
Universität Siegen
Lehrstuhl Theoretische Informatik
Markus Lohrey

Algorithmics 2
WS 2020/21

Exercise 1

Task 1
Prove that the Vandermonde-Matrix

V (a0, . . . , an−1) =

1 a0 a20 . . . an−10

1 a1 a21 . . . an−11
...

...
...

. . .
...

1 an−1 a2n−1 . . . an−1n−1

is ivertible if and only if the numbers a0, . . . , an−1 are pairwise different.
Hint: Show first that the following equation holds:

detV (a0, . . . , an−1) =
∏

0≤i<j<n

(aj − ai)

Solution
First we show the hint. Add (−a0) times the i-th column to the (i+ 1)-st column (1 ≤ i ≤
n− 1) and then factorize into 2 matrices. This yields:

detV (a0, . . . , an−1)

= det

1 0 0 . . . 0
1 a1 − a0 a21 − a0a1 . . . an−11 − a0a

n−2
1

...
...

...
. . .

...
1 an−1 − a0 a2n−1 − a0an−1 . . . an−1n−1 − a0a

n−2
n−1

= det

1 0 0 . . . 0
1 a1 − a0 a1(a1 − a0) . . . an−21 (a1 − a0)
...

...
...

. . .
...

1 an−1 − a0 a2n−1(an−1 − a0) . . . an−2n−1(an−1 − a0)

=1 · det(diag(a1 − a0, . . . , an−1 − a0) · V (a1, . . . , an−1))

= det diag(a1 − a0, . . . , an−1 − a0) · detV (a1, . . . , an−1)

=
n−1∏
i=1

(ai − a0) · detV (a1, . . . , an−1)

With induction we obtain detV (a0, . . . , an−1) =
∏

0≤i<j<n(aj − ai) as desired.
Now we prove the main statement. If there is any nontrivial pair (i, j) with ai = aj, then
the product

∏
(aj − ai) has one factor which is 0. Conversely, if all of the ai are pairwise

different, then this product has only nonzero factors. Linear Algebra tells us that a matrix
is invertible if and only if its determinant is not 0.

1

Task 2 (Fast Fourier Transform)

(a) Use the FFT to compute the discrete Fourier transform of the polynomial
f(x) = x + 2x2 + 3x3 over C.

(b) Compute (x + 2) · (2x− 1) with the FFT.

Solution

(a) f(x) = x+2x2+3x3 yields the vector f = (0, 1, 2, 3)>. Let furthermore ω be a primitive
4-th root of unity. We use devide and conquer to obtain

F4(ω)

0

1

2

3

 =

F2(ω
2)

(
0

2

)
F2(ω

2)

(
0

2

)
+

1

ω

ω2

ω3

 ◦
F2(ω

2)

(
1

3

)
F2(ω

2)

(
1

3

)
 ,

F2(ω
2)

(
0

2

)
=

(
0

0

)
+

(
1

ω2

)
◦
(

2

2

)
=

(
2

2ω2

)
,

F2(ω
2)

(
1

3

)
=

(
1

1

)
+

(
1

ω2

)
◦
(

3

3

)
=

(
4

1 + 3ω2

)
.

Hence

F4(ω)

0
1
2
3

 =

 2
2ω2

2
2ω2

+

 1
ω
ω2

ω3

 ◦

4
1 + 3ω2

4
1 + 3ω2

 =

6

ω + 2ω2 + 3ω3

2 + 4ω2

3ω + 2ω2 + ω3

 .

In particular, for F = C we can choose ω = e2πi/4 = i. Thus,

F4(ω)

0
1
2
3

 =

6

−2− 2i
−2

−2 + 2i

 .

For this small example we could have also directly computed the DFT of f(x) by
multiplying a 4× 4 matrix with a 4× 1 vector.

(b) Let f(x) = 2 + x and g(x) = −1 + 2x. Hence we get the vectors f = (2, 1, 0, 0)> and
g = (−1, 2, 0, 0)>. Also, we immediately use ω2 = −1 in every step. We use the same
approach as in (a) to compute the DFTs of f and g to obtain

2

F4(ω)

2

1

0

0

 =

F2(ω
2)

(
2

0

)
F2(ω

2)

(
2

0

)
+

1

ω

ω2

ω3

 ◦
F2(ω

2)

(
1

0

)
F2(ω

2)

(
1

0

)
 =

3

2 + ω

1

2− ω

 ,

F4(ω)

−1

2

0

0

 =

F2(ω
2)

(
−1

0

)
F2(ω

2)

(
−1

0

)
+

1

ω

ω2

ω3

 ◦
F2(ω

2)

(
2

0

)
F2(ω

2)

(
2

0

)
 =

1

−1 + 2ω

−3

−1− 2ω

 .

The product of the 2 polynomials, which would be a convolution of the coefficients,
can now be obtained by simply multiplying the coefficients of their DFTs and then
performing the inverse FFT.

F4(ω)(fg) =

3

2 + ω

1

2− ω

 ◦

1

−1 + 2ω

−3

−1− 2ω

 =

3

−4 + 3ω

−3

−4− 3ω

 ,

fg =
1

4
F4(ω

−1)

3

−4 + 3ω

−3

−4− 3ω

=
1

4

F2(ω
−2)

(
3

−3

)
F2(ω

−2)

(
3

−3

)
+

1

4

1

ω−1

ω−2

ω−3

 ◦
F2(ω

−2)

(
−4 + 3ω

−4− 3ω

)
F2(ω

−2)

(
−4 + 3ω

−4− 3ω

)

=
1

4

0

6

0

6

+
1

4

−8

6

8

−6

 =

−2

3

2

0

 =⇒ (fg)(x) = −2 + 3x + 2x2

Task 3
Let A,B ⊆ {1, . . . , 10n} be sets with |A| = |B| = n. We want to compute

C := {a + b : a ∈ A, b ∈ B}

and the number of possibilities to write c ∈ C as a sum of elements in A and B. Specify
an algorithm that solves the problem in time O(n log n).

Solution
We can represent A and B as polynomials of the form fA(x) =

∑
a∈A x

a and fB(x) =∑
b∈B xb. The coefficient of xc in fA · fB tells us, how often we can write c as a sum of

elements in A and B. Using FFT, we can compute fA · fB in time O(n log n).

3

