Exercise 2

Task 1

Let x and y be natural numbers in binary representation. Decide in NC, whether x < y.

Solution

Let $x = x_1 x_2 \cdots x_n$ and $y = y_1 y_2 \cdots y_n$ with $x_i, y_i \in \{0, 1\}$. Question: Does x < y hold? Initiate *n* processors p_1, \ldots, p_n . Each p_i compares the bits x_i and y_i . If $x_i < y_i$, then p_i starts i - 1 new processors $p_{i,1}, \ldots, p_{i,i-1}$. In the next step, $p_{i,j}$ tests if $x_j = y_j$. If there is one *i* (more precisely the smallest one), where all $p_{i,j}$ ($j = 1, \ldots, i - 1$) answered yes, then return *true*, otherwise return *false*.

We showed that we can solve the problem in constant time with less than n^2 processors and hence we found an NC algorithm.

Task 2

Let x and y be natural numbers in binary representation. Compute the subtraction x - y in NC, where x - y = 0 if x < y.

Solution

Let $x = x_1 x_2 \cdots x_n$ and $y = y_1 y_2 \cdots y_n$ with $x_i, y_i \in \{0, 1\}$. Task: Compute

$$x - y := \begin{cases} 0, & \text{if } x < y, \\ \operatorname{sub}(x, y), & \text{otherwise.} \end{cases}$$

First wie need to test, if x < y. This can be done in NC via Task 1. If yes, the output is 0. To compute the subtraction, we use a very nice trick: The *ones' complement*. With that we are able to turn the subtraction into an addition. And we know that addition is in NC (see lecture).

We will start a little bit more general and consider the subtraction of two numbers x and $y \ (x \ge y)$ in base B, which means $x_i, y_i \in \{0, \ldots, B-1\}$.

Claim: We have $x - y = x + \overline{y} + 1$, where $\overline{y} = (B - 1 - y_1)(B - 1 - y_2) \cdots (B - 1 - y_n)$. Here, the sum is interpreted as a number modulo B^n . That means in particular $-y = B^n - y$. Hence

$$B^{n} - y = B^{n} - \sum_{i=1}^{n} y_{i} \cdot B^{n-i}$$

= 1 + (B - 1) \cdot \sum_{i=1}^{n} B^{n-i} - \sum_{i=1}^{n} y_{i} \cdot B^{n-i}
= 1 + \sum_{i=1}^{n} (B - 1 - y_{i}) \cdot B^{n-i},

which proves the claim. Setting B = 2 means we have $\bar{y} = \bar{y_1} \cdots \bar{y_n}$, where $\bar{y_i} = 1 - y_i$ (which swaps 0 and 1). Also \bar{y} can be computed in constant time with *n* processors.

Task 3

Compute the number of paths between two nodes in a directed acyclic graph in NC.

Solution

Let G = (V, E) be a directed acyclic graph (V = vertices, E = edges) and let A be its adjacency matrix, which means

$$A[i,j] = \begin{cases} 1, & (i,j) \in E, \\ 0, & \text{otherwise.} \end{cases}$$

Claim: $A^{k}[i, j]$ is exactly the number of paths from *i* to *j* of length *k*. We show this statement by induction on *k*. The case k = 1 is trivial by definition of *A*. Now we show the induction step. Every path of length k + 1 in *G* is (obviously) a path of length *k* plus one additional edge. On the other hand, $A^{k+1} = A \cdot A^{k}$, where A^{k} encodes the number of paths of length *k* by the induction hypothesis. Therefore,

$$A^{k+1}[i,j] = \sum_{l=1}^{m} A[i,l] A^k[l,j], \quad m = |V|$$

encodes exactly the number of paths of length k + 1 from i to j. This proves the claim. Since G is acyclic, we know that the longest path has at most length m - 1. This means that the number of all paths between two given nodes i and j can be computed via the sum $\sum_{k=1}^{m-1} A^k[i, j]$. From the lecture we know that addition is in NC, hence is suffices to compute each $A^k[i, j]$ on a processor p_k . Each sum and product (see lecture) can be computed in NC with polynomially many processors. The number of substeps is m - 1, so if the input length is m (which means |V| is encoded in unary representation), then the whole algorithm works in NC. But if |V| is encoded in binary representation, we need exponantially many substeps compared to the input length. Therefore it is crucial for m = |V| to be given in unary representation.