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Abstract. Model-checking problems for propositional dynamic logic (PDL) and
its extension PDL (which includes the intersection operator on programs) over
various classes of infinite state systems (BPP, BPA, pushdown sygiesfig;
recognizable systems) are studied. Precise upper and lower baersteoan for

the data/expression/combined complexity of these model-checking preble

1 Introduction

Propositional Dynamic Logic (PDL) was introduced by Fisthad Ladner in 1979
as a modal logic for reasoning about programs [10]. In PDerdhare two syntactic
entities: formulas and programs. Formulas are interprieteddes of a Kripke structure
and can be built up from atomic propositions using booleameotives. Programs are
interpreted by binary relations over the node set of a Krigtkecture and can be built
up from atomic programs using the operations of union, caiipn, and Kleene hull
(reflexive transitive closure). PDL contains two means fonrecting formulas and
programs: Programs may appear in modalities in front of tdas, i.e., ifr is a program
andyp is a formula, ther{m) ¢ is true in a node: if there exists a node, wherey holds
and which can be reached franvia the programr. Moreover, PDL allows to construct
programs from formulas using the test operatop 1§ a formula, then the prograpi?

is the identity relation on the node set restricted to thasdes wherep holds. Since
its invention, many different extensions of PDL were praghsmainly by allowing
further operators on programs, like for instance the ca®/@r intersection operator,
see the monograph [13] for a detailed exposition. RecelRiy},, where programs are
defined via visibly pushdown automata, was investigatedl RBL and its variations
found numerous applications, e.g., in program verificatagent-based systems, and
XML-querying. In Al, PDL received attention by its close agbnship to description
logics and epistemic logic, see [16] for references.

In the early days of PDL, researchers mainly concentrateshtisfiability problems
and axiomatization of PDL and its variants. With the emecgenf automatic verifica-
tion, also model-checking problems for modal logics becangentral research topic,
and consequently model-checking problems for PDL attcheatéention [16]. In this
paper, we start to investigate model-checking problem®Rir over infinite state sys-
tems. In recent years, verification of infinite state systbatsame a major topic in the
model-checking community. Usually, infinite state systelike for instance systems
with unbounded communication buffers or unbounded staatesmodeled by some



kind of abstract machine, which defines an infinite transitigstem (Kripke structure):
nodes correspond to system states and state transitiohe sfystem are modeled by
labeled edges. Various classes of (finitely presented)it@ftransition systems were
studied under the model-checking perspective in the pastesy. [25] for a survey.
In [22] Mayr introduced a uniform classification of infinitéage systems in terms of
two basic operations: parallel and sequential compositiothis paper, we will mainly
follow Mayr’s classification.

We believe that model-checking of PDL and its variants oménite state systems
is not only a natural topic, but also a useful and applicabearch direction in ver-
ification. PDL allows directly to express regular reachiipiproperties, which were
studied e.g. in [19, 22, 30] in the context of infinite stateteyns. For instance, consider
the property that a process can reach a state, where a aongditiolds, via a path on
which the action sequenegas - - - a,, is repeated cyclically. Clearly, this can be ex-
pressed in CTL (ifp can be expressed in CTL), but we think that the PDL-formula
{(ay0oag0---0ay,)*)p is a more readable specification. Secondly, and more impuorta
the extension of PDL with the intersection operator on paotg [12], PDL for short,
allows to formulate natural system properties that canmoexpressed in the modal
u-calculus (since they do not have the tree model propeiikg, fbr instance that a
system can be reset to the current state (Example 2) or thdbtking processes may
synchronize in the future (Example 3).

