Exercise 4

Task 1

Consider the following algorithm, which tests probabilistically if $A B=C$ for given matrices $A, B, C \in \mathbb{Z}^{n \times n}$:

1. Choose a vector $v \in\{0,1\}^{n \times 1}$ randomly and uniformly distributed.
2. Compute $w=A(B v)-C v$.
3. If $w=0$ return "yes", otherwise "no".

Prove that in the case $A B \neq C$ the algorithm returns "yes" with a probability of at most $\frac{1}{2}$.

Task 2

Let $G=(V, E)$ be an undirected graph with

$$
V=\{1,2,3,4,5,6\}, \quad E=\{\{1,3\},\{1,6\},\{2,3\},\{2,5\},\{3,5\},\{4,6\},\{5,6\}\} .
$$

(a) Compute the Tutte matrix T_{G} of G.
(b) Compute the polynomial $\operatorname{det}\left(T_{G}\right)$.
(c) Does G have a perfect matching? If yes, name all perfect matchings of G. If no, justify your answer.

Task 3

Let $G=(V, E)$ be an undirected graph with $V=\{1, \ldots, n\}$. Let $T^{G}=\left(T_{u, v}\right)_{1 \leq u, v \leq n}$ be the matrix defined by

$$
T_{u, v}= \begin{cases}x_{u, v} & \text { if }\{u, v\} \in E, \\ 0 & \text { otherwise }\end{cases}
$$

(a) Let G be a bipartite graph. This means, there are disjoint subsets $U, W \subset V$ such that $V=U \cup W$ and $\{u, w\} \in E$ only if $u \in U$ and $w \in W$ (or $w \in U$ and $u \in W$). Show that G has a perfect matching if and only if $\operatorname{det}\left(T^{G}\right) \neq 0$.
(b) Does (a) also hold, if G is not bipartite?

