
Efficient Memory Representation of XML Documents

Giorgio Busatto1, Markus Lohrey2, and Sebastian Maneth3

1 Department für Informatik, Universität Oldenburg, Germany
giorgio.busatto@informatik.uni-oldenburg.de

2 FMI, Universität Stuttgart, Germany lohrey@informatik.uni-stuttgart.de
3 Faculté I & C, EPFL, Switzerland sebastian.maneth@epfl.ch

Abstract. Implementations that load XML documents and give access to them
via, e.g., the DOM, suffer from huge memory demands: the space needed to load
an XML document is usually many times larger than the size of the document. A
considerable amount of memory is needed to store the tree structure of the XML
document. Here a technique is presented that allows to represent the tree structure
of an XML document in an efficient way. The representation exploits the high reg-
ularity in XML documents by “compressing” their tree structure; the latter means
to detect and remove repetitions of tree patterns. The functionality of basic tree
operations, like traversal along edges, is preserved in the compressed representa-
tion. This allows to directly execute queries (and in particular, bulk operations)
without prior decompression. For certain tasks like validation against an XML
type or checking equality of documents, the representation allows for provably
more efficient algorithms than those running on conventional representations.

1 Introduction

There are many scenarios in which trees are processed by computer programs. Often it
is useful to keep a representation of the tree in main memory in order to retain fast ac-
cess. If the trees to be stored are very large, then it is important to use a memory efficient
representation. A recent, most prominent example of large trees are XML documents
which are sequential representations of ordered (unranked) trees, and an example ap-
plication which requires to materialize (part of) the document in main memory is the
evaluation of XML queries. The latter is typically done using one of the existing XML
data models, e.g., the DOM. Benchmarks show that a DOM representation in main
memory is 4–5 times larger than the original XML file. This can be understood as fol-
lows: a node of the form <a/> needs 4 bytes in XML; but as a tree node it needs at
least 16 bytes: a name pointer, plus three node pointers to the parent, the first child, and
the next sibling (see, e.g., Chapter 8 of [20]). There are some improvements leading to
more compact representations, e.g., Galax [9] uses only 3–4 times more main memory
than the size of the file. Another, more memory efficient data model for XML is that
of a binary tree. As shown in [21], the known XML query languages can be readily
evaluated on the binary tree model.

In this paper, we concentrate on the problem of representing binary trees in a space
efficient way, so that the functionality of the basic tree operations (such as the traversal
along edges) are preserved. Instead of compression, this is often called “data optimiza-
tion” [14]. Our technique is a generalization of the well-known sharing of common

subtrees. The latter means to determine during a bottom-up phase, using a hash table,
whether the current subtree has occurred already, and if so to represent it by a pointer to
its previous occurrence. In this way the minimal unique DAG (directed acyclic graph)
of the tree is obtained in amortized linear time. For common XML documents the min-
imal DAG is about 1/10 of the size of the original tree [3]. Our representation is based
on sharing of common subgraphs of a tree. The resulting sizes are 1/2–1/3 of the size
of the minimal DAG. To our knowledge, this is the most efficient pointer-based tree
representation that is currently available. At the same time, the complexity of querying,
e.g. using XQuery, stays the same as for DAGs [18]. We therefore believe that our rep-
resentation is better suited for in-memory storage of XML documents, than DAG-based
representations.

Of course, an XML document consists of more things than just tree nodes: a node
may have attributes, and a leaf may have character data. Both type of values we keep
in string buffers. When traversing the XML tree, we keep information on how many
nodes before (in document order) the current one (i) have attributes and (ii) how many
have character data. These numbers determine for a node the correct indices into the
attribute and data value buffers, respectively. With this in mind, it is straightforward
to implement a DOM proxy for our representations. Note that attribute and character
values can be stored more space efficiently using standard techniques [1]. The XML
file compression tool XMill [17] separates data values into containers and compresses
them individually using standard methods. The result is stored together with the tree
structure. It is likely that compressing the tree structure by the technique presented here
will further improve XMill’s compression ratios.

S → c

........................¼
.......................s

...

...

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

...

...

....

....

....

....

....

....

....

....

....

....

....

.

....

....

....

....

....

....

....

....

....

....

....

.

d c d C

CCCC
1

2

pat

S → B(B(C))

B(y1) → c(C, d(C, y1))
C→ c(A, A) C → c(A, A)
A→ a A → a

Fig. 1. Regular and cf tree grammars generating {t}.

We now describe our representation in more detail. Consider the tree c(c(a, a), c(a,
a)), or, in XML <c><c><a/><a/></c><c><a/><a/></c></c>. It consists of
seven nodes and six edges. The minimal DAG for this tree has three nodes u, v, w and
four edges (‘first-child’ and ‘second-child’ edges from u to v and from v to w). The
minimal DAG can also be seen as the minimal regular tree grammar that generates the
tree [19]: the shared nodes correspond to nonterminals of the grammar. For example, the
above DAG is generated by the regular tree grammar with productions S → c(V, V),
V → c(W,W), and W → a. A generalization of sharing of subtrees is the sharing
of arbitrary patterns, i.e., connected subgraphs of a tree. In a graph model it leads to
the well-known notion of sharing graphs which are graphs with special “begin-sharing”
and “end-sharing” edges, called fan-ins and fan-outs [15]. Since fan-in/out pairs can
be nested, this structure allows to represent a tree in double-exponentially smaller size.

2

In contrast, a DAG is at most exponentially smaller than the tree it represents. A shar-
ing graph can be seen as a context-free (cf) tree grammar [19]. In a cf tree grammar
nonterminals can appear inside of an intermediate tree (as opposed to at the leaves in
the regular case); formal parameters y1, y2, . . . are used in productions in order to in-
dicate where to glue the subtrees of the nonterminal which is being replaced. Finding
the smallest sharing graph for a given tree is equivalent to finding the smallest cf tree
grammar that generates the tree. Unfortunately, the latter problem is NP-hard: already
finding the smallest cf (string) grammar for a given string is NP-complete [16]. The first
main result of this paper is a linear time algorithm that finds a small cf tree grammar
for a given tree. On common XML documents the algorithm performs well, obtain-
ing grammars that are 1.5-2 times smaller than the minimal DAGs. As an example,
consider the tree t = c(c(a, a), d(c(a, a), c(c(a, a), d(c(a, a), c(a, a))))) which has 18
edges. The minimal DAG, written as tree grammar, can be seen on the left of Fig. 1.
It is the initial input to our algorithm “BPLEX” which tries to transform the grammar
into a smaller cf tree grammar. It does so by going bottom-up through the right-hand
sides of productions, looking for multiple (non-overlapping) occurrences of patterns.
In our example, the tree pattern pat (consisting of two nodes labeled c and d and their
left children labeled C) appears twice in the right-hand side of the first production. A
pattern p in a tree can conveniently be represented by a tree tp with formal parameters
y1, . . . , yr at leaves: simply add to tp all children of nodes of p (and the edges), and
label the jth such node (in preorder) by yj . Thus, tpat = c(C, d(C, y1)). This tree be-
comes the right-hand side of a new nonterminal B and the right-hand side of the first
production becomes B(B(C)). The resulting minimal cf tree grammar is shown on the
right of Fig. 1.