In Section 5 we study model-checking problems for PDL andatsants over in-
finite state systems. For infinite state systems with paredieposition, PDL immedi-
ately becomes undecidable. More precisely, we show that B2lomes undecidable
over BPP (basic parallel processes), which correspondttorigts, where every tran-
sition needs exactly one token for firing (Proposition 1)isTitesult follows from the
undecidability of the model-checking problem for EF (thegiment of CTL, which only
contains next-modalities and the “exists finally”-modglfor Petri nets [8]. Due to this
undecidability result we mainly concentrate on infinitdsitsystems with only sequen-
tial composition. In Mayr’s classification these are pustmsystems (PDS) and basic
process algebras (BPA), where the latter correspond telesat pushdown systems.
Pushdown systems were used to model the state space of pogith nested proce-
dure calls, see e.g. [9]. Model-checking problems for posimdsystems were studied
for various temporal logics (LTL, CTL, modal-calculus) [1, 9, 15, 28, 29]. We also
include prefix-recognizable systems (PRS) into our ingesion [3, 5], which extend
pushdown systems. Model-checking problems for prefixgaaable systems were
studied e.g. in [4, 14]. The decidability of PDL and even PIibr prefix-recognizable
systems (and hence also BPA and PDS) follows from the fatirtbaadic second-order
logic (MSO) is decidable for these systems and that P2an be easily translated
into MSO. But from the viewpoint of complexity, this apprdais quite unsatisfac-
tory, since it leads to a nonelementary algorithm. On themtfand, for PDL (without
the intersection operator) it turns out that based on thenigoes of Walukiewicz for
model-checking CTL and EF over pushdown systems [28], weotaain sharp (ele-
mentary) complexity bounds: Whereas test-free PDL behawuets i the complexity
of the model-checking problem exactly in the same way asFESPACE-complete in
most cases), PDL with the test-operator is more diffideP-complete in most cases).



The analysis oPDL" turns out to be more involved. This is not really surprising.
PDL" turned out to be notoriously difficult in the past. It does have the tree model
property, and as a consequence the applicability of trem@atha theoretic methods is
quite limited. Whereas PDL is translatable into the mqdahlculus, PDL is orthog-
onal to the modali-calculus with respect to expressiveness. A very difficedult of
Danecki states that satisfiability of PDLis in 2EXP [7]. Only recently, a matching
lower bound was obtained by Lange and Lutz [17]. Our mainltesuhis paper states
that the expression/combined complexity of PD(and also the test-free fragment of
PDL") over BPA/PDS/PRS i8EXP-complete, whereas the data complexity goes down
to EXP. For the2EXP lower bound proof, we use a technique from [28] for descgbin
a traversal of the computation tree of an alternating Tunraghine in CTL using a
pushdown. The main difficulty that remains is to formaliz®DL" that two configura-
tions of an exponential space alternating Turing machinesg machines characterize
2EXP) are successor configurations. For the upper bound, wefdrams PDL” for-
mulap into a two-way alternating tree automatdnof exponential size, which has to
be tested for emptiness. Since emptiness of two-way atieghtee automata can be
checked in exponential time [27], we obtain a doubly expdiaéalgorithm. Most of
the inductive construction ofl from ¢ uses standard constructions for two-way alter-
nating tree automata. It is no surprise that the intersedjgerator is the difficult part
in the construction of. The problem is that two paths from a source nede a target
nodet, where the first (resp. second) path is a witness(tha} belongs to the interpre-
tation of a programr; (resp.m2) may completely diverge. This makes it hard to check
for an automaton whether there is both,apath and ar,-path froms to ¢. Our solution
is based on a subtle analysis of such diverging paths in puahdystems.

One might argue that the high complexiBEXP-completeness) circumvents the
application of PDL' model checking for pushdown systems. But note that the data c
plexity (which is a better approximation to the “real” corayity of model-checking,
since formulas are usually small) of PDlover pushdown systems is orfj)XP, which
is the same as the data complexity of CTL [28]. Moreover, ttaimban exponential
time algorithm for PDL' it is not really necessary to fix the formula, but it suffices to
bound the nesting depth of intersection operators in progr®ne may expect that this
nesting depth is small in natural formulas, like in Exampte 3 (where itis 1). Table 1
gives an overview on our results. Proofs can be found in tttenieal report [11].

