Exercise 1

Task 1

Prove that the Vandermonde-Matrix

$$
V\left(a_{0}, \ldots, a_{n-1}\right)=\left(\begin{array}{ccccc}
1 & a_{0} & a_{0}^{2} & \ldots & a_{0}^{n-1} \\
1 & a_{1} & a_{1}^{2} & \ldots & a_{1}^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & a_{n-1} & a_{n-1}^{2} & \ldots & a_{n-1}^{n-1}
\end{array}\right)
$$

is ivertible if and only if the numbers a_{0}, \ldots, a_{n-1} are pairwise different.
Hint: Show first that the following equation holds:

$$
\operatorname{det} V\left(a_{0}, \ldots, a_{n-1}\right)=\prod_{0 \leq i<j<n}\left(a_{j}-a_{i}\right)
$$

Solution

First we show the hint. Add $\left(-a_{0}\right)$ times the i-th column to the $(i+1)$-st column $(1 \leq i \leq$ $n-1$) and then factorize into 2 matrices. This yields:

$$
\begin{aligned}
& \operatorname{det} V\left(a_{0}, \ldots, a_{n-1}\right) \\
= & \operatorname{det}\left(\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 0 \\
1 & a_{1}-a_{0} & a_{1}^{2}-a_{0} a_{1} & \ldots & a_{1}^{n-1}-a_{0} a_{1}^{n-2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & a_{n-1}-a_{0} & a_{n-1}^{2}-a_{0} a_{n-1} & \ldots & a_{n-1}^{n-1}-a_{0} a_{n-1}^{n-2}
\end{array}\right) \\
= & \operatorname{det}\left(\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 0 \\
1 & a_{1}-a_{0} & a_{1}\left(a_{1}-a_{0}\right) & \ldots & a_{1}^{n-2}\left(a_{1}-a_{0}\right) \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & a_{n-1}-a_{0} & a_{n-1}^{2}\left(a_{n-1}-a_{0}\right) & \ldots & a_{n-1}^{n-2}\left(a_{n-1}-a_{0}\right)
\end{array}\right) \\
= & 1 \cdot \operatorname{det}\left(\operatorname{diag}\left(a_{1}-a_{0}, \ldots, a_{n-1}-a_{0}\right) \cdot V\left(a_{1}, \ldots, a_{n-1}\right)\right) \\
= & \operatorname{det} \operatorname{diag}\left(a_{1}-a_{0}, \ldots, a_{n-1}-a_{0}\right) \cdot \operatorname{det} V\left(a_{1}, \ldots, a_{n-1}\right) \\
= & \prod_{i=1}^{n-1}\left(a_{i}-a_{0}\right) \cdot \operatorname{det} V\left(a_{1}, \ldots, a_{n-1}\right)
\end{aligned}
$$

With induction we obtain $\operatorname{det} V\left(a_{0}, \ldots, a_{n-1}\right)=\prod_{0 \leq i<j<n}\left(a_{j}-a_{i}\right)$ as desired.
Now we prove the main statement. If there is any nontrivial pair (i, j) with $a_{i}=a_{j}$, then the product $\Pi\left(a_{j}-a_{i}\right)$ has one factor which is 0 . Conversely, if all of the a_{i} are pairwise different, then this product has only nonzero factors. Linear Algebra tells us that a matrix is invertible if and only if its determinant is not 0 .

Task 2 (Fast Fourier Transform)
(a) Use the FFT to compute the discrete Fourier transform of the polynomial $f(x)=x+2 x^{2}+3 x^{3}$ over \mathbb{C}.
(b) Compute $(x+2) \cdot(2 x-1)$ with the FFT.

Solution

(a) $f(x)=x+2 x^{2}+3 x^{3}$ yields the vector $f=(0,1,2,3)^{\top}$. Let furthermore ω be a primitive 4 -th root of unity. We use devide and conquer to obtain

$$
\begin{aligned}
& F_{4}(\omega)\left(\begin{array}{l}
0 \\
1 \\
2 \\
3
\end{array}\right)=\binom{F_{2}\left(\omega^{2}\right)\binom{0}{2}}{F_{2}\left(\omega^{2}\right)\binom{0}{2}}+\left(\begin{array}{c}
1 \\
\omega \\
\omega^{2} \\
\omega^{3}
\end{array}\right) \circ\binom{F_{2}\left(\omega^{2}\right)\binom{1}{3}}{F_{2}\left(\omega^{2}\right)\binom{1}{3}}, \\
& F_{2}\left(\omega^{2}\right)\binom{0}{2}=\binom{0}{0}+\binom{1}{\omega^{2}} \circ\binom{2}{2}=\binom{2}{2 \omega^{2}} \\
& F_{2}\left(\omega^{2}\right)\binom{1}{3}=\binom{1}{1}+\binom{1}{\omega^{2}} \circ\binom{3}{3}=\binom{4}{1+3 \omega^{2}} .
\end{aligned}
$$

Hence

$$
F_{4}(\omega)\left(\begin{array}{l}
0 \\
1 \\
2 \\
3
\end{array}\right)=\left(\begin{array}{c}
2 \\
2 \omega^{2} \\
2 \\
2 \omega^{2}
\end{array}\right)+\left(\begin{array}{c}
1 \\
\omega \\
\omega^{2} \\
\omega^{3}
\end{array}\right) \circ\left(\begin{array}{c}
4 \\
1+3 \omega^{2} \\
4 \\
1+3 \omega^{2}
\end{array}\right)=\left(\begin{array}{c}
6 \\
\omega+2 \omega^{2}+3 \omega^{3} \\
2+4 \omega^{2} \\
3 \omega+2 \omega^{2}+\omega^{3}
\end{array}\right) .
$$