The BPLEX algorithm is presented in Section 3. In Section 4 we discuss the appli-
cation of BPLEX to XML documents and present experimental results. In Section 6 we
study two problems for our tree grammars G that are important for XML documents:
(1) to validate against an XML type and (2) to test equivalence. In fact, we consider
both of these problems for so called “straight-line” (for short, SL) context-free tree
grammars, which are grammars that are guaranteed to generate at most one tree; the
“straight-line” notion is well-known from string grammars (see, e.g., [25, 26]). Since
BPLEX generates “SLT grammars” of a more restricted form (additionally: linear in the
parameters) we also consider problems (1) and (2) for this restricted case. It is shown
that for an XML type T , represented by a (deterministic) bottom-up tree automaton,
we can test whether or not the tree represented by G has type T in time O(am × |G|),
where m is the maximal number of parameters of the nonterminals of G and a is the
size of the automaton. Running a tree automaton is similar to evaluating a query; in [3]
it was shown that a ‘Core XPath query’ Q can be evaluated on an XML document rep-
resented by its minimal DAG D in time O(2|Q| × |D|). Next it is proved that testing
the equivalence of two SL cf tree grammars can be done in polynomial space w.r.t. the
sum of sizes of the two grammars, and, if the grammars are linear (“SLT”) then even in
polynomial time w.r.t. their sizes.

3

2 Preliminaries

For k ∈ N, the set {1, . . . , k} is denoted by [k]. A finite set Σ together with a mapping
rank : Σ → N is called a ranked alphabet. The set of all (ordered, rooted, ranked) trees
over Σ is denoted by TΣ . For a set A, TΣ(A) is the set of all trees over Σ∪A, where all
elements of A have rank 0. We fix a set of parameters Y = {y1, y2, . . . } and, for k ≥ 0,
Yk = {y1, . . . , yk}. For a ranked tree t, V (t) denotes its set of nodes and E(t) its set of
edges. Each node in V (t) can be represented by a sequence u of integers describing the
path from the root of t to the desired node (Dewey notation), the node itself is denoted
by tu; for example, 1.1.1 denotes the left-most leaf of the tree t from the Introduction
(labeled a). The label at node u is denoted t[u] and the subtree rooted at u is denoted
t/u. For symbols a1, . . . , an of rank zero and trees t1, . . . , tn, [a1 ← t1, . . . , an ← tn]
denotes the substitution of replacing each leaf labeled ai by the tree ti, 1 ≤ i ≤ n.

Context-free (cf) tree grammars are a natural generalization of cf grammars to trees
(see, e.g., Section 15 in [13]). A cf tree grammar G consists of ranked alphabets N and
Σ of nonterminal and terminal symbols, respectively, of a start symbol (of rank zero),
and of a finite set of productions of the form A(y1, . . . , yk) → t. The right-hand side t
of a production of the nonterminal A is a tree over nonterminal and terminal symbols
and over the parameters in Yk which may appear at leaves, where k is the rank of A, i.e.,
t ∈ TN∪Σ(Yk). Sentential forms are trees s, s′ in TN∪Σ and s ⇒G s′ if s′ is obtained
from s by replacing a subtree A(s1, . . . , sk) by the tree t[y1 ← s1, . . . , yk ← sk] where
t is the right-hand side of an A-production. Thus, the parameters are used to indicate
where to glue the subtrees of a nonterminal, when applying a production to it. The
language generated by G is {s ∈ TΣ | S ⇒∗

G s}. Note that a parameter can cause
copying (if it appears more than once in a rhs) or deletion (if it does not appear). For
example, the cf tree grammar with productions S → A(a), A(y1) → A(c(y1, y1)),
A(y1)→ y1 generates the language of all full binary trees over the binary symbol c and
the constant symbol a.

A cf tree grammar is regular if all nonterminals have rank 0. It is straight-line
(for short, SL) if each nonterminal A has exactly one production (with right-hand side
denoted rhs(A)) and the nonterminals can be ordered as A1, . . . , An in such a way that
rhs(Ai) has no occurrences of Aj for j ≤ i (such an order is called “SL order”). Thus,
an SL cf tree grammar can be defined by a tuple (N,Σ, rhs) where N is ordered and
rhs is a mapping from N to right-hand sides. A cf tree grammar is linear if for every
production A(y1, . . . , yk)→ t, each parameter yi occurs at most once in t.

In the sequel we use SLT grammar to stand for “SL linear cf tree grammar”.

3 The BPLEX Algorithm

Grammar-based tree compression means to find a small grammar that generates a given
tree. The size of such a grammar can be considerably smaller than the size of the tree,
depending on the grammar formalism chosen. For example, finding the smallest regular
tree grammar that generates a given tree t can be done in (amortized) linear time, and the
resulting grammar is isomorphic to the minimal DAG of the tree. The minimal regular
tree grammar Gt is also straight-line (any grammar that generates exactly one element

4

can be turned into an SL grammar). The initial input to our compression algorithm
BPLEX is the grammar Gt: BPLEX takes an arbitrary SL regular tree grammar as
input and outputs a (smaller) SLT grammar. As mentioned in the Introduction, moving
from regular to cf tree grammars corresponds to generalizing the sharing of common
subtrees to the sharing of arbitrary tree patterns (connected subgraphs of a tree).

The basic idea of the algorithm is to find tree patterns that appear more than once in
the input grammar (in a non-overlapping way), and to replace them by new nonterminals
that generate the corresponding patterns. We call this technique multiplexing because
multiple occurrences of the replaced patterns are represented only once in the output.
The order in which the algorithm scans the nodes in the right-hand sides of the input
grammar corresponds to scanning the generated tree bottom up; for this reason, the
algorithm is called BPLEX (for bottom-up multiplexing).

BPLEX (see Fig. 2) takes as input an SL regular tree grammar G and three parame-

procedure BPLEX(G: grammar, KN : int, KS : int, KR: int): grammar
begin

Al := last symbol in the SL ordering of G

z := leftmost leaf of rhsG(Al)
while true do

repM := RepM(G, z, KN)
newM := NewM(G, z, KN , KS , KR)
if newM 6= ∅ or repM 6= ∅ then

m := max(newM, repM)
if m ∈ repM then

G := G[m← A], with rhsG(A) = pm

else
k := rank(pm)
A := fresh(G, k)
G := add(G, A(y1, . . . , yk)→ pm)
G := G[m, cm ← A]

fi
elseif ∃w ∈ V l

G : z <l

G w then z := next(<l

G, z)
else break
fi

od
return G

end BPLEX

Fig. 2. The BPLEX algorithm.

ters specifying (1) the maximum number KN of nodes and productions that are exam-
ined when computing patterns matching at a given node, (2) the maximum size KS of a
new pattern, and (3) the maximum rank KR of a new pattern. If A1, . . . , Al are the non-
terminals of G (in SL order) and G is an SLT grammar containing these nonterminals,
then <l

G indicates the ordering over all nodes of rhsG(A1),. . . , rhsG(Al) obtained by
scanning rhsG(Al) through rhsG(A1), each in postorder, and z is the current position
with respect to this ordering. At each step, BPLEX computes a set of repeated matches

5

by comparing the patterns occurring at z with the right-hand sides of the last KN pro-
ductions of G with index greater than l, and a set of new matches by finding pairs of
non-overlapping occurrences of patterns at z and at the KN most recently visited nodes
(thus exploiting the well-known idea of a sliding window that appears e.g. in many im-
plementations of the LZ77 compression scheme, cf. the discussion in Section 7). If at
least one match is found, BPLEX performs the sharing that provides the highest size
reduction for the grammar, it moves to the next node otherwise. If there is no next node,
then it returns the current SLT grammar.

