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Abstract. Free partially commutative inverse monoids are investigated. Anal-
ogously to free partially commutative monoids (trace monoids), free partially
commutative inverse monoid are the quotients of free inverse monoids modulo
a partially defined commutation relation on the generators. AnO(n log(n)) al-
gorithm on a RAM for the word problem is presented, andNP-completeness of
the generalized word problem and the membership problem for rational sets is
shown. Moreover, free partially commutative inverse monoids modulo afinite
idempotent presentation are studied. For these monoids, the word problem is de-
cidable if and only if the complement of the commutation relation is transitive.

1 Introduction

A labelled transition system is deterministic, if in every state there is for each label at
most one outgoing edge with this label. Of particular interest are systems where we
can perform an undo-operation. This means that the system iscodeterministic: For each
state and label there is at most one incoming edge with this label. In this setting each
label defines a partially defined injective mapping from states to states. The resulting
transformations form aninverse monoid; and it is well-known that each inverse monoid
arises this way. Because of its close connection to automatatheory inverse monoids re-
ceived quite an attention in theoretical computer science and there is a well-established
literature on this subject, see e.g. [11, 15].

In this paper we are interested in the situation where the labels describe actions of
a (deterministic and codeterministic) transition system and some of the actions can be
performed independently. This leads to a partial commutation and therefore to partially
commutative inverse monoids.Free partially commutative inverse monoidswere first
studied in the thesis of da Costa [17], where, among others, the word problem has been
shown to be decidable. Da Costa did not prove any complexity bounds. Our first contri-
bution is a new approach to define free partially commutativeinverse monoids which is
closer to a standard construction of Margolis and Meakin [10]. We use a natural closure
operation for subsets offree partially commutative groups(also known asgraph groups
[5]). Using our construction we are able to show in Section 3 that the word problem
of a free partially commutative inverse monoid is solvable in time O(n log(n)) on a
RAM. In Section 4, we study the generalized word problem for free partially commu-
tative inverse monoids. The generalized word problem asks whether a given monoid
element belongs to a given finitely generated submonoid. In fact, we consider the more
general membership problem for rational subsets of a free partially commutative in-
verse monoid, and we show itsNP-completeness.NP-hardness appears already for the



special case of the generalized word problem for a 2-generator free inverse monoid. It
is quite remarkable that the generalized word problem remains decidable in our setting,
because it is known to be undecidable for direct products of free groups [13]. So there
is an undecidable problem for a direct product of free groupswhere the same problem
is decidable for a direct product of free inverse monoids.

In the second part of the paper we consider free partially commutative inverse
monoids modulo a finite idempotent presentations, which is afinite set of identities
between idempotent elements. We show that the resulting quotient monoids have de-
cidable word problems if and only if the underlying dependence structure is transitive.
In the transitive case, the uniform word problem (where the idempotent presentation is
part of the input) turns out to beEXPTIME-complete, whereas for a fixed idempotent
presentation the word problem is solvable both in linear time on a RAM and logarith-
mic space on a Turing machine. These results generalize corresponding results for free
inverse monoids modulo an idempotent presentation from [8,10]. Our decidability re-
sult for the case of a transitive dependence structure is unexpected in light of a result of
Meakin and Sapir [12], where it was shown that there exist E-unitary inverse monoids
over a finitely generated Abelian group, where the word problem is undecidable. The
proof of this result in [12] is quite involved and relies on a sophisticated encoding of
computations of Minski machines. In fact, a slight variation of our undecidability proof
for non-transitive dependence structures can be used to give a simpler proof for the
result of Meakin and Sapir; it will appear in the full versionof this paper.

2 Preliminaries

In the following letΣ be a finite alphabet andΣ−1 = {a−1 | a ∈ Σ} be a disjoint copy
of Σ. We letΓ = Σ ∪ Σ−1. ThenΓ becomes a set with an involution−1 : Γ → Γ
by setting(a−1)−1 = a for all a ∈ Σ. We extend this involution to an involution
−1 : Γ ∗ → Γ ∗ by setting(a1 · · · an)−1 = a−1

n · · · a−1

1 for ai ∈ Γ, 1 ≤ i ≤ n, n ≥ 0.
The free groupgenerated byΣ is denoted byF (Σ); it can be defined as the quotient
monoidΓ ∗/{aa−1 = 1 | a ∈ Γ}.

Let M be a finitely generated monoid and letΓ be a finite generating set forM,
i.e., there exists a surjective homomorphismh : Γ ∗ → M. The word problemfor
M is the computational problem that asks for two given wordsu, v ∈ Γ ∗, whether
h(u) = h(v). The generalized word problemfor M asks whether for given words
u, v1, . . . , vn the elementh(u) belongs to the submonoid{h(v1), . . . , h(vn)}∗ ⊆ M
generated byh(v1), . . . , h(vn). It is easy to see that the decidability/complexity of the
(generalized) word problem does not depend on the underlying set of generators. Now
let G be a finitely generatedgroupand letΓ be a finite generating set forG. TheCayley
graphof G w.r.t. Γ is the undirected graphC(G, Γ ) = (G, {{u, v} | u−1v ∈ Γ}). Note
that the undirected edge{u, v} can be viewed as a pair of directed edges(u, v), labelled
with u−1v ∈ Γ , and(v, u), labelled withv−1u ∈ Γ .

