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Abstract. Free partially commutative inverse monoids are investigated. Anal-
ogously to free partially commutative monoids (trace monoids), fregaigr
commutative inverse monoid are the quotients of free inverse monoidsimo

a partially defined commutation relation on the generatorsOAn log(n)) al-
gorithm on a RAM for the word problem is presented, &fRlcompleteness of
the generalized word problem and the membership problem for ratietsliss
shown. Moreover, free partially commutative inverse monoids moddioite
idempotent presentation are studied. For these monoids, the wordrprishde-
cidable if and only if the complement of the commutation relation is transitive.

1 Introduction

A labelled transition system is deterministic, if in evetgte there is for each label at
most one outgoing edge with this label. Of particular inde@Ere systems where we
can perform an undo-operation. This means that the systeodéterministic: For each
state and label there is at most one incoming edge with thil.lan this setting each
label defines a partially defined injective mapping fromedab states. The resulting
transformations form aimverse monoigand it is well-known that each inverse monoid
arises this way. Because of its close connection to autothatay inverse monoids re-
ceived quite an attention in theoretical computer sciemcktiaere is a well-established
literature on this subject, see e.g. [11, 15].

In this paper we are interested in the situation where theldatescribe actions of
a (deterministic and codeterministic) transition system some of the actions can be
performed independently. This leads to a partial commartiedind therefore to partially
commutative inverse monoidBree partially commutative inverse monoidere first
studied in the thesis of da Costa [17], where, among otheesybrd problem has been
shown to be decidable. Da Costa did not prove any complegiyts. Our first contri-
bution is a new approach to define free partially commutativerse monoids which is
closer to a standard construction of Margolis and Meakip. \M@& use a natural closure
operation for subsets d@ree partially commutative grouggalso known agraph groups
[5]). Using our construction we are able to show in Sectioha& the word problem
of a free partially commutative inverse monoid is solvalmdiine O(nlog(n)) on a
RAM. In Section 4, we study the generalized word problem feefpartially commu-
tative inverse monoids. The generalized word problem adietiver a given monoid
element belongs to a given finitely generated submonoicdt fve consider the more
general membership problem for rational subsets of a freaflg commutative in-
verse monoid, and we show P-completenesNP-hardness appears already for the



special case of the generalized word problem for a 2-genrefrate inverse monoid. It
is quite remarkable that the generalized word problem nes@écidable in our setting,
because it is known to be undecidable for direct productseaf §roups [13]. So there
is an undecidable problem for a direct product of free grompsre the same problem
is decidable for a direct product of free inverse monoids.

In the second part of the paper we consider free partiallyrnootative inverse
monoids modulo a finite idempotent presentations, which figite set of identities
between idempotent elements. We show that the resultinjespiononoids have de-
cidable word problems if and only if the underlying depermiestructure is transitive.
In the transitive case, the uniform word problem (where tlegripotent presentation is
part of the input) turns out to EEXPTIME-complete, whereas for a fixed idempotent
presentation the word problem is solvable both in lineaeton a RAM and logarith-
mic space on a Turing machine. These results generalizesparnding results for free
inverse monoids modulo an idempotent presentation frohB,Our decidability re-
sult for the case of a transitive dependence structure ispaoéed in light of a result of
Meakin and Sapir [12], where it was shown that there exishEany inverse monoids
over a finitely generated Abelian group, where the word pobis undecidable. The
proof of this result in [12] is quite involved and relies ona@phisticated encoding of
computations of Minski machines. In fact, a slight variataf our undecidability proof
for non-transitive dependence structures can be used éagsimpler proof for the
result of Meakin and Sapir; it will appear in the full versiofithis paper.

2 Preliminaries

In the following letX” be a finite alphabet ani~! = {a~! | a € X'} be a disjoint copy
of X¥. We letI' = ¥ U X~1. ThenI" becomes a set with an involutiont : I" — I
by setting(a=!)"! = a for all a € X. We extend this involution to an involution
~1.I* — I'* bysetting(a; ---a,) "' =a,---a; fora; € I, 1 <i<n, n>0.
Thefree groupgenerated by is denoted byF'(X); it can be defined as the quotient
monoidI™ /{aa™t =1|a € I'}.