2 Preliminaries

Let X be a finite alphabet and letdenote the empty word. Le¥. = ¥ U {¢} and
let ¥ = {a | a € ¥} be adisjoint copyof ¥. For a wordw = a;---a, € X*
(a1,...,an, € X)letw™ =a,---a1. ForL C X* let L™V = {w™ | w € L}. Let
R,U C A x Abe binary relations over the sdt ThenR* is thereflexive and transitive
closure ofR. Thecompositionof R andU is Ro U = {(a,c) € Ax A|3be A:
(a,b) € RA(b,c) e U}.Letf : A — Candg : B — C be functions, wheredlNB = (.
Thedisjoint unionf W g : AU B — C of f andg is defined by(f W g)(a) = f(a) for
a€ Aand(f Wg)(b) = g(b) forb € B.Let AP = {f | f: B — A} be the set of all
functions fromB to A.



We assume that the reader is familiar with standard comtylekasses liké® (deter-
ministic polynomial time) PSPACE (polynomial space)eXP (deterministic exponen-
tial time), andREXP (deterministic doubly exponential time), see [24] for mdegails.
Hardness results are always meant w.r.t. logspace redscémalternating Turing ma-
chine (ATM)IS a tupleM = (Qa Za Fa q0, 57 D) where (I)Q = Qacc U] Qrcj o) QH W QV
is a finite set ofstates) which is partitioned intaccepting(Qacc), rejecting (Qre;),
existential(Q3) anduniversal(Qy) states, (ii)I" is afinite tape alphabetijii) ¥ C I
is theinput alphabet (iv) ¢o € @ is theinitial state, (v) O € I' \ X' is theblank
symbo] and (vi) the map) : (Q3 U Qv) x I' — Moves x Moves with Moves =
Q x I' x {«,—} assigns to every pailg,y) € (Q3 U Qv) x I' a pair ofmoves If
0(g,a) = ((q1,a1,d1), (g2, a2,dz)), then this means that ji1 is in stateq and reads
the symbola, then the left (right) successor configuration of the curoemfiguration
results by writinga; (a2), the read-write head moves in directidn(dz), and the new
state isg; (g2). A configuration ofM is a word fromI™* Q1" *. A configurationc of M,
where the current state ¢s is acceptingf (i) ¢ € Qacc Or (i) ¢ € Q3 and there exists
an accepting successor configuratiorcaf (iii) ¢ € QQy and both successor configu-
rations ofc are accepting. The machinel accepts an inpub if and only if the initial
configurationgyw is accepting.

3 Propositional Dynamic Logic and extensions

Formulas of propositional dynamic logic (PDL) are intetpreoverKripke structures
Let P be a set ofatomic propositionsaind let}' a set ofatomic programsA Kripke

structureover (P, ) is a tupleK = (S, {—| o € X'}, p) where (i)S is a set ohodes

(i) —-C S x S is atransition relationfor all ¢ € X and (iii) p : S — 2 labels every
node with a set of atomic propositions. Formulas and progmiithe logicPDL" (PDL

with intersection) ove(PP, X) are defined by the following grammar, where P and

oeX:

pu=p | |l eV | (m)e
mu=0 | mUme | mNmy | momy | T | ¢?

We use the abbreviationig; A ) = = (—p1 V—ps) and[r]e = =(7)—p. Moreover, a
set{ay,...,a,} C X of atomic programs is identified with the programu - - - U a,,.
The semanticof PDL" is defined over Kripke structures. Given a Kripke structure
K = (5{—,| 0 € X}, p) over (P, x), we define via mutual induction for each
PDL" programr a binary relation[r]x € S x S and for eactPDL" formulay a
subsefp]x C S as follows, wherer € X, p € P, and ope {U, N, o}:

[o]k =—0 [plc = {s [ p € p(s)}
[e?lc = {(s;8) | s € [elc}  [~¢lk =S\ [elk
[**]x =[]k [e1 V @2l = [p1lc U [p2lx
[m1 opma]ic = [mi]xc op [m2]k [(mele ={s|3t:(s,t) € [r]xc At € [p]xc}

Note that[(p?)¢]x = [¢ A Y]k. Fors € S we write (K,s) | ¢ if and only if
s € [p]k. If the Kripke structurel is clear from the context we writge] for [¢] k.