2.1 Free partially commutative inverse monoids

A monoidM is calledinverseif for everyx ∈ M there is auniquex−1 ∈ M such that

xx−1x = x and x−1xx−1 = x−1. (1)



It is well-known that uniqueness of the inversex−1 follows, if we require additionally
to (1) that for allx, y ∈ M:

xx−1yy−1 = yy−1xx−1 (2)

Elementsxx−1 are exactly the idempotents inM. It is clear that every mappingϕ :
Σ → M to an inverse monoidM lifts uniquely to a homomorphismϕ : Γ ∗ → M
such thatϕ(u−1) = ϕ(u)

−1 for all u ∈ Γ ∗. By an independence relationwe mean
here an irreflexive and symmetric relationIΓ ⊆ Γ × Γ such that(a, b) ∈ IΓ implies
(a−1, b) ∈ IΓ for all a, b ∈ Γ . Note thatI is specified byIΣ = IΓ ∩ Σ × Σ, and we
may view(Σ, IΣ) as an undirected graph. For wordsu, v ∈ Γ ∗ we write(u, v) ∈ IΓ if
u = a1 · · · am, v = b1 · · · bn, and(ai, bj) ∈ IΓ for all i ≤ m, j ≤ n.

Every inverse monoidM can be viewed as a monoid of partially defined injections
over a setQ. Thus, ifa ∈ M, thena is an injectiona : dom(a) →֒ Q wheredom(a) ⊆
Q. Now partially defined injectionsa andb can be calledindependent, if the following
three conditions are satisfied for allq ∈ Q:

(i) if q ∈ dom(a), then:a(q) ∈ dom(b) ⇐⇒ q ∈ dom(b),
(ii) if q ∈ dom(b), then:b(q) ∈ dom(a) ⇐⇒ q ∈ dom(a),
(iii) if q ∈ dom(a) ∩ dom(b), then:ab(q) = ba(q).

These conditions look technical, but a brief reflection shows that they are indeed natural
translations of an intuitive meaning of independence. Notethat (i)–(iii) is a stronger
requirement than to say thata andb commute. Consider the following situations:

I II
a

b

a

b a

b

In situation I the transitionsa andb are not independent although they commute: The
result ofab is the same asba; it is the undefined mapping, which corresponds to a zero
in the monoid. It is also clear thata and b should not be called independent in this
situation becausea candisableb (and vice versa). The situation II is different: The set
Q has four states; it corresponds to the set of global states ofthe asynchronous product
of two independent components. The first (second, resp.) component can only perform
the actiona (b, resp.). A simple calculation shows that if we define independence in
M as above by (i)–(iii), then the independence ofa andb implies the independence
of a−1 and b, too. This motivates the following definition: Aninverse monoid over
(Σ, IΣ) is an inverse monoidM together with a mappingϕ : Σ → M such that
ϕ(a)ϕ(b) = ϕ(b)ϕ(a) andϕ(a)

−1
ϕ(b) = ϕ(b)ϕ(a)

−1 for all (a, b) ∈ IΣ . Thus, we
can define thefree inverse monoid over(Σ, IΣ) by

FIM(Σ, I) = FIM(Σ)/{ab = ba, a−1b = ba−1 | (a, b) ∈ IΣ}.

Here,FIM(Σ) denotes the free inverse monoid overΣ, which is defined as the quotient
monoid of Γ ∗ = (Σ ∪ Σ−1)∗ modulo the equations in (1) and (2) for allx, y ∈
Γ ∗. In the following, we will briefly writeI for both IΣ and IΓ . It will be always
clear, on which setI is defined. The monoidFIM(Σ, I) is also called afree partially
commutative inverse monoid.



Da Costa has studiedFIM(Σ, I) in his thesis from a more general viewpoint of
graph products [17]. As a consequence he showed thatFIM(Σ, I) has a decidable
word problem. In his construction he used the general approach via Scḧutzenberger
graphs and Stephen’s iterative procedure [16]. The decidability of the word problem
follows because da Costa can show that Stephen’s procedure terminates. However, no
complexity bounds are given in [17].

Another starting point for defining free partially commutative inverse monoids is a
construction of Margolis and Meakin [9]. One would start with the free partially com-
mutative groupG(Σ, I) (defined below) and consider as elements of an inverse monoid
the pairs(A, g), whereA is a finite and connected subgraph of the Cayley graph of
G(Σ, I) with 1, g ∈ A. Although this construction yields forI = ∅ indeedFIM(Σ) by
a result of Munn [14], it fails forI 6= ∅, simply because independent generators do not
commute. Thus, we have to do something else. Fortunately it is enough to modify the
construction of Margolis and Meakin slightly in order to achieve a simple and conve-
nient description of the elements inFIM(Σ, I). Our approach is based on the notion of
coherently prefix-closed subsets which we make precise in the next section.

2.2 Trace monoids and graph groups

Recall thatΓ = Σ ∪Σ−1 andI ⊆ Γ ×Γ is an irreflexive and symmetric relation such
that(a, b) ∈ I implies(a−1, b) ∈ I. Let M(Γ, I) = Γ ∗/{ab = ba | (a, b) ∈ I} be the
free partially commutative monoid(or trace monoid) over(Γ, I). Due to(a, b) ∈ I ⇒
(a−1, b) ∈ I, the involution−1 : Γ ∗ → Γ ∗ is well-defined onM(Γ, I). The relation
D = (Γ × Γ ) \ I is called thedependence relation.