Let M be a finitely generated monoid and IEtbe a finite generating set fav1,
i.e., there exists a surjective homomorphidm I'* — M. The word problemfor
M is the computational problem that asks for two given waids € I'*, whether
h(u) = h(v). The generalized word problerfor M asks whether for given words
u,v1,...,0, the element(u) belongs to the submonoigh(vy), ..., h(v,)}* € M
generated byi(vy), ..., h(v,). Itis easy to see that the decidability/complexity of the
(generalized) word problem does not depend on the undgrigh of generators. Now
let G be a finitely generategroupand letI” be a finite generating set fgr. TheCayley
graphof G w.r.t. I is the undirected grapfi(G, I') = (G, {{u,v} | u=v € I'}). Note
that the undirected edde:, v} can be viewed as a pair of directed edgew), labelled
with u=tv € I", and(v, u), labelled withv=1u € I

2.1 Free partially commutative inverse monoids
A monoid M is calledinverseif for everyz € M there is auniquez—! € M such that

1 o™l =271, Q)

zx T x=x and z~



It is well-known that uniqueness of the inverse! follows, if we require additionally
to (1) that for allx, y € M:

arlyy =gy taea! ()

Elementszz—! are exactly the idempotents ji. It is clear that every mapping :
Y — M to an inverse monoidM lifts uniquely to a homomorphismp : I'* — M
such thatp(u=1) = cp(u)_l for all w € I'*. By anindependence relatiowe mean
here an irreflexive and symmetric relatiop C I" x I" such that(a,b) € I implies
(a=1,b) € I forall a,b € I'. Note thatl is specified byls, = Ir N ¥ x X, and we
may view (X, I'y;) as an undirected graph. For wordsy € I'* we write (u,v) € I if
U=0a1" A,V =0by---by,and(a;,b;) € Irforalli <m, j <n.

Every inverse monoicM can be viewed as a monoid of partially defined injections
over a set). Thus, ifa € M, thena is an injections : dom(a) — Q wheredom(a) C
Q. Now partially defined injections andb can be calledndependentif the following
three conditions are satisfied for alE Q:

(i) if ¢ € dom(a), then:a(q) € dom(b) < ¢ € dom(d),
(i) if ¢ € dom(b), then:b(q) € dom(a) <= ¢ € dom(a),
(iii) if ¢ € dom(a) N dom(b), then:ab(q) = ba(q).

These conditions look technical, but a brief reflection shtivat they are indeed natural
translations of an intuitive meaning of independence. Nbé (i)—(iii) is a stronger
requirement than to say thatandb commute. Consider the following situations:

{ a b

| < : >

b b a

In situation | the transitiona andb are not independent although they commute: The
result ofab is the same akq; it is the undefined mapping, which corresponds to a zero
in the monoid. It is also clear that and b should not be called independent in this
situation because candisableb (and vice versa). The situation Il is different: The set
@ has four states; it corresponds to the set of global statdeafsynchronous product
of two independent components. The first (second, resp.pooant can only perform
the actiona (b, resp.). A simple calculation shows that if we define indejgete in

M as above by (i)—(iii), then the independenceacdind b implies the independence
of a~—! andb, too. This motivates the following definition: Aimverse monoid over
(X, Ix) is an inverse monoid\ together with a mapping : ¥ — M such that

p(a)p(b) = @(b)p(a) andip(a) ' (b) = (b)p(a)™" for all (a,b) € Is. Thus, we
can define théree inverse monoid ovér, I's;) by

FIM(X,I) = FIM(X)/{ab = ba,a b =ba™" | (a,b) € I5}.

Here FIM(X) denotes the free inverse monoid o¥&rwhich is defined as the quotient
monoid of I'™* = (X U X¥~1)* modulo the equations in (1) and (2) for ally <
I'*. In the following, we will briefly write I for both I, and I-. It will be always
clear, on which sef is defined. The monoifIM (X, I) is also called dree partially
commutative inverse monoid



Da Costa has studieBIM(X, I) in his thesis from a more general viewpoint of
graph products [17]. As a consequence he showedRHsl( X, I) has a decidable
word problem. In his construction he used the general appro@ Sclitzenberger
graphs and Stephen’s iterative procedure [16]. The dettityabf the word problem
follows because da Costa can show that Stephen’s procestunates. However, no
complexity bounds are given in [17].

Another starting point for defining free partially commiratinverse monoids is a
construction of Margolis and Meakin [9]. One would starttwiihe free partially com-
mutative group(X, I) (defined below) and consider as elements of an inverse monoid
the pairs(4, g), where A is a finite and connected subgraph of the Cayley graph of
G(X,I)with 1,g € A. Although this construction yields fdr= () indeedFIM(X') by
a result of Munn [14], it fails fo # ), simply because independent generators do not
commute. Thus, we have to do something else. Fortunatedyeihdugh to modify the
construction of Margolis and Meakin slightly in order to &sle a simple and conve-
nient description of the elementsiiM (X, I). Our approach is based on the notion of
coherently prefix-closed subsets which we make precisesinditt section.