We now examine the algorithm in detail. We describe the progress of the com-
putation through a sequence of configurations (G1, z1), . . . , (Gh, zh) where, for each
i ∈ [h], Gi is an SLT grammar generating the uncompressed tree, and zi is an address
(see below) denoting the node that is examined during the i-th iteration (the current
node). G1 = G is the input to the algorithm; Gh is the output. For i ∈ [h], gram-
mar Gi has nonterminals A1, . . . , Ali , with l1 = l and, for i > 1, either li = li−1 or
li = li−1 + 1 and Ali = fresh(Gi−1, k) for some k > 0. By fresh(G, k) we denote
a nonterminal of rank k that does not occur in G. Given i ∈ [h] and a grammar Gi,
scanning the nodes of rhsGi

(Al) through rhsGi
(A1) in postorder induces a total order

<l
Gi

on the set of nodes V l
Gi

=
⋃

j∈[l] V (rhsGi
(Aj)). For i ∈ [h] and j ∈ [l], a node

in V (rhsGi
(Aj)) is denoted by the address z = (j, u), where u is the path to that node

in the tree rhsGi
(Aj). If z is a node in V l

Gi
that is not the root of rhsGi

(A1), then
next(<l

Gi
, z) is the node following z in the order <l

Gi
. The starting address z1 is the

left-most leaf of rhsG1
(Al) and the final address zh = (1, ε) is the root of rhsGh

(A1).

A tree pattern can be described by a tree with parameters at leaves (parameters
denote connected subtrees that are not part of the pattern). Formally, a (tree) pattern p
(of rank k) is a tree in which each y ∈ Yk occurs exactly once. Given a tree t and a
node u of t, the pattern p matches t in u if there are trees t1, . . . , tk and a pattern p′

isomorphic to p such that t/u = p′Θ where Θ is the substitution [y1 ← t1, . . . , yk ←
tk]. The pair (p′, Θ) is called a match of p (in t) at u. Given a match m, pm denotes
the corresponding pattern. Two matches (p′, Θ′), (p′′, Θ′′), are overlapping if p′ and
p′′ have at least one common node. Two matches m′ = (p′, [y1 ← t′1, . . . , yk ← t′k]),
m′′ = (p′′, [y1 ← t′′1 , . . . , yk ← t′′k]) of the same pattern p are maximal if, for all
i ∈ [k], t′i[ε] 6= t′′i [ε] (intuitively: there is no possibility to extend m′, m′′ to matches of
some larger common pattern). Given a grammar G with nonterminals A1, . . . , Ah and
j ∈ [h], a pattern p matches G in z = (j, u) if p matches rhsG(Aj) in u; if m = (p′, Θ)
is the match of p in z = (j, u), then z is the address of m in G.

The replacement of patterns is defined as follows. Let G be an SLT grammar, p
a pattern of rank k with a corresponding production A(y1, . . . , yk) → p in G, and
m = (p′, [y1 ← t1, . . . , yk ← tk]) a match of p in the right-hand side of some other
production of G. The match m is replaced by A by replacing the subtree rooted at the
root of p′ and with the tree A(t1, . . . , tk). The resulting grammar is denoted by G[m←
A]. Similarly, for two non-overlapping matches m1, m2 of p in G, G[m1,m2 ← A] is
the grammar obtained from G by replacing each match m1 and m2 by A.

We now discuss how the size of an SLT grammar changes when occurrences of a
tree pattern are replaced by a nonterminal that generates the pattern. The size of a tree
(without parameters) is its number of edges. Since the SLT grammars that are generated

6

by BPLEX have the property that all k parameters of a nonterminal appear exactly once
in the right-hand side of its rule, and in the order y1, y2, . . . , yk, we do not need to
explicitly represent the parameters as nodes of the tree. Hence, we do not count the
edges to parameters; thus in general, for a tree t, size(t) is defined as |E(t)| − |Ey(t)|
where Ey(t) are the edges to parameters in t. For a tree grammar G, size(G) is the sum
of sizes of the right-hand sides of the productions of G. Clearly, size(G)−size(G[m←
A]) = size(p) and size(G) − size(G[m1,m2 ← A]) = 2 × size(p). If prod is not in
G already then the size of the grammar add(G, prod) obtained by adding prod to G is
size(G) + size(rhs(prod)).

Let us turn our attention to the computation of pattern sets. At stage i, BPLEX
computes the set RepM(Gi, zi,KN) of all matches in zi of patterns that are isomorphic
to some right-hand side rhsGi

(Aj) for l < j ≤ li, li − j < KN . This computation
considers at most KN productions of index greater than l. Note that one can check
whether p = rhsGi

(Aj) matches Gi in zi in at most size(p) ≤ KS steps by comparing
the two trees top-down and binding parameters of p to descendants of zi. The total
cost of computing RepM(Gi, zi,KN) is bounded by KN ×KS because (see below) a
production with index j > l has size at most KS .

BPLEX also computes the set NewM(Gi, zi,KN ,KS ,KR) of all matches in zi

such that, for each m ∈ NewM(Gi, zi,KN ,KS ,KR), we have

– there exists a (non-overlapping) companion match cm of the same pattern in some
node w among the last KN nodes preceding zi in the order <l

Gi
;

– 0 < size(pm) ≤ KS and, if size(pm) < KS , then either (1) m and cm are maximal,
or (2) m and cm can only be extended to larger matches that overlap;

– the rank of pm is at most KR.

The set NewM(Gi, zi,KN ,KS ,KR) can be computed by comparing top-down the tree
rooted at zi with trees rooted at nodes preceding zi. Since the computation stops when-
ever it encounters a pattern that is larger than KS , the cost of computing NewM(Gi, zi,
KN ,KS ,KR) is bounded by KN ×KS .

