Exercise 6

Task 1

We generalize the definition on slide 121 in the following way: Let $\mathcal{H} \subseteq\{h \mid h: A \rightarrow B\}$ be a family of hash functions. We call \mathcal{H} a family of k-wise independent hash functions, if for all $a_{1}, \ldots, a_{k} \in A$ (pairwise different) and $b_{1}, \ldots, b_{k} \in B$ we have

$$
\operatorname{Prob}\left[\bigwedge_{i=1}^{k} h\left(a_{i}\right)=b_{i}\right]=1 /|B|^{k}
$$

for a randomly chosen $h \in \mathcal{H}$ (uniform distribution). Show that

$$
\mathcal{H}=\left\{h_{x}: \mathbb{F}_{p} \rightarrow \mathbb{F}_{p} \mid h_{x}(a)=\sum_{i=0}^{k-1} x_{i} a^{i}, x=\left(x_{0}, \ldots, x_{k-1}\right) \in \mathbb{F}_{p}^{k}\right\}
$$

is such a k-wise independent family if $k \leq p$.

Solution

The proof generalizes exactly like on slides 125 to 127 . We choose $a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{k} \in \mathbb{F}_{p}$, where the a_{i} are pairwise different. Then the system

$$
\begin{aligned}
& x_{0}+a_{1} x_{1}+\cdots+a_{1}^{k-1} x_{k-1} \equiv b_{1} \bmod p \\
& x_{0}+a_{2} x_{1}+\cdots+a_{2}^{k-1} x_{k-1} \equiv b_{2} \bmod p \\
& \vdots \\
& x_{0}+a_{k} x_{1}+\cdots+a_{k}^{k-1} x_{k-1} \equiv b_{k} \bmod p
\end{aligned}
$$

has a unique solution $\left(x_{0}, \ldots, x_{k-1}\right) \in \mathbb{F}_{p}^{k}$: The system is equivalent to

$$
\left(\begin{array}{cccc}
1 & a_{1} & \cdots & a_{1}^{k-1} \\
1 & a_{2} & \cdots & a_{2}^{k-1} \\
\vdots & \vdots & & \vdots \\
1 & a_{k} & \cdots & a_{k}^{k-1}
\end{array}\right)\left(\begin{array}{c}
x_{0} \\
x_{1} \\
\vdots \\
x_{k-1}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{k}
\end{array}\right) \quad \text { in } \mathbb{F}_{p}
$$

The matrix is the Vandermonde matrix and hence invertible, since the a_{i} are pairwise different (shown on Sheet 1). We argue as on slide 126 and 127 to obtain a probability of

$$
\operatorname{Prob}\left[\bigwedge_{i=1}^{k} h_{x}\left(a_{i}\right)=b_{i}\right]=1 / p^{k} .
$$

Task 2 (AMS algorithm)
Consider the stream $S=(101,011,010,111,011,101,000,001)$ and the corresponding set A. Approximate the cardinality of A by using the hash functions $h_{x, y}(u)=x u+y$ over $\mathbb{F}_{2^{3}}$ with

1. $x=101$ and $y=001$,
2. $x=100$ and $y=101$.

Hint: You can use that + over the field $\mathbb{F}_{2^{3}}$ works like a bitwise XOR and $x \cdot u$ is given by the following table:

u	000	001	010	011	100	101	110	111
$100 \cdot u$	000	100	011	111	110	010	101	001
$101 \cdot u$	000	101	001	100	010	111	011	110

Solution

We use the table in order to get $h_{x, 000}(u)$ and then perform some bitflips.
1.

u	101	011	010	111	011	101	000	001
$h_{101,000}(u)$	111	100	001	110	100	111	000	101
$h_{101,001}(u)$	110	101	000	111	101	110	001	100
$\rho\left(h_{101,001}(u)\right)$	0	0	3	0	0	0	2	0

Hence, after step 3 of the AMS algorithm we have $z=3$ and thus we return $2^{3.5}=$ $11.3 \ldots>8$. In practice we could stop after reading $u=010$, since $z=3$ is the maximal value.
2.

u	101	011	010	111	011	101	000	001
$h_{100,000}(u)$	010	111	011	001	111	010	000	100
$h_{100,101}(u)$	111	010	110	100	010	111	101	001
$\rho\left(h_{100,101}(u)\right)$	0	1	0	0	1	0	0	2

Hence, after step 3 of the AMS algorithm we have $z=2$ and thus we return $2^{2.5}=$ $5.65685 \ldots \approx 6$.

The stream has 6 different values, so the second hash function yields a better approximation.

Task 3 (Average height of binary search trees)
(a) Write down all binary search trees (BSTs) with 4 nodes.
(b) Compute the average height of a BST with 4 nodes (uniform distribution).
(c) Compute the expected value $E\left[H_{4}\right]$ (slide 153).

Solution

(a) In total we obtain 14 trees:
(1)
(2)

(2)

(b) For this part of the task, we indeed consider the uniform distribution on these 14 trees. We have 6 trees of height 2 and 8 trees of height 3. Hence the average height is $\frac{1}{14}(6 \cdot 2+8 \cdot 3)=\frac{18}{7}=2 \frac{4}{7}$.
(c) The expected value of the height of the BSTs chosen by the uniform distribution on the permutations S_{4} yields a different number. We obtain

$$
E\left[H_{4}\right]=\frac{2}{24}(3+3+2 \cdot 2+3+3+2 \cdot 3 \cdot 2)=\frac{7}{3}=2 \frac{1}{3} .
$$

The flatter trees have more weight than with the uniform distribution and hence the expected value is smaller.