2.2 Trace monoids and graph groups

Recall thatl = X U X' andI C I" x I is an irreflexive and symmetric relation such
that(a,b) € I implies(a=t,b) € I. Let M (I',I) = I'* /{ab = ba | (a,b) € I} be the
free partially commutative monoi@r trace monoid over (I, I). Due to(a,b) € I =
(a=1,b) € I, the involution—! : I'* — I'* is well-defined onM (I, I). The relation
D = (I' x I') \ I is called thedependence relation

There is a rich theory on trace monoids [4]. Here we need sasie besults, only.
The perhaps most important fact ist that traces (i.e., edsied M (I, I)) have a unique
description aslependence graphsvhich are node-labelled acyclic graphs. ket=
ay---a, € I'* be a word. The vertex set of the dependence graphisf{1, ..., n}
and vertex is labelled witha; € I". There is an edge from vertéxo j if and only if
i < jand(a;,a;) € D. Now, two words define the same tracelif(I’, I) if and only
if their dependence graphs are isomorphic.

A clique coveringof the dependence relatidn is a tuple(l’;)1<i<x such thatl” =
Ui, I andD = UL, I x I;. W.l.o.g. we may assume thatc I; if and only
if a=! € I. Letm; : M(I,I) — I} the projection homomorphisrwhich deletes
all letters fromI" \ I;. The morphismr : M(I',I) — Hle I defined byr(u) =
(m1(u),...,m,(u)) is injective [2,3]. Foru,v € M(I,I) we writeu < vif uisa
prefix of v, i.e.,v = ww in M (I, I) for some tracev. A trace f is afactor of , if we
can writeu = pfqin M(I',I). Letmax(u) = {a € I' | u = ta for some trace}; it is
the set of labels of the maximal nodes in the dependence gfaph

An important fact about traces is the following: Assume weeha< w andv < w
for someu, v, w € M(I',I). Thenthe supremumllv € M (I, I)w.r.t. the prefix order
< exists. We can define LI v by restricting the dependence graphuofo the domain
of v andv, whereu andv are viewed as downward-closed subsets of the dependence
graph ofw. If (I3)1<i<k iS a clique covering of the dependence relation, then foryeve
i, eitherrm; (u) < m;(v) andm; (uUv) = m;(v) or m; (v) < m(u) andm; (ulv) = m;(u).
A tracep is aprimeif | max(p)| = 1.



Fort € M(I,I)letP(t) = {p < ¢ | pisaprimg. Note thatt = UP(¢) (the
supremum of the traces iA(t)). Let A C M(I,1). We defineP(A) = U,c 4 P(t).
The setA is calledprefix-closedif © < v € A impliesu € A. Itis calledcoherently-
closedif for every C' C A such that IC exists,LIC € A. One can show thal is
coherently-closed if for all., v € A such that, U v exists,u v € A. In the following
we say thatA is closed if it is both prefix-closed and coherently-closed. Cleafty

every A C M(I,I) there is a smallest closed s@twith A C A. One hasA =

{uC | Cis a set of prefixes ofl, U C existg andA = 4. The notions of a prime and
coherence are standard in domain theory and the conneottosce theory is exposed
in [4, Sec. 11.3].

Lemma 1. For A, B C M(I',I) we haved = B if and only ifP(A) = P(B).

A trace rewriting systeni over M (I, I) is just a finite subset a¥/ (I, I) x M (I, 1)
[3]. We can define the one-step rewrite relation, C M (I, ) x M ([, I)by:x —r y
if and only if there are:, v € M(I',I) and(¢,r) € R such thatr = ufv andy = urv.
The notion of aconfluentandterminatingtrace rewriting system is defined as for other
types of rewriting systems. A traceeis anirreducible normal fornof ¢ if ¢t = v and
there does not exist a tracawith u — 5 v.

The free partially commutative grougor graph group[5]) over (X, 1), briefly
G(X, 1), is the quotient of the free grou(X') modulo the defining relationsh = ba
for all (a,b) € I. Clearly,G(X,I) = M(I,I)/{aa"! = 1| a € I'}. We can define
a confluent and terminating trace rewriting syst&@m= {aa=! — 1| a € '}, where
1 € M(I',I) denotes the empty trace. Givanc I'* we can viewu € M(I,I) and
compute its irreducible normal form € M(I',I) w.r.t. R in linear time [3]. Thusu
is a trace without any factor of the forau~! for « € I". We also say that the trace
is reduced We haveu = v in G(X,I) if and only if & = v. This allows to solve the
word problem inG(X, I) in linear time [3, 19]. In the following, wheneverc " (or
u € M(II)oru € G(X,1)), thenu € M(I',I) denotes this unique reduced trace
suchthat. = uin G(X,I). The setZ/M\(F, IN={u]|we M(I,I)}isincanonical one-
to-one correspondence with( X, I'), hence we may identify with the group element
it represents. R

A subsetA C G(X,1) is calledclosed if the set of reduced trace$ = {g €

J\?(F, I) | g € A} is closed. Clearly, for everyd C G(X,I), there is a smallest

closed subsetl C G(X,I) such thatd C A. We haveA = A and we can identify

Awith A € M(I, I). Note thatM (I, I) is closed. Recall that is irreflexive, hence
{1,a,a1} is closed sincéa,a™!) € D. We now give a geometric interpretation of
closed sets. Leg, h € G(X,I). A geodesidetweery andh is a shortest path in the
Cayley graph ofG(X, I). The labelling of such a path is unique as a reduced trace

u e M(I,I)suchthayu = hin G(X,I). We say thatf € G(X, 1) is on a geodesic
fromgtohif f <.