BPLEX chooses a match m ∈ RepM(Gi, zi,KN)∪ NewM(Gi, zi,KN ,KS ,KR)
with maximal size, denoted by max(repM,newM). If m ∈ RepM(Gi, zi,KN), then
the match is replaced by the right-hand side of the corresponding production. If m ∈
NewM(Gi, zi,KN ,KS ,KR), BPLEX adds a production A → pm to the grammar,
with A = fresh(Gi, rank(pm)), and replaces the matches m, cm by A. In both cases,
the size of the grammar is reduced by size(pm). If no matches are found, BPLEX tries
to move the address zi to the next node with respect to the order <l

Gi
. The linearity of

BPLEX derives from the fact that, for an input grammar G, the loop cannot be executed
more than 2 × |G| times (each run through the loop either moves the address forward
or reduces the size of the grammar), and from the fact that the sets RepM(Gi, zi,KN)
and NewM(Gi, zi,KN ,KS ,KR) can be computed in constant time. Note that each
nonterminal in the output grammar has rank at most KR (see also Section 6). Finally,
note that the indices of nonterminals in the generated grammars do not reflect the SL
order; in the examples we have renamed nonterminals to indicate an SL order.

We now illustrate the computation of BPLEX on the regular tree grammar on the
left of Fig. 1. BPLEX does not perform any sharing in the third and second pro-
duction; it then scans the first production. When the highest d is encountered (ad-

7

dress (1, 2)) a match m of pattern d(C, y1) is found, together with a companion cm

matching in (1, 2.2.2). This has size 1 and is chosen for replacement. The new non-
terminal D of rank 1 is added to the grammar together with production D(y1) →
d(C, y1), and the two matches are replaced so that the first production becomes S →
c(C,D(c(C,D(C)))). The new pattern rhs(D) does not match the new grammar in
z = (1, 2) and no pairs of new matches are found either. Therefore z is changed to
the root of the S production (z = (1, ε)). Here, the right-hand side of D does not
match, while the maximal pattern c(C,D(y1)) matches in (1, ε) and in (1, 2.1). There-
fore a new nonterminal E of rank 1 is added together with the production E(y1) →
c(C,D(y1)), and the matches are replaced by E, producing the output grammar shown
in Fig. 3. Both this grammar and the cf tree grammar on the right of Fig. 1 have size

S → E(E(C)) C → c(A, A)
E(y1) → c(C, D(y1)) A → a

D(y1) → d(C, y1)

Fig. 3. Cf tree grammar generating {c(c(a, a), d(c(a, a), c(c(a, a), d(c(a, a), c(a, a)))))}.

7. Note that BPLEX has not detected pattern p = c(C, d(C, y1)) appearing in Fig. 1,
because the smaller pattern d(C, y1) is replaced before p has been scanned completely.

4 XML Compression using BPLEX

In this section we explain how BPLEX can be used to generate a small representation
of the tree structure of an XML document. This tree structure can be conveniently mod-
eled as unranked or binary tree. While BPLEX performs (almost) equally well in both
models, this is not the case for the minimal DAG.

An XML document is a sequential representation of a nested list structure. As men-
tioned in the Introduction, there are different data models for XML, which vary in their
sizes. For example, DOM trees contain bidirectional pointers between a node and its
children, its parent node, and its direct left and right sibling; the resulting size is ap-
proximately 4-5 times more than the size of the original XML document. Another data
model are (ordered) unranked trees which are like DOM trees, but without pointers be-
tween siblings. As an example, consider the following XML document skeleton (i.e.,
without data values).

<agenda>
<person><name/><street/></person>
. . .
<person><name/><street/></person>







5 times

</agenda>

An (ordered) unranked tree representation of this XML document consists of a root
node labeled agenda which has associated with it an array of five pointers, each to
a node labeled person which in turn has an array of two pointers to nodes labeled
name and street, respectively. For each pointer to a child node we can additionally
also keep the inverse pointer from the child to its parent node. This doubles the number

8

of pointers in the representation. Our investigations are independent of this choice: we
always count in number of edges (these numbers have to be multiplied by the imple-
mentation cost of an edge, which possibly involves the cost of two pointers). The size
of the unranked tree representation of the above XML document is 15 edges.

The BPLEX algorithm works on (ranked) trees; it is well-known that every un-
ranked tree can be turned into a binary ranked tree without changing the number of
edges: delete all edges to non-first children, and add a (second child) edge from any
node to its next sibling. Note that a leaf (resp. the last sibling) in the unranked tree has
no left (resp. no right) child edge in the binary tree representation; this is denoted by
the superscript 2 (resp. 1), and by 0 for a last sibling leaf. In Fig. 4 the binary rep-
resentation of the unranked tree for the XML document above is shown (with second

street0

person1

name2

street0

agenda1

person

name2

street0

person

name2

street0

person

name2

street0

person

name2

Fig. 4. Binary tree representation of an unranked tree.

child edges of person-nodes drawn horizontally). As before, we first turn a (ranked) tree
into its minimal DAG, represented as a regular tree grammar, and then apply BPLEX
to the grammar. In our example, the corresponding regular tree grammar has the three
productions S → agenda1(person(A, person(A, person(A, person(A, person1(A)))))),
A→ name2(B), B → street0 and its size is 11. Consider the S-production of this gram-
mar. Its right-hand side contains four occurrences of the pattern p = person(A, y1).
Thus, given a production C(y1) → person(A, y1), each of the occurrences can be re-
placed by the nonterminal C. However, there is one further occurrence of a similar
pattern p′ = person1(A), which can be obtained by removing the parameter y1 from
the pattern p. Note that, since A is a first child in p, removing y1 changes person into
person1. In general, we allow a nonterminal K of rank m to appear with any rank
0 ≤ r ≤ m in the right-hand sides of productions, provided it is indicated which pa-
rameters are to be deleted; in the implementation, missing parameters are marked by a
special “empty tree marker”. With this “overloading” semantics of productions in mind,
BPLEX turns the above regular tree grammar into:

S → agenda1(C(D(D))) A → name2(B)
D(y1)→ C(C(y1)) B → street0

C(y1) → person(A, y1)

In this grammar, the D-production generates copies along a path of the binary tree.
Repeated applications of such copying productions cause exponential size increase. In
this way, the size of the input grammar can, in certain cases, be reduced exponentially.
Consider our example, but now with 10000 person entries (thus, a binary tree with

9

30000 edges). The corresponding minimal regular tree grammar G10000 has size 20001
while BPLEX outputs the following grammar of size 20:

S → agenda1(A8(A5(A4(A3(A1(A1))))))
A1(y1) → A2(A2(y1))
A2(y1) → A3(A3(y1))

...
A12(y1) → A13(A13(y1))
A13(y1) → person(A14, y1)
A14 → name2(A15)
A15 → street0

In this grammar, the symbol A13 generates the tree person(name(street, y1)). More
generally, for j = 1, . . . , 13, Aj generates a chain with 213−j occurrences of this pattern
and one parameter y1 at the end of the chain. It is easy to see that S generates the correct
tree with 10000 person entries.