PDL is the fragment oPDL"", where the intersection operatoron programs is not
allowed. Test-free PDL(resp.test-freePDL") is the fragment of PDL (res@@DL"),
where the test-operator “?” is not allowed. The dizeof aPDL" formula ¢ and the
size || of a PDL" programr is defined as followsip| = |o| = 1 forallp € P
ando € 2, |-p| = [¢7 = ol + 1, [p V¥l = lg| + [] + L, [{m)e| = |z| + |,
|1 opma| = |m1| + |m2| + 1 forop € {U,N, o}, and|n*| = |x| + 1. The fragment EF
of CTL (where only the next and “exists finally” modality id@ied) can be defined
as the fragment of test-free PDL, consisting of all formufesuch that every for every
subformula of the form{r)«, eitherr € X orm = X*.

A PDL programs (where the intersection operator is not allowed) can be &ikw
as a regular expression and translated into a finite automtevhere transitions are
labeled by symbols fron®’ and test formulas?. The semanti¢A] of this automaton
is the union of all relationgc,] o - - o [e,], wheree; - - - ¢, labels a path from the
initial state ofA to a final state; note that can be of the formp?. This PDL-variant is
sometimes called APDL. F&DL" such a translation does not exist. MoreowdpL"
neither possesses the finite model property nor the tree Inpoolgerty in contrast to
PDL [13].

Given a clasg of Kripke structures and a logi€ (e.g. PDL orPDL"), themodel-
checking problenasks: Given a Kripke structué € C, a nodes of I, and a formula
¢ € L, does(K,s) = ¢ hold. Following Vardi [26], we distinguish between three
measures of complexity:

— Data ComplexityThe complexity of verifying for a fixed formula € £, whether
(K, s) = ¢ for a given Kripke structur& € C and a node of K.

— Expression Complexityrhe complexity of verifying for a fixed Kripke structure
K € C and nodes, whether(K, s) |= ¢ for a given formulapy € L.

— Combined Complexityrhe complexity of verifying IC, s) = ¢ for a given formula
p € L, a given Kripke structuré € C, and a node.

Convention In the rest of this paper, we will consid®DL" without atomic propo-
sitions. A Kripke structure will be just a tupl€ = (S, {—,| ¢ € X'}) where—,C
Sx.S. Formally, we introduce the only atomic propositiane and defindtrue]c = S.
This is not a restriction, since a Kripke structi {—,| o € X'}, p) (Wherep : S —
2%, X N P = )) can be replaced by the new Kripke structiée{—,| o € ¥ UP})
where—, = {(s,s) | p € p(s)} for all p € PP. For the formalisms for specifying
infinite Kripke structures that we will introduce in the nesdction, we will see that (a
finite description of) this propositionless Kripke strugtiwan be easily computed from
(a finite description of) the original Kripke structure. Mawer, inPDL" formulas, we
have to replace every occurrence of an atomic propositionthe formula(p)true.

4 Infinite state systems

In this section, we consider several formalisms for degmgiinfinite Kripke structures.
Let X be be a set of atomic programs afde a finite alphabet.

A basic parallel proces$BPP) is a communication free Petri net, i.e., a Petri net,
where every transition needs exactly one token for firingldabeling transitions of a



Petri net with labels front’, one can associate an infinite Kripke structkiig\/) with
a BPPN, see [21] for more details.