There is a rich theory on trace monoids [4]. Here we need some basic results, only.
The perhaps most important fact ist that traces (i.e., elements ofM(Γ, I)) have a unique
description asdependence graphs, which are node-labelled acyclic graphs. Letu =
a1 · · · an ∈ Γ ∗ be a word. The vertex set of the dependence graph ofu is {1, . . . , n}
and vertexi is labelled withai ∈ Γ . There is an edge from vertexi to j if and only if
i < j and(ai, aj) ∈ D. Now, two words define the same trace inM(Γ, I) if and only
if their dependence graphs are isomorphic.

A clique coveringof the dependence relationD is a tuple(Γi)1≤i≤k such thatΓ =⋃k
i=1

Γi andD =
⋃k

i=1
Γi × Γi. W.l.o.g. we may assume thata ∈ Γi if and only

if a−1 ∈ Γi. Let πi : M(Γ, I) → Γ ∗
i the projection homomorphismwhich deletes

all letters fromΓ \ Γi. The morphismπ : M(Γ, I) →
∏k

i=1
Γ ∗

i defined byπ(u) =
(π1(u), . . . , πk(u)) is injective [2, 3]. Foru, v ∈ M(Γ, I) we write u ≤ v if u is a
prefix of v, i.e.,v = uw in M(Γ, I) for some tracew. A tracef is a factor of u, if we
can writeu = pfq in M(Γ, I). Let max(u) = {a ∈ Γ | u = ta for some tracet}; it is
the set of labels of the maximal nodes in the dependence graphof u.

An important fact about traces is the following: Assume we haveu ≤ w andv ≤ w
for someu, v, w ∈ M(Γ, I). Then the supremumu⊔v ∈ M(Γ, I) w.r.t. the prefix order
≤ exists. We can defineu ⊔ v by restricting the dependence graph ofw to the domain
of u andv, whereu andv are viewed as downward-closed subsets of the dependence
graph ofw. If (Γi)1≤i≤k is a clique covering of the dependence relation, then for every
i, eitherπi(u) ≤ πi(v) andπi(u⊔v) = πi(v) or πi(v) ≤ πi(u) andπi(u⊔v) = πi(u).
A tracep is aprime if |max(p)| = 1.



For t ∈ M(Γ, I) let P(t) = {p ≤ t | p is a prime}. Note thatt = ⊔P(t) (the
supremum of the traces inP(t)). Let A ⊆ M(Γ, I). We defineP(A) =

⋃
t∈A P(t).

The setA is calledprefix-closed, if u ≤ v ∈ A impliesu ∈ A. It is calledcoherently-
closedif for every C ⊆ A such that⊔C exists,⊔C ∈ A. One can show thatA is
coherently-closed if for allu, v ∈ A such thatu ⊔ v exists,u ⊔ v ∈ A. In the following
we say thatA is closed, if it is both prefix-closed and coherently-closed. Clearly, for
every A ⊆ M(Γ, I) there is a smallest closed setA with A ⊆ A. One hasA =

{⊔C | C is a set of prefixes ofA, ⊔ C exists} andA = A. The notions of a prime and
coherence are standard in domain theory and the connection to trace theory is exposed
in [4, Sec. 11.3].

Lemma 1. For A,B ⊆ M(Γ, I) we haveA = B if and only ifP(A) = P(B).

A trace rewriting systemR overM(Γ, I) is just a finite subset ofM(Γ, I) × M(Γ, I)
[3]. We can define the one-step rewrite relation→R ⊆ M(Γ, I)×M(Γ, I) by: x →R y
if and only if there areu, v ∈ M(Γ, I) and(ℓ, r) ∈ R such thatx = uℓv andy = urv.
The notion of aconfluentandterminatingtrace rewriting system is defined as for other
types of rewriting systems. A traceu is anirreducible normal formof t if t

∗
→R u and

there does not exist a tracev with u →R v.
The free partially commutative group(or graph group [5]) over (Σ, I), briefly

G(Σ, I), is the quotient of the free groupF (Σ) modulo the defining relationsab = ba
for all (a, b) ∈ I. Clearly,G(Σ, I) = M(Γ, I)/{aa−1 = 1 | a ∈ Γ}. We can define
a confluent and terminating trace rewriting systemR = {aa−1 → 1 | a ∈ Γ}, where
1 ∈ M(Γ, I) denotes the empty trace. Givenu ∈ Γ ∗ we can viewu ∈ M(Γ, I) and
compute its irreducible normal form̂u ∈ M(Γ, I) w.r.t. R in linear time [3]. Thus,̂u
is a trace without any factor of the formaa−1 for a ∈ Γ . We also say that the tracêu
is reduced. We haveu = v in G(Σ, I) if and only if û = v̂. This allows to solve the
word problem inG(Σ, I) in linear time [3, 19]. In the following, wheneveru ∈ Γ ∗ (or
u ∈ M(Γ, I) or u ∈ G(Σ, I)), thenû ∈ M(Γ, I) denotes this unique reduced trace
such thatu = û in G(Σ, I). The set̂M(Γ, I) = {û | u ∈ M(Γ, I)} is in canonical one-
to-one correspondence withG(Σ, I), hence we may identifŷu with the group element
it represents.