Unranked DAGs with Multiplicities Before presenting experimental results with
BPLEX, we discuss its relation to another tree compression method that has been ap-
plied to XML. Recall that we applied BPLEX to the minimal regular tree grammar of
a binary tree representation of an unranked tree. An unranked tree has itself a unique
minimal DAG (minimal regular tree grammar) which can be obtained in the same way
as for ranked trees. However, the size of the minimal DAG of an unranked tree can be
different from the one of the minimal DAG of its binary representation! In most cases
the minimal unranked DAG is smaller than the binary one. The reason is that chains
of second child edges in the binary tree become sibling subtrees in the unranked tree.
To see this, consider the binary tree in Fig 4. Clearly, its minimal DAG has only one
copy of the subtree name2(street) and hence has only 11 edges. On the other hand,
the minimal DAG of the corresponding unranked tree has only one copy of the subtree
person(name, street) and therefore has only 7 edges. As an example of a binary tree
with a minimal DAG that is smaller than the one of the corresponding unranked tree,
consider the unranked tree tu = u(p(x, b, c, b, c), p(y, b, c, b, c), p(z, b, c, b, c)). Its min-
imal unranked DAG has 18 edges, but the minimal binary DAG has only 12, because
only one copy of the subtree b2(c2(b2(c0))) appears.

In fact, the size of the minimal DAG representation can even be further reduced
by using “multiplicity” counters for consecutive equal subtrees [3]. Then the DAG for
the unranked tree of the agenda-example can be represented using only 3 edges, or
equivalently, by an (unranked) regular tree grammar with multiplicity counters and pro-
ductions

A→ agenda([5]P), P → person(name, street).

Of course, multiplicity counters take up space, but following Koch et al. this space is
neglected (similar to the fact that we do not count edges to parameters in cf tree gram-
mars, see Section 3). Thus, BPLEX produces the grammar dsiplayed on the previous
page, which is smaller (size 6) than the minimal DAG of the unranked tree (size 7),
but such a minimal DAG has a smaller representation (size 3) when multiplicity coun-
ters are added. From now on, we call this DAG representation for an unranked tree its

10

mDAG (minimal DAG with multiplicities). Such representation can easily be turned
into a regular tree grammar with the same size that generates the binary representation
of the original unranked tree. This grammar also contains multiplicity counters at nodes,
which are expanded to chains of nodes. We implemented a version of BPLEX which
works on such grammars (and does not change the multiplicity counters). As it turns
out, only in a few cases we obtained small improvements over BPLEX on the binary
regular tree grammar corresponding to the minimal DAG. Thus, the advantage of coun-
ters is compensated for, by the ability of BPLEX to exponentially compress chains of
nodes. On a few files, the minimal binary DAG was even smaller than the mDAG, due
to similar chains as in the tree tu of above; cf. in Tab. 1 the two catalog files and the file
NCBI gene.chr1.

5 Experimental Results

We implemented BPLEX in C using gcc and the Expat XML parsing library (see

input file size of tree min. binary min. unranked BPLEX
in #edges DAG size mDAG size output size

SwissProt (457,4 MB) 10,903,568 1,437,445 13.2% 1,100,648 10.1% 311,328 2.9%
DBLP (103.6 MB) 2,611,931 533,183 20.4% 222,754 8.5% 115,902 4.4%
Treebank (55.8 MB) 2,447,727 1,454,494 59.4% 1,301,688 53.2% 519,542 21.2%
1998statistics (657 KB) 28,306 2,403 8.5% 726 2.6% 410 1.4%
catalog-02 (104M) 2,240,231 52,392 2.3% 32,267 1.4% 26,774 1.2%
catalog-01 (11M) 225,194 6,990 3.1% 8,503 2.8% 3,817 1.7%
dictionary-02 (104M) 2,731,764 681,130 24.9% 441,322 16.2% 160,329 5.9%
dictionary-01 (11M) 277,072 77,554 28.0% 46,993 17.0% 20,150 7.3%
JST snp.chr1 (36M) 655,946 40,663 6.2% 25,047 2.3% 12,858 1.8%
JST gene.chr1 (11M) 216,401 14,606 6.7% 5,658 2.6% 4,000 1.8%
NCBI snp.chr1 (190M) 3,642,225 809,394 22.2% 15 <0.1% 59 <0.1%
NCBI gene.chr1 (24M) 360,350 14,356 4.0% 11,767 3.3% 7,160 2.0%
medline 0378 (123M) 2,790,421 629,853 22.6% 695,505 24.9% 132,733 4.8%

Table 1. BPLEX in highest compression mode. All sizes are in number of edges.

http://expat.sourceforge.net/). See http://bplex.sourceforge.net/ for a preliminary ver-
sion of BPLEX. Our experiments were done on a Pentium 3Ghz running Linux. We
tested BPLEX on three different sets of XML documents. The first one contains docu-
ments used in [3]: SwissProt (protein data), DBLP (a bibliographic database), Treebank
(a linguistic database), and 1998statistics (baseball statistics). The second set contains
XML documents generated by XBench [29], and the third contains documents from the
Japanese Single Nucleotide Polymorphism database (see http://snp.ims.u-tokyo.ac.jp).

Table 1 shows for each document the size of its tree structure (in number of edges)
together with the sizes in three different representations. The minimal unranked DAG
(with multiplicities) is consistently smaller than the minimal binary DAG. The smallest

11

sizes are generated by BPLEX, ranging between 0.1% and 21% of the original tree
structure; they were obtained by running BPLEX with large input parameters (window
size 30.000, maximal pattern size 20, maximal rank 10). Only late we were informed
by the authors of [3] that their DAG compression does not perform well on the medical
bibliographies of medline; note, this is the only example in the table for which a binary
DAG is slightly smaller than the mDAG. As seen in the last entry of the table, BPLEX
performs surprisingly well on medline.

We also implemented a version of BPLEX that runs on unranked trees, instead of
binary trees. The results are not shown in the table, because, roughly, they are the same
as BPLEX on binary encodings. This means that tree compression by BPLEX is not
sensible to un-/rankedness of the input. This is interesting, because, as shown in the
previous section, this is not true for tree compression by DAGs.

Claim. BPLEX is unsensible to unrankedness/bin.-encoding of input.

Performance Recall from Fig. 2 the three parameters of BPLEX: the window size
KN , the maximal rank KR of a pattern, and the maximal size KS of a pattern. Our
experiments show that the algorithm performs well with small values of KR and KS and
that values above 5 and 10 respectively do not increase compression anymore. The main
factor for good compression is the window size. BPLEX achieves best compression
with a window size of > 100; values above 20, 000 do not change compression. Our
current implementation runs slow on large window sizes, requiring several hours to
obtain the results shown in Tab. 1. This is mainly due to the way in which matches
of patterns are found and recorded; the part of the program should be improved in
the future. Interestingly, even with a small window size, BPLEX already compresses
considerably better than binary DAGs and unranked mDAGs. If we use KN = KR =
KS = 3 then all our examples compress in less than one minute; compression rates
are SwissProt 4.1%, Treebank 34%, and dictionary-01 12%. It remains to test on a real
machine the impact of our compression wrt the total memory consumption for an XML
document in main memory.