A basic process algebrdBPA) overY is atupleX = (I, A) whereA C I, x X' x
I'* is a finitetransition relation The BPAX describes the Kripke structuté(x) =
(I'*,{—,| o € X}) over X, where—,= {(yw,vw) | w € I'* and(y,0,v) € A}
forall o € X. Thesize|X| of X' is |I'| + |Z] + 32, , nyea V] If (v,0,v) € A, we

also writey % x v.

Example 1.For a finite alphabel” we will use the BPATreer = (I, A) overI" U T’
whereA = {(e,a,a) | a € I'tY U{(a,a,e) | a € I'}. ThenK(Treer) is the complete
tree overl” with backwards edges.

A pushdown systeif®DS) overY' is a tuple) = (I', P, A) where (i) P is a finite set
of control statesand (i) A C P x I'. x X x P x I'* is a finitetransition relation The
PDSY describes the Kripke structuté()) = (PI'*,{—,| 0 € X'}) over X, where
—o= {(pyw, quw) | w € I'* and(p,~, 0,q,v) € A} forall o € X. Thesize|Y| of Y

iS [+ | P+ |2+ 3, o.q0ea vl I (0,7, 0,,0) € A, we also writepy Zy qu.

Note that a BPA is just a stateless PDS.

Example 2.Let £ = (S,{—,| o € X'}) be a deterministic Kripke structure, i.e., for
every state € S and everyr € X' there is at most onee S with s — t. For PDL over
BPA and PDS, determinism is no restriction: it can be ensbyechoosing a possibly
larger sety’ of atomic programs such that every transition of the BPA (P& be
labeled with a unique’ € X'. Every original atomic prograra can be recovered as
a union of some of these new atomic programs (for PRS, thisrdoeork). We now
want to express that the current statec S is a recovery state of the system in the
sense that wherever we go franwe can always move back to This property cannot
be expressed in the modaicalculus unless the states somehow uniquely marked,
e.g., by a special atomic proposition (but here, we want fmééehe set of all recovery
states). One can show thais a recovery state if and only if

(K, s) = [27] /\ <<0>true = (true?’Noo E*>true).
cex

Note thattrue? defines the identity relation ofi.

Example 3.Let us consider two PDY; = (I, P;, 4;) (with a common pushdown
alphabetl") over ¥; (i € {1,2}), whereX; N X, = (), and such that’();) and
K(Y-) are deterministic (which, by the remarks from Example 2,asarestriction).
The systemg); and)> may synchronize over states from the intersecttom Ps.
These two systems can be modeled by the single PRS(I", P, U P>, Ay U Ag) over

X1 U X5, In this context, it might be interesting to express that méwer)); and),
can reach a common nodeand froms, ); can reach a nodg by a local action, then
the two systems can reach framands, again a common node. This property can be
expressed by the PDLformula

(2T N X3 /\ ((a)true A (b)true = (ao X7 Nbo Z;)true).
a€X,beEX,



BPA POS |  PRs
data P-complete EXP-complete
PDELF‘? expression PSPACE-complete
\? combined EXP-complete
data P-complete ‘
PDL  expression EXP-complete
combined
data |PSPACE-hard, inEXP| EXP-complete
PDL" -
PDL™\? _expression 2EXP-complete
combined

Table 1.

Note that[a o X} N b o X3] is in general not the empty relation, although of course
ao XiNbo X5 = 0 when interpreted as a regular expression with intersection

A relation U C I'* x I'* is prefix-recognizableover I, if U = |J_, R; (n >
1) and R; = {(uw,vw) | u € U;,v € V;,w € W,;} for some regular languages
U, Vi, W; C I' (1 < i < n). We briefly write R; = (U; x V;)W,. A prefix-
recognizable systerfPRS) (which should not be confused with Mayr's PRS (pro-
cess rewrite systems) [21]) over is a pairZ = (I',«a) where« assigns to every
atomic progranmv € X' a prefix-recognizable relation(c) over I', which is given
by finite automataA{, B7,CY, ..., A% ,BS ,C5_ such thata(o) = U7, (L(A7) x
L(B?))L(C?). The PRSZ describes the Kripke structuté(2) = (I'*,{a(o) | o €
X}) overX. Thesize|Z| of Zis ||+ | X+ Y o5 2oi2y A7+ |B7 |+ |C7|, where
| A] is the number of states of a finite automatén

