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Exercise 1

Task 1
Prove that the Vandermonde-Matrix
1 a a§ ag_i
Vi o) — | @@ “
1 ap g ai!l oA
is ivertible if and only if the numbers ay, . .., a,_1 are pairwise different.

Hint: Show first that the following equation holds:
det V(ag,...,an_1) = H (aj —a;)
0<i<j<n

Solution
First we show the hint. Add (—ag) times the i-th column to the (i + 1)-st column (1 <7 <
n — 1) and then factorize into 2 matrices. This yields:
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=1 - det(diag(a; — ag,...,an—1 —ag) - V(ay,...,an_1))

=det diag(a; — ag, ..., an—1 —ap) - det V(ay,...,an_1)
n—1

=||(a; —ao)-det V(ay,...,a,_1)
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With induction we obtain det V(ao, - .., an-1) = [[p<;cjcn(a; — a;) as desired.

Now we prove the main statement. If there is any nontrivial pair (7, j) with a; = a;, then
the product [[(a; — a;) has one factor which is 0. Conversely, if all of the a; are pairwise
different, then this product has only nonzero factors. Linear Algebra tells us that a matrix
is invertible if and only if its determinant is not 0.

1



Task 2 (Fast Fourier Transform)

(a) Use the FFT to compute the discrete Fourier transform of the polynomial
f(z) =z + 22% + 323 over C.

(b) Compute (x + 2) - (22 — 1) with the FFT.
Solution

(a) f(x) = x+222+323 yields the vector f = (0,1,2,3)". Let furthermore w be a primitive
4-th root of unity. We use devide and conquer to obtain
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Hence
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In particular, for F = C we can choose w = e2™/* = 4. Thus,

0 6
1 —2—2
2] -2

3 -2+ 2

Fy(w)

For this small example we could have also directly computed the DFT of f(z) b
multiplying a 4 x 4 matrix with a 4 x 1 vector.

(b) Let f(x) =2+ z and g(z) = —1 + 2z. Hence we get the vectors f = (2,1,0,0)" and
g=1(-1,2,0,0)". Also, we immediately use w? = —1 in every step. We use the same
approach as in (a) to compute the DFTs of f and g to obtain
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The product of the 2 polynomials, which would be a convolution of the coefficients,
can now be obtained by simply multiplying the coefficients of their DFTs and then
performing the inverse FFT.
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Task 3
Let A, B C {1,...,10n} be sets with |A| = |B| = n. We want to compute

C:={a+b:a€Abe B}

and the number of possibilities to write ¢ € C' as a sum of elements in A and B. Specify
an algorithm that solves the problem in time O(nlogn).

Solution

We can represent A and B as polynomials of the form fa(z) = > ., 2% and fp(z) =
Y ben 2. The coefficient of 2° in f4 - f5 tells us, how often we can write ¢ as a sum of
elements in A and B. Using FFT, we can compute f4 - fp in time O(nlogn).