6 Algorithms on SLT Grammars

SLT grammars are well suited to efficiently represent XML documents. Consider now
a grammar in memory which represents a large XML document. How can we process
the XML tree, without decompressing the grammar? Any read access like, e.g., reading
the label of the root node, or moving along an edge from one node to another, can
be realized on the grammar representation with an additional per-step overhead of at
most the size h of the grammar [19]. Additionally, a stack of height at most h must be
maintained at all times. Thus, the price to be payed for having a small representation
that can be accessed without decompression, is a slow down for each read operation.
For some special applications, however, it is possible to eliminate the slow-down, or to
even achieve speed ups. In this section we investigate such applications.

12

XML Type Validation The first application we consider is XML type validation: an
XML document represented by an SL cf tree grammar should be validated against an
XML type. There are several formalisms for describing XML types, with varying ex-
pressiveness, e.g., DTDs, XML Schema, or RELAX NG. All of these can conveniently
be modeled by the regular tree languages [23], a classical concept well known from
formal language theory [13]. Our first result states that XML type checking can be
done in time linear in the size of the grammar G, if the maximal number of parame-
ters m is fixed. The involved constant depends on the size of the XML type definition,
and on the maximal number m of parameters of the nonterminals in G; in fact, m ap-
pears as an exponent. In BPLEX, m is controlled by the input parameter KR. Practical
experiments show that small values of m already achieve competitive compression ra-
tios; in fact, we observed that for all the files shown in Tab. 1 taking KR bigger than
10 does not improve the compression anymore. It can therefore be assumed that m is
very small with respect to the size of G. As formal model for regular tree languages
we use (deterministic bottom-up finite) tree automata. Such an automaton can be de-
fined by a tuple A = (Q,Σ, {δσ}σ∈Σ , F) where Q is a finite set of states, Σ is a
ranked alphabet, δσ : Qk → Q for σ ∈ Σ of rank k, and F ⊆ Q is a set of final
states. The transition function δ of A is extended to trees over Σ in the usual way:
δ(σ(t1, . . . , tk)) = δσ(δ(t1), . . . , δ(tk)) for σ ∈ Σ of rank k and t1, . . . , tk ∈ TΣ . The
language accepted by A is {s ∈ TΣ | δ(s) ∈ F}.

Theorem 1. Given an SL cf tree grammar G and a tree automaton B it can be checked
whether L(G) ∩ L(B) = ∅ in worst case time O(sm × |G|), where s is the number of
states of B and m is the maximal number of parameters of nonterminals of G.

The proof of Theorem 1 can be found in the Appendix. Note that in [18] it is shown
already that the problem of Theorem 1 is PSPACE-complete. The intention of the proof
above was to present a more efficient algorithm. Note further that in order to use The-
orem 1 in the context of XML types, the corresponding type definition has to first be
transformed into a (deterministic bottom-up finite) tree automaton. If the type is given
as DTD or as XML Schema, then the transformation into a deterministic tree automa-
ton can be done in time linear in the size of the representation; the reason is that these
formalisms are deterministic: there is only one rule per nonterminal, and the regular ex-
pressions which are used in right-hand sides are also deterministic (which implies that
the corresponding Glushkov automaton is deterministic and can be constructed in time
linear in the size of the expression). Hence, the algorithm of the proof of Theorem 1
is highly practical for DTDs and XML Schemas. For RELAX NG (which employs full
regular tree languages) it might be less practical, because the size of the correspond-
ing deterministic tree automaton can be exponential in the size of the representation r.
However, if the SL cf tree grammar is linear (=SLT, which it is, if it was produced by
BPLEX), then Theorem 1 can be extended to the case that the automaton B is nonde-
terministic: the ΨA are now functions from Qk to 2Q, where k is the rank of A; they are
computed by checking for every state p and states p1, . . . , pk of B whether there is a
run on rhs(An)[y1 ← p1, . . . , yk ← pk] arriving in p. Thus the problem can be solved
in time O(sm+1 × |G|).

13

Equality Test Consider two SL cf tree grammars G1 and G2. Is it possible to test
whether both G1 and G2 generate the same tree t, without fully uncompressing the
grammars, i.e., without deriving the tree t? More precisely, we are interested in the time
complexity of testing equivalence of G1 and G2.

In the string case, i.e., if G1, G2 are SL cf string grammars, then the problem can be
solved in polynomial time with respect to the sum of the sizes of G1 and G2 [25]. The
proof relies on the fact that, for an SL cf string grammar G (in Chomsky nf) of size n,
the length of the string derivable from a nonterminal of G is ≤ 2n, and therefore can be
stored in n bits. Since basic operations (comparing, addition, subtraction, multiplica-
tion, etc.) on such numbers work in polynomial time with respect to n, we can compute
in polynomial time the length of the word generated by any nonterminal of G. Since in
the tree case this property does not hold anymore (because the size of t generated by an
SL cf tree grammar of size n can be 22n

) it looks unlikely that the equivalence problem
can also be solved by an algorithm running in polynomial time. In fact, we do not know
whether such an algorithm exists. The following theorem shows that the problem can
be solved using polynomial space, and hence in exponential time. On the other hand, if
the grammars G1, G2 are linear, then they can be transformed into SL cf string gram-
mars generating a depth-first left-to-right traversal of the corresponding tree; then, the
result of [25] can be used to show that in this case testing equivalence can be done in
polynomial time. The proof of Theorem 2 can be found in the Appendix.

Theorem 2. Testing equivalence of two SL cf tree grammars G1 and G2 can be done
in PSPACE, and in polynomial time if G1 and G2 are linear.

7 Related Work

There are succinct pointer-less representations of trees, see, e.g., [14]. In this way, an
n-node tree can be represented by 2n + o(n) bits, while allowing O(1) time for most
read operations on a tree [12]. In the context of XML, pointer-less tree representations
can, e.g., be found in XPRESS [22]: label paths in an XML document are encoded by
real number intervals following an arithmetic encoding; this allows to run path queries
directly on the compressed instance. This method is typically applied directly to XML
documents on the file system. While XPRESS has smaller query evaluation times than
other systems working on compressed XML files (like, e.g., XGrind [28]), it is unclear
how well it compares to other approaches (like ours) when documents are loaded into
memory. It is also possible to use strings to represent XML trees in memory [30]; their
experiments show that this offers good compression, while still being able to query ef-
ficiently the representation. XQueC uses a queriable XML representation that is based
on compression of data values [1]. An advanced implementation which basically uses
DAG sharing together with compression of data values is presented in [8]; their re-
sults are convincing, which strengthens belief in our approach, because replacing DAG
sharing by SLT grammars should immediately improve their system.

