Exercise 5

Task 1

Let $f: \{0,1\}^* \to \mathbb{Z}^{2 \times 2}$ be the homomorphism defined by

$$f(0) = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \quad f(1) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$$

Show that the entries of the matrix f(w) are upper bounded by the (|w|+1)-th Fibonacci number $F_{|w|+1}$. Furthermore, give an example for a string w, where at least one entry of f(w) takes indeed the value $F_{|w|+1}$.

Solution

Note that here we define $F_0 = 0$, $F_1 = 1$ and $F_{i+1} = F_i + F_{i-1}$ (there is another convention for the starting values!).

Part 1 of the task is an induction on |w| = n. We will actually prove a stronger claim: The entries of $f(w) = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ are bounded by

- either $a \leq F_{n+1}, b, c \leq F_n, d \leq F_{n-1}$
- or $b \le F_{n+1}, a, d \le F_n, c \le F_{n-1}$
- or $c \le F_{n+1}, a, d \le F_n, b \le F_{n-1}$
- or $d \leq F_{n+1}, b, c \leq F_n, a \leq F_{n-1}$.

By looking at the identity matrix, it is clear that the assumption is true for n = 0, if we set $F_{-1} = 1$. By the inductions hypotheses, we can assume that

$$f(w) = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \le \begin{pmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{pmatrix}$$

or one of the other 3 cases hold. Hence, for the induction step we will consider another 2 cases each:

$$f(0w) = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & b \\ a+c & b+d \end{pmatrix} \le \begin{pmatrix} F_{n+1} & F_n \\ F_{n+2} & F_{n+1} \end{pmatrix}$$

and

$$f(1w) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a+c & b+d \\ c & d \end{pmatrix} \le \begin{pmatrix} F_{n+2} & F_{n+1} \\ F_n & F_{n-1} \end{pmatrix},$$

where both matrices satisfy one of the four stated conditions. The other 6 cases work analogously.

Part 2: Take for instance $w = (10)^n$ for even |w| and $w = 0(10)^n$ for odd |w|. This yields

$$f((10)^n) = \begin{pmatrix} F_{2n+1} & F_{2n} \\ F_{2n} & F_{2n-1} \end{pmatrix}, \qquad f(0(10)^n) = \begin{pmatrix} F_{2n+1} & F_{2n} \\ F_{2n+2} & F_{2n+1} \end{pmatrix}$$

Task 2

Let T = 001100 and P = 01. Use the probabilistic algorithm of the lecture to compute the array MATCH[1,...,6], which encodes the occurrences of the pattern P in the string T.

Solution

Choose k = 1. Let $M = 2 \cdot 6^2 = 72$. We randomly pick $p = 2 \le 72$. We obtain $f(P) = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$ and hence $f_2(P) = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$. Furthermore we compute $f(00) = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$, $f(10) = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$, $f(11) = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$,

Thus, we only have a match for i = 2, which yields MATCH $[1, \ldots, 6] = (0, 1, 0, 0, 0, 0)$. If we would have chosen P = 00, we would have obtained MATCH $[1, \ldots, 6] = (1, 0, 1, 0, 1, 0)$ for p = 2, since $f_2(00) = f_2(11)$, so we have one false match.

Task 3

In this task we will consider an alternative class of fingerprint functions. For a word $w = a_1 \dots a_n \in \{0, 1\}^*$ we define

$$h(a_1 \dots a_n) = \sum_{i=1}^n a_i 2^{n-i}.$$

Let $h_p(w) = h(w) \mod p$ be the *fingerprint* of w with respect to a prime p.

- (a) Construct a randomised pattern matching algorithm by using these fingerprint functions.
- (b) What is the probability of an invalid match of your algorithm?

