles

procedure Floyd (var A : adjacency matrix)
Input : adjacency matrix A[i , j] ∈ (Z ∪ {∞,−∞})n×n

begin
for k := 1 to n do

for i := 1 to n do
if A[i , k] < ∞ then

for j := 1 to n do
if A[k , j] < ∞ then

if A[k , k] < 0 then A[i , j] := −∞
else A[i , j] := min{A[i , j],A[i , k] + A[k , j]}

endif
endif

endfor endif endfor endfor
end

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 186 / 194

Dynamic Programming Transitiv closure and matrix multiplication

Transitiv closure and matrix multiplication

Warshall’s algorithm computes the reflexive and transitive closure A∗ of a
boolean matrix A in time O(n3).

We can also compute A∗ by the formula A∗ =
∑

k≥0 A
k , where

A0 = In is the identity matrix and

∨ (boolean or) is taken for the addition of boolean matrices.

We add matrix entries as follows: 0 + 0 = 0, 0 + 1 = 1 + 0 = 1 + 1 = 1.

Claim: Ak [i , j] = 1 ⇐⇒ there exists a path of length k from i to j .

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 187 / 194

Dynamic Programming Transitiv closure and matrix multiplication

Transitiv closure and matrix multiplication

Proof by induction on k :

k = 0: Since A0 = In, we have

A0[i , j] = 1 ⇐⇒ i = j ⇐⇒ there is a path of length 0 from i to j .

k > 0: We have

Ak [i , j] = (Ak−1 · A)[i , j] =
n
∑

p=1

Ak−1[i , p] · A[p, j].

Hence: Ak [i , j] = 1 if and only if there exists a node p such that

there is a path from i to p of length k − 1 and

there is an edge from p to j .

This is true if and only if there is a path from i to j of length k .

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 188 / 194

Dynamic Programming Transitiv closure and matrix multiplication

Transitiv closure and matrix multiplication

Since there is a path from i to j if and only if there is a path of length at
most n− 1 (n = number of nodes) from i to j , we have:

A∗ =
n−1
∑

k=0

Ak .

Let B = In + A. We get A∗ = Bm for all m ≥ n − 1.

It therefore suffices to square the matrix B e := ⌈log2(n − 1)⌉ times in
order to compute B2e = A∗.

Let M(n) be the time needed to multiply two boolean (n × n)-matrices.
Let T (n) be the time needed to compute the reflexive and transitive
closure of a boolean (n × n)-matrix.

We get T (n) ∈ O(M(n) · log n).
Using Strassen’s algorithm, we get for all ε > 0:

T (n) ∈ O(nlog2(7) · log n) ⊆ O(nlog2(7)+ε).

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 189 / 194

Dynamic Programming Transitiv closure and matrix multiplication

Transitiv closure and matrix multiplication

But wait: Can we use Strassen’s algorithm for multiplying boolean
matrices?

Strassen’s algorithm works for matrices over Z (or any ring); it uses
negation!

Solution: We take the boolean matrix B from the previous slide and
compute the matrix B2e ∈ N

n×n using Strassen’s algorithm (with
1 + 1 = 2).

Then, B2e [i , j] is the number of paths of length 2e from i to j in the graph
defined by the adjacency matrix B .

By replacing every matrix entry ≥ 2 by 1, we obtain A∗.

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 190 / 194

Dynamic Programming Transitiv closure and matrix multiplication

Matrix multiplication ≤ transitiv closure

Under the plausible assumption that T (3n) ∈ O(T (n)) we get
M(n) ∈ O(T (n)):

For all boolean matrices A and B we have:

0 A 0
0 0 B
0 0 0

∗

= I3n +

0 A 0
0 0 B
0 0 0

+

0 A 0
0 0 B
0 0 0

2

+ · · ·

= I3n +

0 A 0
0 0 B
0 0 0

+

0 0 AB
0 0 0
0 0 0

=

In A AB
0 In B
0 0 In

 .

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 191 / 194

Dynamic Programming Transitiv closure and matrix multiplication

Matrix multiplication ≤ transitiv closure

Under the also plausible assumption that M(2n) ≥ (2 + ε)M(n) for an
ε > 0, we can show that also T (n) ∈ O(M(n)).

Hence: The computation of the reflexive and transitive closure is up to
constant factors equally expensive as matrix multiplication.

Input: E ∈ Bool(n × n)

Divide E into 4 submatrices A,B ,C ,D such that A and D are square
matrices and each of the 4 matrices has size roughly n/2× n/2:

E =

(

A B
C D

)

.

Compute recursively D∗. Needs time T (n/2).

Compute F = A+ BD∗C . Needs time O(M(n/2)) ≤ O(M(n)).

Compute recursively F ∗. Needs time T (n/2).

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 192 / 194

Dynamic Programming Transitiv closure and matrix multiplication

Computation of the transitiv closure

We finally obtain

E ∗ =

(

F ∗ F ∗BD∗

D∗CF ∗ D∗ + D∗CF ∗BD∗

)

.

1, . . . , n2
n
2 + 1, . . . , n

B

C

A D

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 193 / 194

Dynamic Programming Transitiv closure and matrix multiplication

Computation of the transitiv closure

For the running time we obtain the recurrence

T (n) ≤ 2T (n/2) + c ·M(n) for some c > 0.

This yields

T (n) ≤ c ·
(

∑

i≥0

2i ·M(n/2i)

)

(Theorem 1, Slide 17)

≤ c ·
∑

i≥0

(

2

2 + ε

)i

·M(n) (since M(n/2) ≤ 1

2 + ε
M(n))

=
c · (2 + ε)

ε
M(n).

Markus Lohrey (Universität Siegen) Algorithms WS 2020/2021 194 / 194

	Basics
	Divide & Conquer
	Mergesort
	Multiplication of natural numbers
	Matrix multiplication

	Sorting
	Lower bound for comparison-based sorting algorithms
	Quicksort
	Heapsort
	Sorting in linearer time
	Computation of the Median

	Greedy algorithms
	Matroids
	Kruskal's algorithm for spanning trees
	Shortest paths and Dijkstra's algorithm
	Fibonacci heaps

	Dynamic Programming
	Computing a long product of matrices
	Optimal binary search trees
	Computation of regular expressions
	Warshall's algorithm
	Floyd's algorithm
	Transitiv closure and matrix multiplication