Consider now the problem of finding the smallest cf string grammar for a given
string. This problem is NP-complete and various approximation algorithms have been
studied [16]. In particular, the size of the smallest cf grammar is lower bounded by

14

the size of the smallest LZ77 representation of the string (when the size of the sliding
window is unbounded) [4, 27]. The question arises whether a similar result holds in
the tree case. But for trees it is unclear how an efficient LZ77 representation would
look like. The problem is how to specify tree prefixes that have appeared before [7].
In [27] a technique to decrease the size of an SL cf grammar is presented; the idea is
to change the grammar in such a way that its derivation trees become balanced trees,
in the sense of AVL trees. This technique gives good compression ratios, when applied
to an SL cf grammar obtained from the minimal LZ77 representation of the string.
Even though there is no obvious way to extend LZ77 to trees, it might be possible
to apply the technique of [27] to SL cf tree grammars. Another variation of Lempel-
Ziv compression, known as LZ78, can more readily be extended to trees. For LZ78 on
strings, new patterns are composed by adding a letter to already existing patterns. A
pattern is specified as a pair (i, a) where i is the index of a previous pattern and a is
a letter; the case i = 0 represents the one-letter pattern a. In this scheme the string
abbbaabbabbb is compressed to (0, a)(0, b)(2, b)(1, a)(3, a)(3, b). Thus, the pair (2, b)
is the concatenation bb of b (the second pattern) and b, and similarly (3, a) represents
bba. The LZ78 encoding has a natural interpretation as an SL cf string grammar (see
e.g. [16]). LZ78 can be extended to trees by using a dictionary of tree patterns where,
during a top-down scan of the input tree, new patterns are obtained from existing ones
by appending subpatterns at parameter positions; in the simplest case, only a one-node
subpattern is appended. Such a technique is presented in [5]; other variations, each using
a different method for extending the patterns, are presented in [6]. In [5] no experimental
results are provided. In [6] the proposed algorithms are applied to term compression,
and the best performance is a size reduction to about 50% of the original. It remains to
be investigated how these techniques perform on XML documents.

In [10] it was shown that evaluation of Core XPath queries on DAGs is PSPACE
complete. Recently we have shown that this result can be extended to linear SL cf tree
grammars; this means that, while achieving better compression than DAGs by using
BPLEX, the complexity of evaluating a Core XPath still remains the same for outputs
of BPLEX as it is for DAGs.

8 Conclusions and Future Work

A linear time algorithm was presented that transforms a given tree into a small SLT
grammar. The algorithm can be used to “compress” the tree structure of an XML doc-
ument into a highly efficient memory representation. The representation preserves the
basic tree operations and can be accessed via DOM (using an appropriate proxy). On
average, the size of a compressed instance is one half of the size of the minimal unique
DAG of the tree, which in turn is about 1/10 of the size of the original tree [3]. Some
problems can, under certain conditions, even be solved more efficiently on the com-
pressed instances than on conventional tree presentations; in particular we considered
(1) validation against XML types and (2) testing equality of documents. In [18] we con-
sidered XQuery evaluation. It remains to implement these ideas and test how well they
behave on practical queries. To further increase memory efficiency, our representation
could be combined with a (mild) compression of data values (e.g., similar to the one

15

of [1]). It is also possible to directly keep results of queries in compressed format; this
idea has been considered for DAG compression and a fragment of XQuery [2]. It also
has been considered for compression by SLT grammars, and macro tree transducers as
query formalism [19]. It is not difficult to change BPLEX to take arbitrary SL cf tree
grammars as input; in this way it might be possible to achieve further compression by
running BPLEX on its on output.

Several recent programming languages allow to process XML documents via pat-
tern matching constructs. Such constructs are compiled into automata which carry out
the matching in the document. It seems straightforward to extend this compilation to
automata which directly work on SLT grammars. In this way an efficient XML query
evaluator is obtained because XQueries and XSLTs can be translated to pattern match-
ing statements. In this context, other optimization might become important (e.g. lazy
sequences [11]).

We would like to test how our technique can be used for XML file compression.
Maybe the performance of existing compressors, like XMill, can be further improved
by using BPLEX for the compression of tree structure.

References

1. A. Arion, A. Bonifati, G. Costa, S. D’Aguanno, I. Manolescu, and A. Pugliese. XQueC:
Pushing queries to compressed XML data. In Proc. VLDB, pages 1065–1068, 2003.

2. P. Buneman, B. Choi, W. Fan, R. Hutchison, R. Mann, and S. Viglas. Vectorizing and query-
ing large XML repositories. To appear in Proc. ICDE, 2005.

3. P. Buneman, M. Grohe, and C. Koch. Path queries on compressed XML. In Proc. VLDB,
pages 141–152, 2003.

4. M. Charikar et.al. Approximating the smallest grammar: Kolmogorov complexity in natural
models. In Proc. STOC’02, pages 792–801. ACM Press, 2002.

5. S. Chen and J. H. Reif. Efficient lossless compression of trees and graphs. In Proc. DCC’96,
page 428. IEEE Computer Society Press, 1996.

6. J. R. Cheney. First-order term compression: techniques and applications. Master’s thesis,
Carnegie Mellon University, August 1998.

7. J. R. Cheney. Personal communication. 2004.
8. J. Cheng and W. Ng. XQzip: Querying compressed xml using structural indexing. In Proc.

EDBT, pages 219–236, 2004.
9. M. F. Fernandez, J. Siméon, B. Choi, A. Marian, and G. Sur. Implementing xquery 1.0: The

galax experience. In Proc. VLDB, pages 1077–1080, 2003.
10. M. Frick, M. Grohe, and C. Koch. Query evaluation on compressed trees (extended abstract).

In Proc. LICS, pages 188–197. IEEE, 2003.
11. V. Gapeyev, M. Y. Levin, B. C. Pierce, and A. Schmitt. XML goes native: Run-time repre-

sentations for Xtatic. To appear in Proc. CC., 2005.
12. R. F. Geary, R. Raman, and V. Raman. Succinct ordinal trees with level-ancestor queries. In

Proc. SODA, pages 1–10, 2004.
13. F. Gécseg and M. Steinby. Tree languages. In Handbook of Formal Languages, Volume 3,

chapter 1. Springer-Verlag, 1997.
14. J. Katajainen and E. Mäkinen. Tree compression and optimization with applications. Intern.

J. of Foundations of Comput. Sci., 1:425–447, 1990.
15. J. Lamping. An algorithm for optimal lambda calculus reductions. In Proc. POPL’1990,

pages 16–30. ACM Press, 1990.

16

16. E. Lehman and A. Shelat. Approximation algorithms for grammar-based compression. In
Proc. SODA, pages 205–212. SIAM Press, 2002.

17. H. Liefke and D. Suciu. XMill: An efficient compressor for XML data. In W. Chen et. al.,
editor, Proc. SIGMOD, pages 153–164. ACM, 2000.

18. M. Lohrey and S. Maneth. Tree automata on compressed trees. Submitted manuscript, 2005.
19. S. Maneth and G. Busatto. Tree transducers and tree compressions. In Proc. FOSSACS’04,

volume 2987 of LNCS, pages 363–377. Springer-Verlag, 2004.
20. D. Megginson. Imperfect XML: Rants, Raves, Tips, and Tricks ... from an Insider. Addison-

Wesley, 2004.
21. T. Milo, D. Suciu, and V. Vianu. Typechecking for XML transformers. J. Comp. Syst. Sci.,

66:66–97, 2003.
22. J. Min, M. Park, and C. Chung. XPRESS: A queriable compression for XML data. In Proc.