Solution

Part (a): Let $T = a_1 \cdots a_n$ be the text and $P = b_1 \cdots b_m$ be the pattern. We denote T[i, i + m - 1] by T_i . The algorithm works as follows:

- Choose a prime $1 \le p \le mn^2$ randomly.
- Compute $h_p(P)$ and $h_p(T_1)$ (via Horner's method)
- For all i = 1, ..., n m + 1:

- If
$$h_p(P) = h_p(T_i)$$
: Match at position *i*

- Compute $h_p(T_{i+1}) = (h_p(T_i) - a_i 2^{m-1}) \cdot 2 + a_{i+m} \mod p.$

Part (b): The probability for an invalid match is $\mathcal{O}(\frac{1}{n})$. In order to prove this claim, we will make use of two lemmas:

Lemma 1 Let $(X_1, Y_1), \ldots, (X_t, Y_t)$ be pairs of strings of length m and let $1 \le p \le M$ be a randomly chosen prime. The probability of an invalid match is at most $\frac{\pi(mt)}{\pi(M)}$ (for large enough m, but $mt \le M$), where $\pi(n)$ counts the number of primes in the set $\{1, \ldots, n\}$.

Proof An invalid match means

$$\exists i : h(X_i) \neq h(Y_i) \text{ and } h_p(X_i) = h_p(Y_i)$$

$$\implies p \text{ is a prime factor of } \prod_{\substack{1 \le i \le t \\ X_i \neq Y_i}} (|h(X_i) - h(Y_i)|) \le 2^{mt}$$

Furthermore, the number of prime factors of $u \leq 2^{mt}$ is bounded by $\pi(mt)$, if $mt \geq 29$ (slide 108). Hence the probability of an invalid match is $\frac{\pi(mt)}{\pi(M)}$.

Lemma 2 If we randomly choose $1 \le p \le M = mt^k$ then the probability of an invalid match is at most $\mathcal{O}(\frac{1}{t^{k-1}})$.

Proof This follows directly from Lemma 1 together with the fact $\pi(n) \in \mathcal{O}(\frac{n}{\ln(n)})$. We put everything together. Our algorithm works with k = 2, t = n and a pattern of length m. Thus we obtain an error probability of $\mathcal{O}(\frac{1}{n})$.

Example: $m = 250, n = 4000, M = mn^2 = 4 \cdot 10^9 < 2^{32}$ (32-bit-fingerprints) Hence Pr(invalid match) < 10^{-3} .

Task 4

For a given number $r \ge 1$ and a prime p let $x = (x_0, x_1, \ldots, x_r)$ with $x_i \in \mathbb{F}_p$. Let $h_x : \mathbb{F}_p^{r+1} \to \mathbb{F}_p$ be the function defined by

$$h_x(a) = \sum_{i=0}^r a_i x_i \mod p, \quad a = (a_0, \dots, a_r).$$

Show that $\mathcal{H} = \{h_x | x_i \in \mathbb{F}_p, 0 \le i \le r\}$ is a universal family of hash functions. Is \mathcal{H} also a family of pairwise independent hash functions?

Solution

For Part 1 of the task, we have to look at collisions. Let $a \neq \bar{a}$. Hence, there exists an i such that $a_i \neq \bar{a_i}$. W.l.o.g. we can choose i = 0. Then $h_x(a) = h_x(\bar{a})$ means

$$x_0(a_0 - \overline{a_0}) \equiv -\sum_{i=1}^r x_i(a_i - \overline{a_i}) \mod p.$$

And since $a_0 \not\equiv \overline{a_0} \mod p$ and p is a prime, we know $(a_0 - \overline{a_0})$ is invertible modulo p. Finally, by looking at

$$x_0 \equiv -\sum_{i=1}^r x_i \frac{a_i - \overline{a_i}}{a_0 - \overline{a_0}} \mod p$$

we see that by randomly picking x_1, \ldots, x_r , there is exactly one $x_0 \in \mathbb{F}_p$ fulfillig this congruence. This means there are p^r (out of p^{r+1}) many collisions and the probability for a collision in \mathcal{H} is exactly 1/p.

But: The family \mathcal{H} is not a familiy of pairwise independent hash functions. Take for instance r = 1 and consider the system

$$4x_0 + 2x_1 \equiv 1 \mod p$$
$$2x_0 + x_1 \equiv 1 \mod p.$$

It only works if $0 \equiv -1 \mod p$, which is a contradiction. So there is no function h_x for the given values and hence the probability is 0.