Exercise 7

Task 1

Show Theorem 17 from the lecture (slide 155) : For all $k \ge 0$ we have

$$F_k = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^{k+1} - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^{k+1}$$

Here we use $F_0 = F_1 = 1$ (there are other conventions).

Task 2

Given the following Fibonacci heap:

Perform the following operations in that order:

delete-min, decrease-key("49", 3), insert(14), delete-min, decrease-key("23", 9) decrease-key("33", 25)

Task 3

Find the optimal order to compute the following product (only the dimensions of the matrices are given):

$$(3 \times 6) \cdot (6 \times 3) \cdot (3 \times 1) \cdot (1 \times 10) \cdot (10 \times 10)$$

Task 4

Construct an optimal binary search tree for the following elements v with probability (weight) $\gamma(v)$.

	v	1	2	3	4	5	6
Ì	$\gamma(v)$	0.35	0.1	0.1	0.25	0.15	0.05

Task 5

Assume we want to construct an optimal binary search tree using the following greedy algorithm: Choose an element v for which $\gamma(v)$ is maximal as the root node and then continue recursively. Show that this approach does not always yield an optimal binary search tree.