Exercise 4

Task 1

Sort the array

$$
[8,4,9,1,5,3,6,7]
$$

using Standard Heapsort and then sort it using Bottom-up Heapsort. How many comparisons do you need in each case?

Task 2

Consider the following coding functions (slides 76 and 78):

$$
c_{1}\left(a_{1} \ldots a_{t}\right)=a_{1} 0 a_{2} 0 \ldots a_{t-1} 0 a_{t} 1
$$

and

$$
c_{2}^{\prime}\left(a_{1} \ldots a_{t}\right)=c_{1}\left(\operatorname{bin}\left(\left\lceil\log _{2}(n)\right\rceil-t\right)\right) a_{1} \ldots a_{t}
$$

for bitstrings $a_{1} \ldots a_{t} \in\{0,1\}^{*}$.
For an input list of length $n=6$ we get the following code of the sink paths after applying Heapsort:

$$
1001010011111010011100101001110010
$$

For all sink paths c_{2}^{\prime} is used. What is the input list?

Task 3

Show Jensen's inequality (slide 8).

Task 4

Is there a comparison-based sorting algorithm and a number $c>0$ such that the following holds?: The proportion of all input lists of length n on which the algorithm makes at most $c \cdot n$ comparisons is at least $\frac{1}{2^{n}}$.

