
Universität Siegen
Lehrstuhl Theoretische Informatik
Markus Lohrey

Algorithmics 2
WS 2020/21

Exercise 2

Task 1
Let x and y be natural numbers in binary representation. Decide in NC, whether x < y.

Solution
Let x = x1x2 · · ·xn and y = y1y2 · · · yn with xi, yi ∈ {0, 1}. Question: Does x < y hold?
Initiate n processors p1, . . . , pn. Each pi compares the bits xi and yi. If xi < yi, then pi
starts i− 1 new processors pi,1, . . . , pi,i−1. In the next step, pi,j tests if xj = yj. If there is
one i (more precisely the smallest one), where all pi.j (j = 1, . . . , i− 1) answered yes, then
return true, otherwise return false.
We showed that we can solve the problem in constant time with less than n2 processors
and hence we found an NC algorithm.

Task 2
Let x and y be natural numbers in binary representation. Compute the subtraction x− y
in NC, where x− y = 0 if x < y.

Solution
Let x = x1x2 · · ·xn and y = y1y2 · · · yn with xi, yi ∈ {0, 1}. Task: Compute

x− y :=

{
0, if x < y,

sub(x, y), otherwise.

First wie need to test, if x < y. This can be done in NC via Task 1. If yes, the output is 0.
To compute the subtraction, we use a very nice trick: The ones’ complement. With that
we are able to turn the subtraction into an addition. And we know that addition is in NC
(see lecture).
We will start a little bit more general and consider the subtraction of two numbers x and
y (x ≥ y) in base B, which means xi, yi ∈ {0, . . . , B − 1}.
Claim: We have x−y = x+ ȳ+1, where ȳ = (B−1−y1)(B−1−y2) · · · (B−1−yn). Here,
the sum is interpreted as a number modulo Bn. That means in particular −y = Bn − y.
Hence

Bn − y = Bn −
n∑

i=1

yi ·Bn−i

= 1 + (B − 1) ·
n∑

i=1

Bn−i −
n∑

i=1

yi ·Bn−i

= 1 +
n∑

i=1

(B − 1− yi) ·Bn−i,

1

which proves the claim. Setting B = 2 means we have ȳ = ȳ1 · · · ȳn, where ȳi = 1 − yi
(which swaps 0 and 1). Also ȳ can be computed in constant time with n processors.

Task 3
Compute the number of paths between two nodes in a directed acyclic graph in NC.

Solution
Let G = (V,E) be a directed acyclic graph (V = vertices, E = edges) and let A be its
adjacency matrix, which means

A[i, j] =

{
1, (i, j) ∈ E,

0, otherwise.

Claim: Ak[i, j] is exactly the number of paths from i to j of length k. We show this
statement by induction on k. The case k = 1 is trivial by definition of A. Now we show
the induction step. Every path of length k + 1 in G is (obviously) a path of length k plus
one additional edge. On the other hand, Ak+1 = A · Ak, where Ak encodes the number of
paths of length k by the induction hypothesis. Therefore,

Ak+1[i, j] =
m∑
l=1

A[i, l]Ak[l, j], m = |V |

encodes exactly the number of paths of length k + 1 from i to j. This proves the claim.
Since G is acyclic, we know that the longest path has at most length m − 1. This means
that the number of all paths between two given nodes i and j can be computed via the
sum

∑m−1
k=1 Ak[i, j]. From the lecture we know that addition is in NC, hence is suffices

to compute each Ak[i, j] on a processor pk. Each sum and product (see lecture) can be
computed in NC with polynomially many processors. The number of substeps is m − 1,
so if the input length is m (which means |V | is encoded in unary representation), then
the whole algorithm works in NC. But if |V | is encoded in binary representation, we need
exponantially many substeps compared to the input length. Therefore it is crucial for
m = |V | to be given in unary representation.

2

