Exercise 4

Task 1

Consider the following algorithm, which tests probabilistically if $A B=C$ for given matrices $A, B, C \in \mathbb{Z}^{n \times n}$:

1. Choose a vector $v \in\{0,1\}^{n \times 1}$ randomly and uniformly distributed.
2. Compute $w=A(B v)-C v$.
3. If $w=0$ return "yes", otherwise "no".

Prove that in the case $A B \neq C$ the algorithm returns "yes" with a probability of at most $\frac{1}{2}$.

Solution

Let $D=A B-C \neq 0$ and let $d \in \mathbb{Z}^{1 \times n}$ be a nonzero row of D with $d_{k} \neq 0$. Note that w can also be obtained by computing $w=D v$ (using the distributive law), but this is exactly what we want to avoid in order to have a faster algorithm. This means $d \cdot v$ yields one entry of w, which cannot be 0 for all choices of v.
Let $v \in\{0,1\}^{n \times 1}$. We consider the probability of $d v=0$. Let $v^{\prime}=e_{k}-v$ be the vector, which is obtained by a bit flip of the k-th entry of v. For every v with $d v=0$ we get $d v^{\prime} \neq 0$. Hence, at most half of the vectors $v \in\{0,1\}^{n \times 1}$ satisfy $d v=0$.

Task 2

Let $G=(V, E)$ be an undirected graph with

$$
V=\{1,2,3,4,5,6\}, \quad E=\{\{1,3\},\{1,6\},\{2,3\},\{2,5\},\{3,5\},\{4,6\},\{5,6\}\}
$$

(a) Compute the Tutte matrix T_{G} of G.
(b) Compute the polynomial $\operatorname{det}\left(T_{G}\right)$.
(c) Does G have a perfect matching? If yes, name all perfect matchings of G. If no, justify your answer.

Solution

(a) The Tutte matrix of G is

$$
T_{G}=\left(\begin{array}{cccccc}
0 & 0 & x_{1,3} & 0 & 0 & x_{1,6} \\
0 & 0 & x_{2,3} & 0 & x_{2,5} & 0 \\
-x_{1,3} & -x_{2,3} & 0 & 0 & x_{3,5} & 0 \\
0 & 0 & 0 & 0 & 0 & x_{4.6} \\
0 & -x_{2,5} & -x_{3,5} & 0 & 0 & x_{5.6} \\
-x_{1,6} & 0 & 0 & -x_{4.6} & -x_{5.6} & 0
\end{array}\right)
$$

(b) We use the Laplace expansion (in each step by rows) in order to obtain

$$
\begin{aligned}
\operatorname{det}\left(T_{G}\right) & =x_{4.6} \cdot x_{1,3} \cdot\left((-1) \cdot x_{2,5}\right) \cdot\left(-x_{2,5}\right) \cdot\left(-x_{1,3}\right) \cdot\left(-x_{4,6}\right) \\
& =x_{1,3}^{2} x_{2,5}^{2} x_{4,6}^{2} \neq 0
\end{aligned}
$$

(c) Yes, G has a perfect matching. By looking at $\operatorname{det}\left(T_{G}\right)$ it also becomes clear that there is exactly one perfect matching M, namely $M=\{\{1,3\},\{2,5\},\{4,6\}\}$.

For better visualization, this is how G looks like:

Task 3

Let $G=(V, E)$ be an undirected graph with $V=\{1, \ldots, n\}$. Let $T^{G}=\left(T_{u, v}\right)_{1 \leq u, v \leq n}$ be the matrix defined by

$$
T_{u, v}= \begin{cases}x_{u, v} & \text { if }\{u, v\} \in E \\ 0 & \text { otherwise }\end{cases}
$$

(a) Let G be a bipartite graph. This means, there are disjoint subsets $U, W \subset V$ such that $V=U \cup W$ and $\{u, w\} \in E$ only if $u \in U$ and $w \in W$ (or $w \in U$ and $u \in W$). Show that G has a perfect matching if and only if $\operatorname{det}\left(T^{G}\right) \neq 0$.
(b) Does (a) also hold, if G is not bipartite?

Solution

(a) In the polynomial $\operatorname{det}\left(T^{G}\right)$ each monomial consists of different combinations of variables. Hence it is impossible that two monomials can cancel out. If M is a perfect matching, then $\operatorname{det}\left(T^{G}\right)$ contains the monomial

$$
\prod_{\substack{(u, v) \in V \times V \\\{u, v\} \in M}} x_{u, v} .
$$

This can easily be seen by considering that for every $x_{u, v}$ in the product we will also find the variable $x_{v, u}$ and hence every $v \in V$ can be found at index position 1 and 2 (row and column in the matrix T^{G}). Note that this is true for any graph G and any perfect matching M of G.
Now let $\operatorname{det}\left(T^{G}\right) \neq 0$. Since G is bipartite, we have a partition $V=U \cup W$ and T^{G} has a very special form. Namely every $T_{u, v}=0$ with $u, v \in U$ or $u, v \in W$. W.l.o.g.
$U=\{1,2, \ldots, i\}$ and $W=\{i+1, \ldots, n\}$. This means, T^{G} looks like this:

$$
\left(\begin{array}{cccccc}
0 & \cdots & 0 & * & \cdots & * \\
\vdots & & \vdots & \vdots & & \vdots \\
0 & \cdots & 0 & * & \cdots & * \\
* & \cdots & * & 0 & \cdots & 0 \\
\vdots & & \vdots & \vdots & & \vdots \\
* & \cdots & * & 0 & \cdots & 0
\end{array}\right)
$$

If $i>\frac{n}{2}$ (or $i<\frac{n}{2}$), then we definitely find linearly dependent vectors in the first i columns (in the last $n-i$ columns). Hence the determinant is 0 in these cases, which is a contradiction to our assumption. Whence $\operatorname{det}\left(T^{G}\right) \neq 0$ implies $i=\frac{n}{2}$. Using the Leibniz formula, we see that from a monomial of the determinant we obtain a $\sigma \in S_{n}$, where $\sigma: U \rightarrow W$ is a bijection. This yields a perfect matching $M_{\sigma}=\left\{\{j, \sigma(j)\} \left\lvert\, j \leq \frac{n}{2}\right.\right\}$.
(b) No: Consider the graph K_{3} (which is a triangle). Then $\operatorname{det}\left(T^{K_{3}}\right)=x_{1,2} x_{2,3} x_{3,1}+$ $x_{1,3} x_{2,1} x_{3,2} \neq 0$, but this graph does not have a perfect matching.

