Exercise 3

Task 1

Perform a division with remainder with Newton's method for $s=87$ and $t=7$.

Solution

The goal is to find q and r with $s=q t+r$. We will do $k=\left\lceil\log _{2}\left(\log _{2}(s)\right)\right\rceil=3$ iterations (note that $\left.\left\lceil\log _{2}\left(\log _{2}(s)\right)\right\rceil \geq\lceil\log (\log (s))\rceil\right)$. The initial value is $x_{0}=\frac{1}{2^{3}}=\frac{1}{8} \in\left(\frac{1}{14}, \frac{1}{7}\right]$ (3 bits). The following 3 terms of the sequence are obtained by the formula $x_{i+1}=2 x_{i}-7 x_{i}^{2}$.

- $x_{1}=2 \cdot \frac{1}{8}-7 \cdot\left(\frac{1}{8}\right)^{2}=\frac{9}{64}(6 \mathrm{bits})$
- $x_{2}=\frac{585}{4096}(12 \mathrm{bits})$
- $x_{3}=\frac{2396745}{1677216}(24 \mathrm{bits})$

Therefore we have $s \cdot x_{3} \approx 12.43$ and we obtain the value q by either rounding up or down. Testing yields $q=12$, since $13 \cdot 7=91>87$. Hence $r=87-12 \cdot 7=3$. Finally we have $87=12 \cdot 7+3$.

Task 2

Let $A \in \mathbb{C}^{n \times n}$ be a matrix.

1. (Slide 61) Show that the coefficient s_{1} of the characteristic polynomial $\operatorname{det}(x \cdot \operatorname{Id}-A)=$ $x^{n}-s_{1} x^{n-1}+\cdots$ is equal to the trace of A, which is the sum of the diagonal elements of A.
2. (Lemma 12) Let $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{C}$ be the eigenvalues of A ($\lambda_{i}=\lambda_{j}$ is allowed). Show that $\lambda_{1}^{m}, \ldots, \lambda_{n}^{m}$ are the eigenvalues of A^{m} for $m \in \mathbb{N}$.

Solution

1. By the Leibniz formula we see that we have to evaluate only one term of the determinant $\operatorname{det}(x \cdot \operatorname{Id}-A)$. This is because we need the coefficient of x^{n-1} and all x are only on the main diagonal of $(x \cdot \mathrm{Id}-A)$. But picking any nontrivial permutation $\sigma \in S_{n}$ means that there are at most $n-2$ many terms in the product

$$
\prod_{i=1}^{n}\left(\delta_{i, \sigma(i)} x-a_{i, \sigma(i)}\right) \quad\left(\delta_{i, j}=1 \Leftrightarrow i=j\right)
$$

containing x. This means the monomial in the procuct with the highest degree is x^{j} with $j \leq n-2$.

Hence we have to evaluate $\prod_{i=1}^{n}\left(x-a_{i, i}\right)$ in order to find the coefficient s_{1}. But indeed, now it becomes clear that

$$
\prod_{i=1}^{n}\left(x-a_{i, i}\right)=x^{n}+\left(-a_{1,1}-\cdots-a_{n, n}\right) x^{n-1}+\cdots=x^{n}-\operatorname{tr}(A) x^{n-1}+\cdots .
$$

The sign of id is 1 and thus we can conclude $s_{1}=\operatorname{tr}(A)$.
2. Let λ be an eigenvalue of A. This means there exists a nonzero vector v, such that $A v=\lambda v$. We show that λ^{m} is an eigenvalue of A^{m} via a simple induction on m. The case $m=1$ is trivial. Furthermore we get $A^{m} v=A^{m-1}(A v)=A^{m-1}(\lambda v)=\lambda A^{m-1} v$. By the induction hypothesis we have $A^{m-1} v=\lambda^{m-1} v$ and hence the assumption follows. We just proved the general case, hence we also proved Lemma 12, since we can replace λ by any λ_{i}.

Task 3

Invert the following matrix A using Csansky's algorithm.

$$
A=\left(\begin{array}{ll}
2 & 2 \\
2 & 1
\end{array}\right)
$$

Solution

1. Compute the powers A^{1} and

$$
A^{2}=\left(\begin{array}{ll}
8 & 6 \\
6 & 5
\end{array}\right) .
$$

2. Compute the traces of these two matrices:

$$
\operatorname{tr}(A)=2+1=3 \quad \operatorname{tr}\left(A^{2}\right)=8+5=13
$$

3. Compute the $s_{k}, k \in\{1,2\}$. We have $s_{1}=\operatorname{tr}(A)=3$ and

$$
s_{2}=\frac{1}{2}\left(s_{1} \operatorname{tr}(A)-\operatorname{tr}\left(A^{2}\right)\right)=-2 .
$$

Note that $s_{2}=\operatorname{det}(A)$.
4. We obtain A^{-1} by the formula

$$
A^{-1}=\frac{-1}{-2}(A-3 \cdot \mathrm{Id})=\left(\begin{array}{cc}
-\frac{1}{2} & 1 \\
1 & -1
\end{array}\right)
$$