Proposition 1. A subsetd C G(X, 1) is closed if and only if both € A and whenever
fis on a geodesic fromto h with g, h € A, thengf € A, too.

Corollary 1. LetA C G(X,I) be closed ang € A. Theng~! A is closed, too.



Proof. Sinceg € A, we havel € g—!A. The property 'f is on a geodesic from; to
ho with hy, ho € Aimpliesh; f € A” is invariant by translation. Thud satisfies this
property if and only ifg~! A satisfies this property. O

2.3 Arealization of free partially commutative inverse moroids

We are now ready to give a concrete realization of the freers&monoid ovefX’, I).
The realization is very much in the spirit of Margolis and Migg9], but differs in the
subtle point that we allow closed subsets(fX’, I), only. Consider the set of pairs
(A, g) whereA C G(X, 1) is afinite and closed subset of the graph gré{g’, I) and

g € A. This set becomes a monoid by

(A7g) : (B’h) = (AUgB’gh)~

An immediate calculation shows that the operation is assiweiand tha{{1},1) is
a neutral element. Moreover, the idempotents are the elsnoéthe form(A4,1) and
idempotents commute. By Corollary 1g4ifc A C G(X,1)andA is closed, theg—1A
is closed, too. Hence we can defifid, g) ™' = (¢14,¢71). A simple calculation
shows that (1) and (2) are satisfied. Thus our monoid is arrsaveonoid. We view
I' as a subset of this monoid by identifyinge I" with the pair({1,a},a), and this
yields a canonical homomorphismdefined byy(u) = ({v | v < u},u) foru € I'™*.
We obtainy(ab) = ({1,a},a) - ({1,b},b) = ({1,a,ab},ab). Now, if (a,b) € I,
then{l,a,ab} = {1,a,b,ab} = {1,b,ba}, i.e.,y(ab) = v(ba). Hence, we obtain an
inverse monoid ovefX, I) since(a,b) € I implies(a~t,b) € I. As a consequence,
the homomorphismy can be viewed as a canonical homomorphism

~v:FIM(X, 1) - {(A,9) | g € AC G(X,I), Afinite and closed. (3)
Theorem 1. The morphismy in (3) is an isomorphism.

Proof. Consider a paifA4, g) with A C G(X, I) finite and closed and € A. Recall
thatA = {u € ]/\4\(]“, I) | uw € A}. Letw € I'* be an arbitrary word representing the
trace(]‘[aegﬂafl)g where the product is taken in any order. Then a simple refiecti
showsy(w) = (A, g). Hencey is surjective. It remains to show thatis injective. To
see this letv € I'* andvy(w) = (4, g). Note thatw = g. It suffices to show

= (H wu" Y@ in FIM(X, ). (4)
ueﬁ

This is enough because it impliegw) = y(w') = w = w’ in FIM(X, I) for all
w,w' € IT'*. If w = ethen(A,g) = ({1},1) and (4) is true. Hence let = va with
a € I'. By inductionv = ([],.5uu™")0 in FIM(X,I), wherey(v) = (B,h). We
obtainA = B U {@} andw = ([], . g uu"")da in FIM(Z, I).

_We dlStII’IgUISh whethefa is reduced or not. Ifia is not reduced, theti = wa ! €
B, i.e., @ € B sinceB is prefix-closed. It followsB = A. We obtain inFIM(X, I):

= (H uu~)va = (H wu ) Wa " ta = (H w Yoo 'oa

ueé ueg ueg



= (H uu" N wa e o = (H wu” M oU T = (H wu” ).

uEA\ ueA\ ueg

It remains the case whef@ = va = @. We obtain inFIM (X, I):

w=([]w o= (]] w"oo o

uEE uEE

Clearly,@ € A. Hencew = (ITuear vu™ 1)@ in FIM(X, I) for some subsetl’ C A

such thatd” = A (setA’ = B U {@}). Therefore it is enough to shoyf, . 4 uu™! =
[1,czuu""in FIM(X, I). This is the assertion of the following claim.

Claim: Let A C M (I, I). Then[], .y uu™' =], czuu" in FIM(X,I).

