Exercise 1

Task 1

Prove that the Vandermonde-Matrix

$$
V\left(a_{0}, \ldots, a_{n-1}\right)=\left(\begin{array}{ccccc}
1 & a_{0} & a_{0}^{2} & \ldots & a_{0}^{n-1} \\
1 & a_{1} & a_{1}^{2} & \ldots & a_{1}^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & a_{n-1} & a_{n-1}^{2} & \ldots & a_{n-1}^{n-1}
\end{array}\right)
$$

is ivertible if and only if the numbers a_{0}, \ldots, a_{n-1} are pairwise different.
Hint: Show first that the following equation holds:

$$
\operatorname{det} V\left(a_{0}, \ldots, a_{n-1}\right)=\prod_{0 \leq i<j<n}\left(a_{j}-a_{i}\right)
$$

Task 2 (Fast Fourier Transform)
(a) Use the FFT to compute the discrete Fourier transform of the polynomial $f(x)=x+2 x^{2}+3 x^{3}$ over \mathbb{C}.
(b) Compute $(x+2) \cdot(2 x-1)$ with the FFT.

Task 3
Let $A, B \subseteq\{1, \ldots, 10 n\}$ be sets with $|A|=|B|=n$. We want to compute

$$
C:=\{a+b: a \in A, b \in B\}
$$

and the number of possibilities to write $c \in C$ as a sum of elements in A and B. Specify an algorithm that solves the problem in time $\mathcal{O}(n \log n)$.