A subsetA ⊆ G(Σ, I) is calledclosed, if the set of reduced traceŝA = {ĝ ∈

M̂(Γ, I) | g ∈ A} is closed. Clearly, for everyA ⊆ G(Σ, I), there is a smallest

closed subsetA ⊆ G(Σ, I) such thatA ⊆ A. We haveA = A and we can identify

A with Â ⊆ M̂(Γ, I). Note thatM̂(Γ, I) is closed. Recall thatI is irreflexive, hence
{1, a, a−1} is closed since(a, a−1) ∈ D. We now give a geometric interpretation of
closed sets. Letg, h ∈ G(Σ, I). A geodesicbetweeng andh is a shortest path in the
Cayley graph ofG(Σ, I). The labelling of such a path is unique as a reduced trace
û ∈ M̂(Γ, I) such thatgû = h in G(Σ, I). We say thatf ∈ G(Σ, I) is on a geodesic
from g to h if f̂ ≤ û.

Proposition 1. A subsetA ⊆ G(Σ, I) is closed if and only if both1 ∈ A and whenever
f is on a geodesic fromg to h with g, h ∈ A, thengf ∈ A, too.

Corollary 1. LetA ⊆ G(Σ, I) be closed andg ∈ A. Theng−1A is closed, too.



Proof. Sinceg ∈ A, we have1 ∈ g−1A. The property “f is on a geodesic fromh1 to
h2 with h1, h2 ∈ A impliesh1f ∈ A” is invariant by translation. ThusA satisfies this
property if and only ifg−1A satisfies this property. ⊓⊔

2.3 A realization of free partially commutative inverse monoids

We are now ready to give a concrete realization of the free inverse monoid over(Σ, I).
The realization is very much in the spirit of Margolis and Meakin [9], but differs in the
subtle point that we allow closed subsets ofG(Σ, I), only. Consider the set of pairs
(A, g) whereA ⊆ G(Σ, I) is a finite and closed subset of the graph groupG(Σ, I) and
g ∈ A. This set becomes a monoid by

(A, g) · (B, h) = (A ∪ gB, gh).

An immediate calculation shows that the operation is associative and that({1}, 1) is
a neutral element. Moreover, the idempotents are the elements of the form(A, 1) and
idempotents commute. By Corollary 1, ifg ∈ A ⊆ G(Σ, I) andA is closed, theng−1A

is closed, too. Hence we can define(A, g)
−1

= (g−1A, g−1). A simple calculation
shows that (1) and (2) are satisfied. Thus our monoid is an inverse monoid. We view
Γ as a subset of this monoid by identifyinga ∈ Γ with the pair({1, a}, a), and this
yields a canonical homomorphismγ defined byγ(u) = ({v̂ | v ≤ u}, û) for u ∈ Γ ∗.
We obtainγ(ab) = ({1, a}, a) · ({1, b}, b) = ({1, a, ab}, ab). Now, if (a, b) ∈ I,
then{1, a, ab} = {1, a, b, ab} = {1, b, ba}, i.e.,γ(ab) = γ(ba). Hence, we obtain an
inverse monoid over(Σ, I) since(a, b) ∈ I implies (a−1, b) ∈ I. As a consequence,
the homomorphismγ can be viewed as a canonical homomorphism

γ : FIM(Σ, I) → { (A, g) | g ∈ A ⊆ G(Σ, I), A finite and closed}. (3)

Theorem 1. The morphismγ in (3) is an isomorphism.

Proof. Consider a pair(A, g) with A ⊆ G(Σ, I) finite and closed andg ∈ A. Recall
that Â = {û ∈ M̂(Γ, I) | u ∈ A}. Let w ∈ Γ ∗ be an arbitrary word representing the
trace(

∏
bu∈ bA

û û−1)ĝ where the product is taken in any order. Then a simple reflection
showsγ(w) = (A, g). Henceγ is surjective. It remains to show thatγ is injective. To
see this letw ∈ Γ ∗ andγ(w) = (A, g). Note thatŵ = ĝ. It suffices to show

w = (
∏

u∈ bA

uu−1)ŵ in FIM(Σ, I). (4)

This is enough because it impliesγ(w) = γ(w′) =⇒ w = w′ in FIM(Σ, I) for all
w,w′ ∈ Γ ∗. If w = ε then(A, g) = ({1}, 1) and (4) is true. Hence letw = va with
a ∈ Γ . By inductionv = (

∏
u∈ bB

uu−1)v̂ in FIM(Σ, I), whereγ(v) = (B, h). We

obtainÂ = B̂ ∪ {ŵ} andw = (
∏

u∈ bB
uu−1)v̂a in FIM(Σ, I).

We distinguish whether̂va is reduced or not. If̂va is not reduced, then̂v = ŵa−1 ∈
B̂, i.e.,ŵ ∈ B̂ sinceB̂ is prefix-closed. It followsB̂ = Â. We obtain inFIM(Σ, I):

w = (
∏

u∈ bB

uu−1)v̂a = (
∏

u∈ bA

uu−1)ŵa−1a = (
∏

u∈ bA

uu−1)ŵ ŵ−1ŵ a−1a



= (
∏

u∈ bA

uu−1)ŵa−1aŵ−1ŵ = (
∏

u∈ bA

uu−1)v̂ v̂−1ŵ = (
∏

u∈ bA

uu−1)ŵ.

It remains the case wherêva = v̂a = ŵ. We obtain inFIM(Σ, I):

w = (
∏

u∈ bB

uu−1)ŵ = (
∏

u∈ bB

uu−1)ŵŵ−1ŵ.

Clearly,ŵ ∈ Â. Hencew = (
∏

u∈A′ uu−1)ŵ in FIM(Σ, I) for some subsetA′ ⊆ Â

such thatA′ = Â (setA′ = B̂ ∪ {ŵ}). Therefore it is enough to show
∏

u∈A′ uu−1 =∏
u∈ bA

uu−1 in FIM(Σ, I). This is the assertion of the following claim.