To prove this claim, leb < u € A. Thenu = vw = vo low = vo luin
FIM(X, I'). Hence we may assume thats prefix closed. Now, let;, v € A such that
w = u v exists. Then, by Levi's lemma (see e.g. [4, p. 18]} pr, v = ps, andw =
psr with (r,s) € I. We obtain inFIM(X, I): vu~tvv=t = prr—ip~lpss—ip~! =
prr—tssTip™! = prssTlr—lp~! = ww~!. This means that we may assume tHat
is coherently-closed, too. But ift is both prefix-closed and coherently-closed, then
A = A by definition of A. Hence the claim and the theorem follow. O

For I = (), Theorem 1 yields Munn’s theorem [14] as a special case. Natefor
I = (), the closured of a prefix-closed subset of the free groupF (X)) equalsA itself.

It follows thaty(u) = ({v | v < u}, @), wherev € I'* is the unique irreducible word
corresponding te € I'*. The se{v | u < v} is also called thélunn treeof w.

Since we are interested in computational problems, we arestoed with the input
size of elements iIF¥IM (X, I). The standard representation is just a wardver the
alphabetl". If y(u) = (4,g), then|A| < |ul¥, wherek is the number of cliques in
a clique covering for the dependence relation, becauseA implies thatm; (¢) is a
prefix of w;(u) for all 1 < i < k. Hence, for a fixed X, I), the size ofA is bounded
polynomially in the length ofi, and moreover can be calculated in polynomial time
from w. Thus, for computational problems in or above polynomialej we can repre-
sent(A4, g) € FIM(X, I) by listing all the elements ofl followed byg. In fact, instead
of writing down the closed sed, it suffices to list the primes i?(A) by Lemma 1.
The setP(A) has size at most:| whatever(X, I) is. But in general, the more concise
representation is still the standard representation.

3 The word problem in FIM (X, I)

Using Munn’s theorem [14], it is easy to solve the word prablfor a free inverse
monoid in linear time on a RAM. For free partially commutativiverse monoids the
solution of the word problem is more involved. We are ablerespnt arO(n log(n))-
algorithm on a RAM by using a sophisticated combination offde data structures:

Theorem 2. For a fixed free partially commutative inverse mon®fM (X, I), the
word problem can be solved in tind&n log(n)) on a RAM.



Proof. Letwu,v € I'*. By [3,19], we can test in linear time whether= v in G(X, I).
It remains to check equality of the closures. [£});<,;<) be a clique covering of the
dependence relatioR = (I" x I') \ I. With w € I'* we associate the following data:

— the prefix-closed set of wordg (w) = {m;(3) | s < w},

— the wordp; (w) = m;(w) € T; for everyl < <k,

— the set of prime®(w) = P({5| s < w})

— the linearly ordered (w.r.t. the prefix order) $&tw) = P(@)N{p | max(p) € I3}.

By Lemma 1, we have to check whethBf{u) = P(v). Before we present an effi-
cient implementation of the data structures above, let 86 $inow how to compute
(Ti(wa), pi(wa), Pi(wa))i<i<k, P(wa) from (T(w), pi(w), Pi(w))1<i<k, P(w) for
a € T. For this, we have to distinguish the two cases ¢ max(w) anda™! €
max(@). We use the following notation: Far € I" such that: occurs int define the
primed, (t) as the maximal prefix of such thainax(d,(¢)) = {a}. In case that does
not occur int let d,(t) = 1. We obtaind, (ta) = (U{ds(t) | (a,b) € D}) a.

Case 1o~ ! ¢ max(w), i.e.,wa = wa. We have:

T;(w) U{pi(w)a} ifaecl; _Jpi(w)a ifael;
Ti(wa) = {Ti(w) otherwise pi(wa) = {p,»(w) otherwise
) Pi(w) U{da(Wa)} ifacl; B _
Pi(wa) = {Pi(w) otherwise P(wa) = P(w) U {d.(wa)}

Note that
0q(Wa) = (L{p(w) | (a,b) € D})a = (UW{max P;(w) | 1 <i<k,a € I};})a.

