Exercise 2

Task 1

Sort the array $[5,2,4,16,1,3,2,6]$ using Mergesort.

Task 2

Calculate $3255 \cdot 6789$ using the algorithm of Karatsuba. You do not have to use base 2 .

Task 3

Use the algorithm of Strassen to calculate the following matrix product:

$$
\left(\begin{array}{cc}
5 & -5 \\
5 & 5
\end{array}\right) \cdot\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)
$$

Task 4

Professor Caesar wishes to develop a matrix-multiplication algorithm that is asymptotically faster than Strassen's algorithm. His algorithm will use the divide-and-conquer method, dividing each matrix into pieces of size $n / 16 \times n / 16$, and the divide and combine steps together will take $\Theta\left(n^{2}\right)$ time. He needs to determine how many subproblems his algorithm has to create in order to beat Strassen's algorithm. If his algorithm creates a subproblems then the recurrence for the running time $T(n)$ becomes $a T(n / 16)+\Theta\left(n^{2}\right)$. What is the largest integer value for a for which Professor Caesar's algorithm would be asymptotically faster than Strassen's algorithm?

Task 5

Sort the following list via Radixsort.

$$
[456,128,752,956,185,361,678,462]
$$

Task 6

Show that a binary tree with N leaves has at least height $\log _{2}(N)$.