Claim: Let A ⊆ M(Γ, I). Then
∏

u∈A uu−1 =
∏

u∈A uu−1 in FIM(Σ, I).
To prove this claim, letv ≤ u ∈ A. Thenu = vw = vv−1vw = vv−1u in

FIM(Σ, I). Hence we may assume thatA is prefix closed. Now, letu, v ∈ A such that
w = u⊔ v exists. Then, by Levi’s lemma (see e.g. [4, p. 10]),u = pr, v = ps, andw =
psr with (r, s) ∈ I. We obtain inFIM(Σ, I): uu−1vv−1 = prr−1p−1pss−1p−1 =
prr−1ss−1p−1 = prss−1r−1p−1 = ww−1. This means that we may assume thatA
is coherently-closed, too. But ifA is both prefix-closed and coherently-closed, then
A = A by definition ofA. Hence the claim and the theorem follow. ⊓⊔

For I = ∅, Theorem 1 yields Munn’s theorem [14] as a special case. Notethat for
I = ∅, the closureA of a prefix-closed subsetA of the free groupF (Σ) equalsA itself.
It follows thatγ(u) = ({v̂ | v ≤ u}, û), wherev̂ ∈ Γ ∗ is the unique irreducible word
corresponding tov ∈ Γ ∗. The set{v̂ | u ≤ v} is also called theMunn treeof u.

Since we are interested in computational problems, we are concerned with the input
size of elements inFIM(Σ, I). The standard representation is just a wordu over the
alphabetΓ . If γ(u) = (A, g), then |A| ≤ |u|k, wherek is the number of cliques in
a clique covering for the dependence relation, becauset ∈ Â implies thatπi(t) is a
prefix of πi(u) for all 1 ≤ i ≤ k. Hence, for a fixed(Σ, I), the size ofA is bounded
polynomially in the length ofu, and moreoverA can be calculated in polynomial time
from u. Thus, for computational problems in or above polynomial time, we can repre-
sent(A, g) ∈ FIM(Σ, I) by listing all the elements ofA followed byg. In fact, instead
of writing down the closed setA, it suffices to list the primes inP(A) by Lemma 1.
The setP(A) has size at most|u| whatever(Σ, I) is. But in general, the more concise
representation is still the standard representation.

3 The word problem in FIM(Σ, I)

Using Munn’s theorem [14], it is easy to solve the word problem for a free inverse
monoid in linear time on a RAM. For free partially commutative inverse monoids the
solution of the word problem is more involved. We are able to present anO(n log(n))-
algorithm on a RAM by using a sophisticated combination of simple data structures:

Theorem 2. For a fixed free partially commutative inverse monoidFIM(Σ, I), the
word problem can be solved in timeO(n log(n)) on a RAM.



Proof. Let u, v ∈ Γ ∗. By [3, 19], we can test in linear time whetheru = v in G(Σ, I).
It remains to check equality of the closures. Let(Γi)1≤i≤k be a clique covering of the
dependence relationD = (Γ × Γ ) \ I. With w ∈ Γ ∗ we associate the following data:

– the prefix-closed set of wordsTi(w) = {πi(ŝ) | s ≤ w},
– the wordpi(w) = πi(ŵ) ∈ Ti for every1 ≤ i ≤ k,
– the set of primesP (w) = P({ŝ | s ≤ w})
– the linearly ordered (w.r.t. the prefix order) setPi(w) = P(ŵ)∩{p | max(p) ∈ Γi}.

By Lemma 1, we have to check whetherP (u) = P (v). Before we present an effi-
cient implementation of the data structures above, let us first show how to compute
(Ti(wa), pi(wa), Pi(wa))1≤i≤k, P (wa) from (Ti(w), pi(w), Pi(w))1≤i≤k, P (w) for
a ∈ Γ . For this, we have to distinguish the two casesa−1 6∈ max(ŵ) anda−1 ∈
max(ŵ). We use the following notation: Fora ∈ Γ such thata occurs int define the
primeδa(t) as the maximal prefix oft such thatmax(δa(t)) = {a}. In case thata does
not occur int let δa(t) = 1. We obtainδa(ta) = (⊔{δb(t) | (a, b) ∈ D}) a.

Case 1.a−1 6∈ max(ŵ), i.e.,ŵa = ŵa. We have:

Ti(wa) =

{
Ti(w) ∪ {pi(w)a} if a ∈ Γi

Ti(w) otherwise
pi(wa) =

{
pi(w)a if a ∈ Γi

pi(w) otherwise

Pi(wa) =

{
Pi(w) ∪ {δa(ŵa)} if a ∈ Γi

Pi(w) otherwise
P (wa) = P (w) ∪ {δa(ŵa)}

Note that

δa(ŵa) = (⊔{δb(ŵ) | (a, b) ∈ D}) a = (⊔{max Pi(w) | 1 ≤ i ≤ k, a ∈ Γi}) a.