Case 2.a~! € max(®), i.e.,@ = sa~* andwa = s for an irreducible trace €
M(I',I). We havemax P;(w) = 6,-1(w) for all i with a=! € I (i.e.,a € I};) and:

1

T)(wa) = Ty(w)

v if a=t € I}, pi(w) = va~
pi(wa) = .
p;(w) otherwise

J(w) \ max P;(w) if a™? ’
P(wa) = P(w)UP(s) = P(w)  Pi(wa) = {PZ( )\ Pi(w) if er,

Pi(w) otherwise

For the equalityP(w) U P(s) = P(w) note thatP(s) C P(w) since the trace is

a prefix of the tracev. Let us now discuss an efficient implementation of our data
structures such that the updates above can be done iltXfing(n)). The prefix-closed
setT;(w) can be stored as a trie with at mdst(w)| many nodes, i.e., a rooted tree,
where every node has for evarye I; at most one:-labelled outgoing edge and (w)
equals the set of all path-labels from the root to tree nodlesassign with every node
of T;(w) a key fromN. The root gets the key, and with every new node d&F;(w)

the key is increased by one. This allows to calculatex U for a subsel/ C T;(w),
which is linearly ordered by the prefix relation, in tirt¥|U|) by comparing the keys



for the nodes irUJ. The wordp,;(w) = m;(w) is just a distinguished node of the trie
Ti(w). Clearly,a™! € max(®) if and only if p;(w) ends witha=! forall 1 < i < k
with a=! € I7;. This means that whenever! ¢ I3, thenp;(w) is thea~!-successor
of its parent node. This allows to distinguish between caardlcase 2 above in time
O(k) = O(1).In case 1, we have to add arsuccessor to the noge(w) in casen € I;
andp; (w) does not have am-successor yet. This new node becompgwa). If a € I;
butp;(w) already has an-successov, thenv become;(wa). In case 2, the tries do
not change, but if € I';, thenp;(wa) is the father node gf; (w).

The set of primes(w) is stored as the set of tuplgér;(t))i1<i<k | t € P(w)},
where every projection; () is represented by the corresponding node in theffiie).
For the sefP(w) we use a data structure, which allo@§log(n)) time implementations
for the operations insert and find. The linearly orderedF3¢t) is stored as a list of
tuples(m;(t))1<i<k for t € P;(w). Using this representation, the necessary updates for
case 2 are clearly possible in constant time. For case 1, wetbacalculate the tuple
corresponding td, (wa) = (U{max P;(w) | 1 <i < k,a € I;}) a. Note that

7j(0a(Wa)) = U{mj(max P;(w)) | 1 <i < k,a € I;}m;(a) (5)

for1 < 5 < k. Theu in (5) refers to the prefix order on words. Note that since
max P;(w) is a prefix of the tracev for everys, the set{r;(max P;(w)) | 1 < i <

k,a € I} is linearly ordered by the prefix relation dff, i.e., the supremum exists.
Moreover, this supremum can be computed in tiég:), wherek is the number of
cliques (which is a constant) by using the keys associatéuthe nodes fronT; (w).
This concludes the description of our data structures. Novo@ir input wordsu, v €

I we first comput&T; (u), pi(u), Pi(u))1<i<k, P(u) and(Ti(v), pi(v), Pi(v))1<i<k,
P(v) intime O(nlog(n)). When building up the trie%;(u) andT;(v) we have to use
the same node name for a certain string alerThen we can checR(u) = P(v) in
time O(nlog(n)) using the set data structures B(u) and P(v). O

For the uniform word problem, where the independence o#ldtiis part of the input,
the above algorithm still yields a polynomial time algonthMore precisely, the run-
ning time isO((k? + log(n))n), wherek is the number of cliques in a clique covering
for the dependence relation ands the length of the input words.

4 The generalized word problem inFIM (X, I)

In this section, we show that the generalized word problenaféree partially com-
mutative inverse monoid iNP-complete in general. ANP upper bound can be even
shown for the membership problem in rational set§B¥fl( X, I'). A rational subset of
FIM(X, I) is represented concisely by a finite automaton over the bhilia

Theorem 3. For every fixed free partially commutative inverse morfaii{( X, I), the
membership problem for rational subsetsaM (X, I) belongs ta\P.

Proof. For given(B, g) € FIM(X,I) and a finite automatorl over the alphabel’
we have to determine whethéB, g) € v(L(A)), wherey : I'* — FIM(X, I) is the



canonical morphism. In the following, we viel® as a subgraph of the Cayley graph of
G(X,I). In afirst step we guess a connected subiset B with 1, g € C such that its
closureC equalsB. It remains to check ilNP whether there is a path frointo g in C,
which visits all nodes o€ and such that this path is labelled with a word fréf4).

Let n be the number of states of the automatnAssume thap = (v1, ..., ;)
is a path inC such thatv; = 1, v, = g, C = {v1,...,v,,} and letq; ..., ¢, be
a corresponding path in the automatdn whereq; is the initial state and, is a
final state. Leti; < --- < 4, be exactly those positions € {2,...,m} such that
vj & {v1,...,vj_1}. Clearly,¢ < |C|. Setiy = 1 andi,y; = m + 1. Assume that
lik+1 — ix| > |C| - n for somek € {0, ..., ¢}. Then there are positiorig < o < 5 <
ir4+1 suchthav, = vg andg, = gg. Itfollows thatvy, ..., v, vg41, ..., vy IS @aagain
a path inC from 1 to g, which visits all nodes o, andq, . .., ¢a, g5+1,---,qm IS @
corresponding path in the automatdn

From the above consideration it follows that if there exésfsath froml to g in C,
which visits all nodes of” and such that this path is labelled with a word fré@fA),
then there exists such a path of length at mj64t - n. Such a path can be guessed in
polynomial time. This finishes the proof. ad

NP-hardness can be already shown for the generalized wordigonadf FIM ({a, b}):
Theorem 4. The generalized word problem f&IM({«, b}) is NP-hard.