In particular, for $\mathbb{F}=\mathbb{C}$ we can choose $\omega=e^{2 \pi i / 4}=i$. Thus,

$$
F_{4}(\omega)\left(\begin{array}{l}
0 \\
1 \\
2 \\
3
\end{array}\right)=\left(\begin{array}{c}
6 \\
-2-2 i \\
-2 \\
-2+2 i
\end{array}\right)
$$

For this small example we could have also directly computed the DFT of $f(x)$ by multiplying a 4×4 matrix with a 4×1 vector.
(b) Let $f(x)=2+x$ and $g(x)=-1+2 x$. Hence we get the vectors $f=(2,1,0,0)^{\top}$ and $g=(-1,2,0,0)^{\top}$. Also, we immediately use $\omega^{2}=-1$ in every step. We use the same approach as in (a) to compute the DFTs of f and g to obtain

$$
\begin{aligned}
F_{4}(\omega)\left(\begin{array}{l}
2 \\
1 \\
0 \\
0
\end{array}\right) & =\binom{F_{2}\left(\omega^{2}\right)\binom{2}{0}}{F_{2}\left(\omega^{2}\right)\binom{2}{0}}+\left(\begin{array}{c}
1 \\
\omega \\
\omega^{2} \\
\omega^{3}
\end{array}\right) \circ\binom{F_{2}\left(\omega^{2}\right)\binom{1}{0}}{F_{2}\left(\omega^{2}\right)\binom{1}{0}}=\left(\begin{array}{c}
3 \\
2+\omega \\
1 \\
2-\omega
\end{array}\right), \\
F_{4}(\omega)\left(\begin{array}{c}
-1 \\
2 \\
0 \\
0
\end{array}\right) & =\binom{F_{2}\left(\omega^{2}\right)\binom{-1}{0}}{F_{2}\left(\omega^{2}\right)\binom{-1}{0}}+\left(\begin{array}{c}
1 \\
\omega \\
\omega^{2} \\
\omega^{3}
\end{array}\right) \circ\binom{F_{2}\left(\omega^{2}\right)\binom{2}{0}}{F_{2}\left(\omega^{2}\right)\binom{2}{0}}=\left(\begin{array}{c}
1 \\
-1+2 \omega \\
-3 \\
-1-2 \omega
\end{array}\right) .
\end{aligned}
$$

The product of the 2 polynomials, which would be a convolution of the coefficients, can now be obtained by simply multiplying the coefficients of their DFTs and then performing the inverse FFT.

$$
\begin{aligned}
F_{4}(\omega)(f g) & =\left(\begin{array}{c}
3 \\
2+\omega \\
1 \\
2-\omega
\end{array}\right) \circ\left(\begin{array}{c}
1 \\
-1+2 \omega \\
-3 \\
-1-2 \omega
\end{array}\right)=\left(\begin{array}{c}
3 \\
-4+3 \omega \\
-3 \\
-4-3 \omega
\end{array}\right), \\
f g & =\frac{1}{4} F_{4}\left(\omega^{-1}\right)\left(\begin{array}{c}
-4+3 \omega \\
-3 \\
-4-3 \omega
\end{array}\right) \\
& =\frac{1}{4}\binom{F_{2}\left(\omega^{-2}\right)\binom{3}{-3}}{F_{2}\left(\omega^{-2}\right)\binom{3}{-3}}+\frac{1}{4}\left(\begin{array}{c}
1 \\
\omega^{-1} \\
\omega^{-2} \\
\omega^{-3}
\end{array}\right) \circ\binom{F_{2}\left(\omega^{-2}\right)\binom{-4+3 \omega}{-4-3 \omega}}{F_{2}\left(\omega^{-2}\right)\binom{-4+3 \omega}{-4-3 \omega}} \\
& =\frac{1}{4}\left(\begin{array}{l}
0 \\
6 \\
0 \\
6
\end{array}\right)+\frac{1}{4}\left(\begin{array}{c}
-8 \\
6 \\
8 \\
-6
\end{array}\right)=\left(\begin{array}{c}
-2 \\
3 \\
2 \\
0
\end{array}\right) \Longrightarrow(f g)(x)=-2+3 x+2 x^{2}
\end{aligned}
$$

Task 3

Let $A, B \subseteq\{1, \ldots, 10 n\}$ be sets with $|A|=|B|=n$. We want to compute

$$
C:=\{a+b: a \in A, b \in B\}
$$

and the number of possibilities to write $c \in C$ as a sum of elements in A and B. Specify an algorithm that solves the problem in time $\mathcal{O}(n \log n)$.

Solution

We can represent A and B as polynomials of the form $f_{A}(x)=\sum_{a \in A} x^{a}$ and $f_{B}(x)=$ $\sum_{b \in B} x^{b}$. The coefficient of x^{c} in $f_{A} \cdot f_{B}$ tells us, how often we can write c as a sum of elements in A and B. Using FFT, we can compute $f_{A} \cdot f_{B}$ in time $\mathcal{O}(n \log n)$.