Case 2.a−1 ∈ max(ŵ), i.e., ŵ = sa−1 and ŵa = s for an irreducible traces ∈

M̂(Γ, I). We havemax Pi(w) = δa−1(ŵ) for all i with a−1 ∈ Γi (i.e.,a ∈ Γi) and:

Ti(wa) = Ti(w) pi(wa) =

{
v if a−1 ∈ Γi, pi(w) = va−1

pi(w) otherwise

P (wa) = P (w) ∪ P(s) = P (w) Pi(wa) =

{
Pi(w) \ max Pi(w) if a−1 ∈ Γi

Pi(w) otherwise

For the equalityP (w) ∪ P(s) = P (w) note thatP(s) ⊆ P (w) since the traces is
a prefix of the tracêw. Let us now discuss an efficient implementation of our data
structures such that the updates above can be done in timeO(log(n)). The prefix-closed
setTi(w) can be stored as a trie with at most|πi(w)| many nodes, i.e., a rooted tree,
where every node has for everya ∈ Γi at most onea-labelled outgoing edge andTi(w)
equals the set of all path-labels from the root to tree nodes.We assign with every node
of Ti(w) a key fromN. The root gets the key1, and with every new node ofTi(w)
the key is increased by one. This allows to calculatemax U for a subsetU ⊆ Ti(w),
which is linearly ordered by the prefix relation, in timeO(|U |) by comparing the keys



for the nodes inU . The wordpi(w) = πi(ŵ) is just a distinguished node of the trie
Ti(w). Clearly,a−1 ∈ max(ŵ) if and only if pi(w) ends witha−1 for all 1 ≤ i ≤ k
with a−1 ∈ Γi. This means that whenevera−1 ∈ Γi, thenpi(w) is thea−1-successor
of its parent node. This allows to distinguish between case 1and case 2 above in time
O(k) = O(1). In case 1, we have to add ana-successor to the nodepi(w) in casea ∈ Γi

andpi(w) does not have ana-successor yet. This new node becomespi(wa). If a ∈ Γi

but pi(w) already has ana-successorv, thenv becomespi(wa). In case 2, the tries do
not change, but ifa ∈ Γi, thenpi(wa) is the father node ofpi(w).

The set of primesP (w) is stored as the set of tuples{(πi(t))1≤i≤k | t ∈ P (w)},
where every projectionπi(t) is represented by the corresponding node in the trieTi(w).
For the setP (w) we use a data structure, which allowsO(log(n)) time implementations
for the operations insert and find. The linearly ordered setPi(w) is stored as a list of
tuples(πi(t))1≤i≤k for t ∈ Pi(w). Using this representation, the necessary updates for
case 2 are clearly possible in constant time. For case 1, we have to calculate the tuple
corresponding toδa(ŵa) = (⊔{max Pi(w) | 1 ≤ i ≤ k, a ∈ Γi}) a. Note that

πj(δa(ŵa)) = ⊔{πj(max Pi(w)) | 1 ≤ i ≤ k, a ∈ Γi}πj(a) (5)

for 1 ≤ j ≤ k. The ⊔ in (5) refers to the prefix order on words. Note that since
max Pi(w) is a prefix of the tracêw for everyi, the set{πj(max Pi(w)) | 1 ≤ i ≤
k, a ∈ Γi} is linearly ordered by the prefix relation onΓ ∗

j , i.e., the supremum exists.
Moreover, this supremum can be computed in timeO(k), wherek is the number of
cliques (which is a constant) by using the keys associated with the nodes fromTj(w).
This concludes the description of our data structures. Now for our input wordsu, v ∈
Γ ∗ we first compute(Ti(u), pi(u), Pi(u))1≤i≤k, P (u) and(Ti(v), pi(v), Pi(v))1≤i≤k,
P (v) in time O(n log(n)). When building up the triesTi(u) andTi(v) we have to use
the same node name for a certain string overΓi. Then we can checkP (u) = P (v) in
timeO(n log(n)) using the set data structures forP (u) andP (v). ⊓⊔

For the uniform word problem, where the independence relation I is part of the input,
the above algorithm still yields a polynomial time algorithm. More precisely, the run-
ning time isO((k2 + log(n))n), wherek is the number of cliques in a clique covering
for the dependence relation andn is the length of the input words.

4 The generalized word problem inFIM(Σ, I)

In this section, we show that the generalized word problem for a free partially com-
mutative inverse monoid isNP-complete in general. AnNP upper bound can be even
shown for the membership problem in rational sets ofFIM(Σ, I). A rational subset of
FIM(Σ, I) is represented concisely by a finite automaton over the alphabetΓ .

Theorem 3. For every fixed free partially commutative inverse monoidFIM(Σ, I), the
membership problem for rational subsets ofFIM(Σ, I) belongs toNP.

Proof. For given(B, g) ∈ FIM(Σ, I) and a finite automatonA over the alphabetΓ
we have to determine whether(B, g) ∈ γ(L(A)), whereγ : Γ ∗ → FIM(Σ, I) is the



canonical morphism. In the following, we viewB as a subgraph of the Cayley graph of
G(Σ, I). In a first step we guess a connected subsetC ⊆ B with 1, g ∈ C such that its
closureC equalsB. It remains to check inNP whether there is a path from1 to g in C,
which visits all nodes ofC and such that this path is labelled with a word fromL(A).

Let n be the number of states of the automatonA. Assume thatp = (v1, . . . , vm)
is a path inC such thatv1 = 1, vm = g, C = {v1, . . . , vm} and letq1 . . . , qm be
a corresponding path in the automatonA, whereq1 is the initial state andqm is a
final state. Leti1 < · · · < iℓ be exactly those positionsj ∈ {2, . . . ,m} such that
vj 6∈ {v1, . . . , vj−1}. Clearly,ℓ < |C|. Seti0 = 1 andiℓ+1 = m + 1. Assume that
|ik+1 − ik| > |C| · n for somek ∈ {0, . . . , ℓ}. Then there are positionsik ≤ α < β <
ik+1 such thatvα = vβ andqα = qβ . It follows thatv1, . . . , vα, vβ+1, . . . , vm is a again
a path inC from 1 to g, which visits all nodes ofC, andq1, . . . , qα, qβ+1, . . . , qm is a
corresponding path in the automatonA.

