Exercise 3

Task 1

Perform a division with remainder with Newton's method for $s=87$ and $t=7$.

Task 2

Let $A \in \mathbb{C}^{n \times n}$ be a matrix.

1. (Slide 61) Show that the coefficient s_{1} of the characteristic polynomial $\operatorname{det}(x \cdot \operatorname{Id}-A)=$ $x^{n}-s_{1} x^{n-1}+\cdots$ is equal to the trace of A, which is the sum of the diagonal elements of A.
2. (Lemma 12) Let $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{C}$ be the eigenvalues of $A\left(\lambda_{i}=\lambda_{j}\right.$ is allowed). Show that $\lambda_{1}^{m}, \ldots, \lambda_{n}^{m}$ are the eigenvalues of A^{m} for $m \in \mathbb{N}$.

Task 3

Invert the following matrix A using Csansky's algorithm.

$$
A=\left(\begin{array}{ll}
2 & 2 \\
2 & 1
\end{array}\right)
$$