Proof. We prove the theorem by a reduction from SAT. ket {C4,...,C,,} be a set
of clauses over variables, ..., z,. Letk=m+n.Forl <i<nletP, ={j | z; €
C;}andN; = {j | —z; € C;}. Letu = (A,a™) € FIM({qa, b}), where (the subgraph
of the Cayley graph of'({a,b}) induced by)A looks as follows:

1 a a2 am—l a™ am+1 ak—l ak

I —. ... e .. —
[P PR
ab a2b a™1lp 1a™b
The idea is that the node’b represents the clauge;. For everyl < ¢ < n define
Ui = (Air,a) € FIM({a,b}) andu; y = (4; ¢, a) € FIM({a, b}), where:

Ay = (f”l({l,a, .. .,ak} U {ajb |j€P}) CF({a,b})
Aip=a " ({1,a,.. afyu{db | j € N;}) € F({a,b})

We claim thatu € {1, u1,f,...,Uns, un,r}* if @and only if ¥ is satisfiable. First
assume tha? is satisfied and let : {x1,...,2,} — {true false} be a satisfying as-
signment. Let; = u;, if o(z;) = true, otherwise set; = u; ;. Then we have: =
U1 - - - Up, Which showsu € {ui 4, u17,. .., un s, un s }*. For the other direction as-
sume thatt = ;g - - - up,, Wherem > 0 andus, ..., wm € {Uui,4, 01,5, -+, Un gy Un )
Sinceu = (4, a™) and everyu; is of the form(B, a) for someB, we havem = n.
Moreover, sinceu; - --u;_; is of the form(C,a*~t) for 1 < i < n, we must have
u; € {u;,u;.}, because otherwise we would obtain' € A (if u; € {u; f,u;.}
for j > i) ora*™' € A (if u; € {ujs,u;.} for j < 7). Now we can define a truth
assignment : {z1,...,z,} — {true false} as follows:o(z;) = true if u; = u; + and
o(xz;) = false ifu; = wu; ¢. Sincea’b € A for everyl < j < m, it follows that for



everyl < j < mthereis anl < ¢ < n such that eithej € P, andu; = u,, (i.e.,
o(z;) =true) orj € N; andu; = u;, ¢ (i.e.,0(z;) = false). Thusg satisfies?. O

TheNP upper bound in Theorem 3 generalizes to the uniform caseethe indepen-
dence relatiorf is part of the input but the number of cliques in a clique cingfor
D =T\ (¥ x X)is fixed by a constant. If we give up this restriction, the ctenity
goes up tdPSPACE-completeness:

Theorem 5. The following problem i®SPACE-complete:
INPUT: An independence relatiohC X' x X and wordsu, u, ..., u, € I'*
QUESTION: € {uy,...,u,}* in FIM(X, I)?

5 FIM(X,I) modulo an idempotent presentation

Let ] C X' x X be an independence relation. Alempotent presentatiasver (X, I) is

a finite set of identitied® = {(e;, f;) | 1 < ¢ < n}, where everyg; and f; is an idem-
potent element i¥IM (X, I). Based on a reduction to Rabin’s tree theorem, Margolis
and Meakin have shown that fér= (§, the uniform word problem for quotient monoids
of the formFIM(X) /P (with P idempotent) is decidable [10]. Here, “uniform” means
that the idempotent presentatiéris part of the input. Recently, in [8] it was shown that
the uniform word problem iEXPTIME-complete and that for every fixed idempotent
presentatiorP the word problem foFIM(X') /P can be solved in logspace.

In this section we prove that the uniform word problem for mids of the form
FIM(X, I)/P (with P an idempotent presentation o\er, I)) is decidable if and only
if the dependence relatioP = (X' x X) \ [ is transitive, and for the transitive case
we proveEXPTIME-completeness. ClearlgXPTIME-hardness follows directly from
[8]. For the upper bound, we use analogously to [10] a closps¥ation on subsets of
G(X,I). Assume thatP is an idempotent presentation. Consider a paitf) € P.
Then we have = (E,1) andf = (F, 1), whereE and F' are finite and closed subsets
of the graph groug7(X,I) and1 € E N F. In the following, we identify the pair
(E, 1) with the finite closed seE. Sincee and f are idempotents dfIM (X, I), we
can replace the relatian= f by the two relations = ef andf = ef without changing
the quotient monoid [10]. Hence, for every pél, F') € P, we can assumg& C F.