From the above consideration it follows that if there existsa path from1 to g in C,
which visits all nodes ofC and such that this path is labelled with a word fromL(A),
then there exists such a path of length at most|C|2 · n. Such a path can be guessed in
polynomial time. This finishes the proof. ⊓⊔

NP-hardness can be already shown for the generalized word problem ofFIM({a, b}):

Theorem 4. The generalized word problem forFIM({a, b}) is NP-hard.

Proof. We prove the theorem by a reduction from SAT. LetΨ = {C1, . . . , Cm} be a set
of clauses over variablesx1, . . . , xn. Let k = m + n. For1 ≤ i ≤ n let Pi = {j | xi ∈
Cj} andNi = {j | ¬xi ∈ Cj}. Let u = (A, an) ∈ FIM({a, b}), where (the subgraph
of the Cayley graph ofF ({a, b}) induced by)A looks as follows:

1 a a2 am−1 am am+1 ak−1 ak

ab a2b am−1b amb

a a a a a
b b b b

. . . . . .

The idea is that the nodeajb represents the clauseCj . For every1 ≤ i ≤ n define
ui,t = (Ai,t, a) ∈ FIM({a, b}) andui,f = (Ai,f , a) ∈ FIM({a, b}), where:

Ai,t = a−i+1({1, a, . . . , ak} ∪ {ajb | j ∈ Pi}) ⊆ F ({a, b})

Ai,f = a−i+1({1, a, . . . , ak} ∪ {ajb | j ∈ Ni}) ⊆ F ({a, b})

We claim thatu ∈ {u1,t, u1,f , . . . , un,t, un,f}
∗ if and only if Ψ is satisfiable. First

assume thatΨ is satisfied and letσ : {x1, . . . , xn} → {true, false} be a satisfying as-
signment. Letui = ui,t if σ(xi) = true, otherwise setui = ui,f . Then we haveu =
u1 · · ·un, which showsu ∈ {u1,t, u1,f , . . . , un,t, un,f}

∗. For the other direction as-
sume thatu = u1 · · ·um, wherem ≥ 0 andu1, . . . , um ∈ {u1,t, u1,f , . . . , un,t, un,f}.
Sinceu = (A, an) and everyui is of the form(B, a) for someB, we havem = n.
Moreover, sinceu1 · · ·ui−1 is of the form(C, ai−1) for 1 ≤ i ≤ n, we must have
ui ∈ {ui,f , ui,t}, because otherwise we would obtaina−1 ∈ A (if ui ∈ {uj,f , uj,t}
for j > i) or ak+1 ∈ A (if ui ∈ {uj,f , uj,t} for j < i). Now we can define a truth
assignmentσ : {x1, . . . , xn} → {true, false} as follows:σ(xi) = true if ui = ui,t and
σ(xi) = false if ui = ui,f . Sinceajb ∈ A for every1 ≤ j ≤ m, it follows that for



every1 ≤ j ≤ m there is an1 ≤ i ≤ n such that eitherj ∈ Pi andui = ui,t (i.e.,
σ(xi) = true) orj ∈ Ni andui = ui,f (i.e.,σ(xi) = false). Thus,σ satisfiesΨ . ⊓⊔

TheNP upper bound in Theorem 3 generalizes to the uniform case, where the indepen-
dence relationI is part of the input but the number of cliques in a clique covering for
D = I \ (Σ × Σ) is fixed by a constant. If we give up this restriction, the complexity
goes up toPSPACE-completeness:

Theorem 5. The following problem isPSPACE-complete:
INPUT: An independence relationI ⊆ Σ × Σ and wordsu, u1, . . . , un ∈ Γ ∗

QUESTION:u ∈ {u1, . . . , un}
∗ in FIM(Σ, I)?

5 FIM(Σ, I) modulo an idempotent presentation

Let I ⊆ Σ×Σ be an independence relation. Anidempotent presentationover(Σ, I) is
a finite set of identitiesP = {(ei, fi) | 1 ≤ i ≤ n}, where everyei andfi is an idem-
potent element inFIM(Σ, I). Based on a reduction to Rabin’s tree theorem, Margolis
and Meakin have shown that forI = ∅, the uniform word problem for quotient monoids
of the formFIM(Σ)/P (with P idempotent) is decidable [10]. Here, “uniform” means
that the idempotent presentationP is part of the input. Recently, in [8] it was shown that
the uniform word problem isEXPTIME-complete and that for every fixed idempotent
presentationP the word problem forFIM(Σ)/P can be solved in logspace.

In this section we prove that the uniform word problem for monoids of the form
FIM(Σ, I)/P (with P an idempotent presentation over(Σ, I)) is decidable if and only
if the dependence relationD = (Σ × Σ) \ I is transitive, and for the transitive case
we proveEXPTIME-completeness. Clearly,EXPTIME-hardness follows directly from
[8]. For the upper bound, we use analogously to [10] a closureoperation on subsets of
G(Σ, I). Assume thatP is an idempotent presentation. Consider a pair(e, f) ∈ P .
Then we havee = (E, 1) andf = (F, 1), whereE andF are finite and closed subsets
of the graph groupG(Σ, I) and1 ∈ E ∩ F . In the following, we identify the pair
(E, 1) with the finite closed setE. Sincee andf are idempotents ofFIM(Σ, I), we
can replace the relatione = f by the two relationse = ef andf = ef without changing
the quotient monoid [10]. Hence, for every pair(E,F ) ∈ P , we can assumeE ⊆ F .

