Exercise 5

Task 1

Let $f:\{0,1\}^{*} \rightarrow \mathbb{Z}^{2 \times 2}$ be the homomorphism defined by

$$
f(0)=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right), \quad f(1)=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

Show that the entries of the matrix $f(w)$ are upper bounded by the $(|w|+1)$-th Fibonacci number $F_{|w|+1}$. Furthermore, give an example for a string w, where at least one entry of $f(w)$ takes indeed the value $F_{|w|+1}$.

Task 2

Let $T=001100$ and $P=01$. Use the probabilistic algorithm of the lecture to compute the array MATCH $[1, \ldots, 6]$, which encodes the occurrences of the pattern P in the string T.

Task 3

In this task we will consider an alternative class of fingerprint functions. For a word $w=a_{1} \ldots a_{n} \in\{0,1\}^{*}$ we define

$$
h\left(a_{1} \ldots a_{n}\right)=\sum_{i=1}^{n} a_{i} 2^{n-i} .
$$

Let $h_{p}(w)=h(w) \bmod p$ be the fingerprint of w with respect to a prime p.
(a) Construct a randomised pattern matching algorithm by using these fingerprint functions.
(b) What is the probability of an invalid match of your algorithm?

Task 4

For a given number $r \geq 1$ and a prime p let $x=\left(x_{0}, x_{1}, \ldots, x_{r}\right)$ with $x_{i} \in \mathbb{F}_{p}$. Let $h_{x}: \mathbb{F}_{p}^{r+1} \rightarrow \mathbb{F}_{p}$ be the function defined by

$$
h_{x}(a)=\sum_{i=0}^{r} a_{i} x_{i} \bmod p, \quad a=\left(a_{0}, \ldots, a_{r}\right) .
$$

Show that $\mathcal{H}=\left\{h_{x} \mid x_{i} \in \mathbb{F}_{p}, 0 \leq i \leq r\right\}$ is a universal familiy of hash functions. Is \mathcal{H} also a familiy of pairwise independent hash functions?