Now assume thatl, B C G(X, I) are finite and closed. We writ¢ = p B if and
only if there existy E, F') € P (henceE C F)andf € G(X,I) such thatfE C A
andB = AU fF. Itis easy to see that the relatienp is strongly confluent, i.e., if
A =p BandA =p C, then there existd such thatB =p D andC =p D.
Hence,A & p B if and only if there exist€ such thatd = p C andB = p C. Define
cdp(A)=U{BCG(X,I)|A>p B} CG(Z,P).

Lemma 2. Let(A,g), (B, h) € FIM(X,I). Then(A,g) = (B,h) inFIM(X, I)/P if
and only ifg = hin G(X,I) andclp(A) = clp(B).

Using Lemma 2, we can generalize th¥PTIME upper bound from [8] for the case
I =0:1f I C ¥ x Xisanindependence relation with= (X' x X)\ I transitive, then
XY is a disjoint union ofD-cliquesX, ..., X,. Hence FIM(X I) is the direct product
[T, FIM(X;) of free inverse monoids. Moreover, a closed4et G(X, I) is a direct



productA = ], 4; with A; C F(X;) closed. By embedding each of the free groups
F(X;) into a free groupF(©) for a sufficiently large alphabe®, we can represent
A by ann-tuple (A4, ..., A,) of closed subsetd; C F(©). Computing the closure
clp(A) corresponds to computing teemultaneous fixpoirgf a monotonic mapping on
F(©)™. Analogously to [8], we can formalize this fixpoint compusatin the modal
u-calculus, interpreted over the Cayley grapiF@P). But for this, we need in contrast
to [8] the modalu-calculus withsimultaneous fixpoint€On the other hand, the latter
logic can be translated into the “ordinary” mogatalculus [1] without increasing the
complexity of the model-checking problem. Since the martedeking problem of the
modaly-calculus over context-free graphs (which include Caylapbs of free groups)
belongs teEXPTIME [7, 18], we finally get:

Theorem 6. The following problem i€EXPTIME-complete:

INPUT: An independence relatioh C X' x X with (X x X) \ I transitive, an
idempotent presentatioR over (X, I) and wordsu, v € I'*.

QUESTION:u = v in FIM(X, 1)/ P?

For a fixed idempotent presentation, we can again generalz@responding result
from [8]:

Theorem 7. If I C X' x ¥ is an independence relation wiftt’ x X))\ I transitive and
P is an idempotent presentation oueY, I), then the word problem fdfrIM (X, I)/P
can be solved in (i) linear time on a RAM and (ii) logspace orugrig machine.

Theorem 6 and 7 are an interesting contrast to a result fr@irsfating that the variety
of E-unitary inverse monoids over an Abelian cover has areciaéble word problem.
The difference is that in our setting pairs we only considergi 4, g), whereA has to
be closed, whereas in [12] this restriction is not imposed.

For a non-transitive dependence relatidrwe can encode the acceptance problem
for a Turing-machind" in the word problem foEFIM(X, I)/P. Let ¥ = {a,b,c} and
assume thafa, ¢), (b, ¢) € D but(a,b) € I. Thena andb generate in the Cayley graph
of G({a,b,c}, I) atwo dimensional grid. Using the letterwhich is dependent from
botha andb, we can encode a labelling of the grid-points with tape syisbod states
of T'. With the rewrite relation= p we generate a labelling consistent with the transition
function of T" and the input off". Hence, we have:

Theorem 8. LetI C X x X be an independence relation wifh = (X' x X) \ T
nottransitive. Then there exists an idempotent presentafiaver (X, I) such that the
word problem folF'IM (X, I)/ P is undecidable.

For the generalized word problem BIM (X', I')/ P, we can prove undecidability even
for a transitive dependence relation: Lét= {a, b, ¢,d}, I = {a,b} x{c,d} U{c,d} x
{a, b}, and let the idempotent presentatiBreontain all identitiesva=! = 1 fora € I
ThenFIM (X, I)/P is a direct product of two free groups of rank 2. By [13], thisgp
has an undecidable generalized word problem. The only réntgg¢ase is a dependence
relation, which consists of one clique of arbitrary sizegibgr with isolated nodes. The
corresponding free partially commutative group is of therfd® x Z*, whereF is a



free group of arbitrary rank. It remains open, whether fahsa dependence relation,
the generalized word problem feiM (X, I')/ P is decidable for every idempotent pre-
sentationP. For the groupF” x Z* the generalized word problem is decidable [6].
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