Now assume thatA,B ⊆ G(Σ, I) are finite and closed. We writeA ⇒P B if and
only if there exists(E,F ) ∈ P (henceE ⊆ F ) andf ∈ G(Σ, I) such thatfE ⊆ A
andB = A ∪ fF . It is easy to see that the relation⇒P is strongly confluent, i.e., if
A ⇒P B andA ⇒P C, then there existsD such thatB ⇒P D andC ⇒P D.
Hence,A

∗
⇔P B if and only if there existsC such thatA

∗
⇒P C andB

∗
⇒P C. Define

clP (A) =
⋃
{B ⊆ G(Σ, I) | A

∗
⇒P B} ⊆ G(Σ,P ).

Lemma 2. Let (A, g), (B, h) ∈ FIM(Σ, I). Then(A, g) = (B, h) in FIM(Σ, I)/P if
and only ifg = h in G(Σ, I) andclP (A) = clP (B).

Using Lemma 2, we can generalize theEXPTIME upper bound from [8] for the case
I = ∅: If I ⊆ Σ×Σ is an independence relation withD = (Σ×Σ)\ I transitive, then
Σ is a disjoint union ofD-cliquesΣ1, . . . , Σn. Hence,FIM(Σ, I) is the direct product∏n

i=1
FIM(Σi) of free inverse monoids. Moreover, a closed setA ⊆ G(Σ, I) is a direct



productA =
∏n

i=1
Ai with Ai ⊆ F (Σi) closed. By embedding each of the free groups

F (Σi) into a free groupF (Θ) for a sufficiently large alphabetΘ, we can represent
A by ann-tuple (A1, . . . , An) of closed subsetsAi ⊆ F (Θ). Computing the closure
clP (A) corresponds to computing thesimultaneous fixpointof a monotonic mapping on
F (Θ)n. Analogously to [8], we can formalize this fixpoint computation in the modal
µ-calculus, interpreted over the Cayley graph ofF (Θ). But for this, we need in contrast
to [8] the modalµ-calculus withsimultaneous fixpoints. On the other hand, the latter
logic can be translated into the “ordinary” modalµ-calculus [1] without increasing the
complexity of the model-checking problem. Since the model-checking problem of the
modalµ-calculus over context-free graphs (which include Cayley graphs of free groups)
belongs toEXPTIME [7, 18], we finally get:

Theorem 6. The following problem isEXPTIME-complete:
INPUT: An independence relationI ⊆ Σ × Σ with (Σ × Σ) \ I transitive, an

idempotent presentationP over(Σ, I) and wordsu, v ∈ Γ ∗.
QUESTION:u = v in FIM(Σ, I)/P?

For a fixed idempotent presentation, we can again generalizea corresponding result
from [8]:

Theorem 7. If I ⊆ Σ×Σ is an independence relation with(Σ×Σ)\ I transitive and
P is an idempotent presentation over(Σ, I), then the word problem forFIM(Σ, I)/P
can be solved in (i) linear time on a RAM and (ii) logspace on a Turing machine.

Theorem 6 and 7 are an interesting contrast to a result from [12] stating that the variety
of E-unitary inverse monoids over an Abelian cover has an undecidable word problem.
The difference is that in our setting pairs we only consider pairs(A, g), whereA has to
be closed, whereas in [12] this restriction is not imposed.

For a non-transitive dependence relationD we can encode the acceptance problem
for a Turing-machineT in the word problem forFIM(Σ, I)/P . Let Σ = {a, b, c} and
assume that(a, c), (b, c) ∈ D but (a, b) ∈ I. Thena andb generate in the Cayley graph
of G({a, b, c}, I) a two dimensional grid. Using the letterc, which is dependent from
botha andb, we can encode a labelling of the grid-points with tape symbols and states
of T . With the rewrite relation⇒P we generate a labelling consistent with the transition
function ofT and the input ofT . Hence, we have:

Theorem 8. Let I ⊆ Σ × Σ be an independence relation withD = (Σ × Σ) \ I
not transitive. Then there exists an idempotent presentationP over(Σ, I) such that the
word problem forFIM(Σ, I)/P is undecidable.

For the generalized word problem ofFIM(Σ, I)/P , we can prove undecidability even
for a transitive dependence relation: LetΣ = {a, b, c, d}, I = {a, b}×{c, d}∪{c, d}×
{a, b}, and let the idempotent presentationP contain all identitiesαα−1 = 1 for α ∈ Γ .
ThenFIM(Σ, I)/P is a direct product of two free groups of rank 2. By [13], this group
has an undecidable generalized word problem. The only remaining case is a dependence
relation, which consists of one clique of arbitrary size together with isolated nodes. The
corresponding free partially commutative group is of the form F × Z

k, whereF is a



free group of arbitrary rank. It remains open, whether for such a dependence relation,
the generalized word problem forFIM(Σ, I)/P is decidable for every idempotent pre-
sentationP . For the groupF × Z

k the generalized word problem is decidable [6].
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