Exercise 3

Task 1

Sort the array [19, 9, 1, 6, 4, 17, 3, 18] using Quicksort (with median-out-of-three).
Task 2 (Slides 53 and 58)
Show that for the n-th harmonic number H_{n} the following inequalities hold:

$$
\ln (n+1) \leq H_{n} \leq \ln (n)+1
$$

Hint: $\ln (n)=\int_{1}^{n} \frac{1}{x} \mathrm{~d} x$.

Task 3

We saw in the lecture that the running time is optimal for Quicksort if the pivot element is the middle of the array entries $\{A[1], \ldots, A[n]\}$ (median) (Slide 50). On the other hand, we saw that the worst-case running time arises when after each call of partition $(A[l \ldots r], p)$, one of the subarrays $(A[l \ldots m-1]$ or $A[m+1 \ldots r])$ is empty (Slide 56). Now, suppose we run a Quicksort algorithm where the partition is unbalanced but maintains a certain constant relation between the subarrays, concretely in every iteration the partition maintains a $1: 10$ relation.

- What is the running time of this Quicksort algorithm?
- Draw a graphical representation of the running time (a tree that describes how the elements are distributed in every iteration)
- (Optional) Give a recursion for the running time (Have a look at Akra-Bazzi theorem)

Task 4 (More harmonic numbers)
Show the following 2 statements by induction.
(a) $\sum_{k=1}^{n} H_{k}=(n+1) H_{n}-n$
(b) $\sum_{k=1}^{n} H_{k}^{2}=(n+1) H_{n}^{2}-(2 n+1) H_{n}+2 n$