SIGMOD, pages 122–133. ACM Press, 2003.
23. M. Murata, D. Lee, and M. Mani. Taxonomy of XML schema languages using formal lan-

guage theory. In Proc. Extreme Markup Languages, 2000.
24. Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, New York, 1994.
25. W. Plandowski. Testing equivalence of morphisms on context-free languages. In Proc.

ESA’94, volume 855 of LNCS, pages 460–470. Springer-Verlag, 1994.
26. W. Rytter. Algorithms on compressed strings and arrays. In Proc. SOFSEM 1999, volume

1725 of LNCS, pages 48–65. Springer-Verlag, 1999.
27. W. Rytter. Application of Lempel-Ziv factorization to the approximation of grammar-based

compression. Theoret. Comput. Sci., 302:211–222, 2002.
28. P. M. Tolani and J. R. Hartisa. XGRIND: A query-friendly XML compressor. In Proc. ICDE

2002, pages 225–234. IEEE Computer Society, 2002.
29. B. B. Yao, M. T. Özsu, and N. Khandelwal. XBench benchmark and performance testing of

XML DBMSs. In Proc. ECDE 2004, pages 621–633. IEEE Computer Society, 2004.
30. N. Zhang, V. Kacholia, and M. T. Özsu. A succinct physical storage scheme for efficient

evaluation of path queries in XML. In Proc. ICDE, pages 54–65, 2004.

Appendix

Proof of Theorem 1 Let G = (N,Σ, rhs) with N = {A1, . . . , An} and B =
(Q,Σ, δ, F). We assume that G is reduced, i.e., each nonterminal is used in a (suc-
cessful) derivation of G. We now run the tree automaton B on the right-hand sides of
G. If we do this bottom-up, starting with the right-hand side rhs(An), then for the pa-
rameters in rhs(An) we have to try all possibilities of states, obtaining a finite function
ΨAn

from Qk to Q, where k is the rank of An. This function is now used as transition
for An, when running B on right-hand sides rhs(Am) with m < n. In this way, for
each nonterminal of rank k, |Q|k many values of Ψ are computed. Hence, in total at
most sm × |G| computations steps are needed.

This number can be greatly decreased by going top-down in a ’lazy’ manner through
G, starting with rhs(A1). Note though, that the price for the improvement is the neces-
sity to maintain recursive calls. Consider the run of B on rhs(A1). If B arrives at a non-
terminal Ai (i > 1) of rank k, in states q1, . . . , qk, then we issue a recursive call to com-
pute ΨAi

(q1, . . . , ql). Such a call means to substitute qj for yj , 1 ≤ j ≤ k in rhs(Ai)
and then to run B on this tree. During the run further recursive calls may be generated.
Clearly, in the worst case again at most sm×|G| computations are needed. On average,
however, the top-down procedure is far more efficient than the above bottom-up algo-
rithm. ut

17

Proof of Theorem 2 Let G1 = ({A1, . . . , Am}, Σ, rhs1) and G2 = ({B1, . . . , Bn},
Σ, rhs2) be SL cf tree grammars. By Savitch’s Theorem (see, e.g., [24]) and the com-
plement closure of PSPACE, it suffices to give a nondeterministic algorithm that tests
inequivalence. Roughly speaking, the algorithm guesses corresponding paths in the
DAGS d1 and d2, generated by G1 and G2 respectively, and accepts if the labels of
the corresponding nodes are different. The DAG di (for i = 1, 2) is obtained from
Gi by identifying all nodes in a right-hand side that are labeled with the same param-
eter. The key issue is now that a node in di can be represented in polynomial space
w.r.t. the size of Gi. This representation is discussed in the end of [19]. It consists of
a sequence (i1, u1), (i2, u2) . . . , (ip, up) where i1 = 1, i1 < · · · < ip are indices in
{1, . . . ,m}, and for 1 ≤ ν < p, uν is a node in rhs1(Aiν

) with label Aiν+1
; moreover

rhs1(Aip
)[up] ∈ Σ. The first pair (1, u1) denotes that we start a derivation of G1 with

the right-hand side of A1 and node u1 marked; the next pair (i2, u2) means u1 is labeled
Ai2 and that we apply its production with u2 marked, etc. Since up is terminal, the se-
quence represents a derivation of a node of d1. Given such a sequence h representing a
node u of d1 it is straightforward to construct a sequence h′ representing the i-th child
ui of u in d1 [19]. Note that any such sequence has length < n. The algorithm starts
with two empty sequences. It then generates the sequences h1, h2 representing the root
nodes of d1, d2, respectively. If their labels are different we accept. Otherwise, we guess
a child number i and move down to the i-th child, resulting in h′

1, h
′
2. If the correspond-

ing labels are different we accept, etc. If there is no child number (we are at a leaf) we
reject.

Now let G1, G2 be linear. This means that for any nonterminal A of G1, G2, of
rank k, the tree A(y1, . . . , yk) derives to a tree t over Σ ∪ Yk in which yj occurs
at most once, 1 ≤ j ≤ k. In fact, it is straightforward to change the grammars in
such a way that (1) every yj occurs exactly once in t and (2) the order of the param-
eters in t (going depth-first left-to-right) is y1, . . . , yk. The idea is now to construct
cf string grammars H1, H2 which generate depth-first left-to-right traversals of t1 and
t2, respectively. Let i ∈ {1, 2}. For every nonterminal X of Gi of rank k > 0 let
X0,1, X1,2, . . . , Xk−1,k, Xk,0 be new nonterminals of Hi, and for every σ ∈ Σ of rank
k > 0 let σ0,1, σ1,2, . . . , σk−1,k, σk,0 be new terminals of Hi. Nonterminals and ter-
minals of rank zero are taken over to Hi. The right-hand side of the nonterminal A0,1

is the traversal starting at the root of the right-hand side of A (indicated by the index
0) up to the first parameter y1 in the right-hand side of A (indicated by the parame-
ter 1); The right-hand side of Aν,ν+1 is the traversal starting at the parameter yν in
the right-hand side of A up to the parameter yν+1. Similarly, a terminal symbol g2,3

means that g was entered coming from its second child and was exited by moving to its
third child. It should be clear how to construct the productions of Hi. As an example,
consider the tree grammar production A(y1, y2, y3) → B(g(y1, a, b), h(B(y2, y3)))
and the nonterminal A1,2 of the constructed string grammar; its production is A1,2 →
g1,2 a g2,3 b g3,0 B1,2 h0,1 B0,1. Clearly, t1 = t2 if and only if the string w1 generated
by H1 equals w2 (gen. by H2). Moreover, H1, H2 are SL cf string grammars of poly-
nomial size w.r.t. G1, G2, respectively. By the result of [25], testing w1 = w2 can be
done in polynomial time w.r.t. the sizes of H1, H2. ut

18

