Exercise 2

Task 1

Let x and y be natural numbers in binary representation. Decide in NC, whether $x<y$.

Solution

Let $x=x_{1} x_{2} \cdots x_{n}$ and $y=y_{1} y_{2} \cdots y_{n}$ with $x_{i}, y_{i} \in\{0,1\}$. Question: Does $x<y$ hold?
Initiate n processors p_{1}, \ldots, p_{n}. Each p_{i} compares the bits x_{i} and y_{i}. If $x_{i}<y_{i}$, then p_{i} starts $i-1$ new processors $p_{i, 1}, \ldots, p_{i, i-1}$. In the next step, $p_{i, j}$ tests if $x_{j}=y_{j}$. If there is one i (more precisely the smallest one), where all $p_{i . j}(j=1, \ldots, i-1)$ answered yes, then return true, otherwise return false.
We showed that we can solve the problem in constant time with less than n^{2} processors and hence we found an NC algorithm.

Task 2

Let x and y be natural numbers in binary representation. Compute the subtraction $x-y$ in NC, where $x-y=0$ if $x<y$.

Solution

Let $x=x_{1} x_{2} \cdots x_{n}$ and $y=y_{1} y_{2} \cdots y_{n}$ with $x_{i}, y_{i} \in\{0,1\}$. Task: Compute

$$
x-y:= \begin{cases}0, & \text { if } x<y \\ \operatorname{sub}(x, y), & \text { otherwise }\end{cases}
$$

First wie need to test, if $x<y$. This can be done in NC via Task 1. If yes, the output is 0 . To compute the subtraction, we use a very nice trick: The ones' complement. With that we are able to turn the subtraction into an addition. And we know that addition is in NC (see lecture).
We will start a little bit more general and consider the subtraction of two numbers x and $y(x \geq y)$ in base B, which means $x_{i}, y_{i} \in\{0, \ldots, B-1\}$.
Claim: We have $x-y=x+\bar{y}+1$, where $\bar{y}=\left(B-1-y_{1}\right)\left(B-1-y_{2}\right) \cdots\left(B-1-y_{n}\right)$. Here, the sum is interpreted as a number modulo B^{n}. That means in particular $-y=B^{n}-y$. Hence

$$
\begin{aligned}
B^{n}-y & =B^{n}-\sum_{i=1}^{n} y_{i} \cdot B^{n-i} \\
& =1+(B-1) \cdot \sum_{i=1}^{n} B^{n-i}-\sum_{i=1}^{n} y_{i} \cdot B^{n-i} \\
& =1+\sum_{i=1}^{n}\left(B-1-y_{i}\right) \cdot B^{n-i},
\end{aligned}
$$

which proves the claim. Setting $B=2$ means we have $\bar{y}=\overline{y_{1}} \cdots \overline{y_{n}}$, where $\overline{y_{i}}=1-y_{i}$ (which swaps 0 and 1). Also \bar{y} can be computed in constant time with n processors.

Task 3

Compute the number of paths between two nodes in a directed acyclic graph in NC.

Solution

Let $G=(V, E)$ be a directed acyclic graph ($V=$ vertices, $E=$ edges $)$ and let A be its adjacency matrix, which means

$$
A[i, j]= \begin{cases}1, & (i, j) \in E \\ 0, & \text { otherwise }\end{cases}
$$

Claim: $A^{k}[i, j]$ is exactly the number of paths from i to j of length k. We show this statement by induction on k. The case $k=1$ is trivial by definition of A. Now we show the induction step. Every path of length $k+1$ in G is (obviously) a path of length k plus one additional edge. On the other hand, $A^{k+1}=A \cdot A^{k}$, where A^{k} encodes the number of paths of length k by the induction hypothesis. Therefore,

$$
A^{k+1}[i, j]=\sum_{l=1}^{m} A[i, l] A^{k}[l, j], \quad m=|V|
$$

encodes exactly the number of paths of length $k+1$ from i to j. This proves the claim. Since G is acyclic, we know that the longest path has at most length $m-1$. This means that the number of all paths between two given nodes i and j can be computed via the sum $\sum_{k=1}^{m-1} A^{k}[i, j]$. From the lecture we know that addition is in NC, hence is suffices to compute each $A^{k}[i, j]$ on a processor p_{k}. Each sum and product (see lecture) can be computed in NC with polynomially many processors. The number of substeps is $m-1$, so if the input length is m (which means $|V|$ is encoded in unary representation), then the whole algorithm works in NC. But if $|V|$ is encoded in binary representation, we need exponantially many substeps compared to the input length. Therefore it is crucial for $m=|V|$ to be given in unary representation.