Our definition of BPA (resp. PDS) allows transitions of thenfioe % v (resp.
p L3 qu for control statep andg). It is easy to see that our definition describes
exactly the same class of BPA (resp. PDS) as defined in [2qr&sp. [2, 21, 29, 28]),
and there are logspace translations between the two fammsli

Usually, in the literature a PDJF describes a Kripke structure with atomic propo-
sitions from some sék. For this purpose) contains a mapping : P — 2F, whereP
is the set of control states 9f, and one associates with the atomic propositjon P
the set of all configurations where the current control stagatisfies) € o(p). In our
formalism, which does not contain atomic propositions, ae simulate such an atomic
propositionsy by introducing the new transition ruje —> p wheneven) ¢ o(p), see
also the convention from the end of Section 3. Similar remagply to BPA and PRS.

Table 1 summarizes our complexity results for PDL and itsavds.

5 Model-checking PDL over infinite state systems

It was shown in [8] that the model-checking problem of EF dtke Kripke structures
defined by) Petri nets is undecidable. A reduction of thibmm to the model-checking
problem of test-free PDL over BPP shows:



Proposition 1. The model-checking problem for test-free PDL over BPP iseaitd
able.

Hence, in the following we will concentrate on the (sequahtsystem classes BPA,
PDS, and PRS. Our results for (test-free) PDL without irgetion over BPA/PDS/PRS
mainly use results or adapt techniques from [2,22, 28, 284, Eable 1. It turns out
that PDL without test behaves in exactly the same way as ERtat adding the test
operator leads in most cases to a complexity jump UpdB-completeness.

In the rest of the paper, we concentrateBRL"", for which we prove that the
expression and combined complexity over BPA/PDS/PRS ispbete for 2EXP. Our
lower bound proof uses a technique from [28] for describirtgagersal of the com-
putation tree of an alternating Turing machine in CTL usingushdown. The main
difficulty that remains is to formalize in PDLthat two configurations of an exponen-
tial space alternating Turing machine (these machinescheize £XP) are successor
configurations. For doing this, we adjoin to every tape célinary counter, which rep-
resents the position of the tape cell. This encoding of candigpns is also used in the
recent2EXP lower bound proof of Lange and Lutz for satisfiability of PD[17].

Theorem 1. There exists a fixed BPX such that the following problem 2XP-hard:
INPUT: A test-free PDC-formula.
QUESTION:(K(X),¢e) = ¢?

Proof. Since EXP equals the class of all languages that can be accepted byMn AT
in exponential space [6], we can choose a figeéd") — 1 space bounded ATMA =
(Q, Xm, I'm, q0,9,0) (wherep(m) is a polynomial) with a EXP-complete accep-
tance problem. The machine! satisfies the conventions of Section 2. ketc X3,
be an input of length. We construct a fixed BPA = X (M) = (I, A) and a test-
free PDL'-formula ¢ = ¢(w, M) each overy = X(M) such thatw € L(M)
if and only if (IC(X),e) E . Let N = p(n) and 2 = Q U I'y,. A configuration
c of M is a word from the languag),; o~ _» F};,IQFjj‘l_i. We will represent
C="0"""%i-1qYi+1 " Y2~ _1 by the word

[0 - -~ [i = Uglilyiga[i +1] - -y 4 2V = 1], 1)
where[k] denotes the binary representationkof0 < & < 2V — 1) with N bits, i.e.,
[k] = Bo---Bn-1 With 5; € {0,1} andk = ij:_ol 27 - ;. A cellis a stringw[i],
wherew € 2 and0 < i < 2V — 1. LetMoves = Q x I'yy x {+,—} be the set of
moves ofM and let

Dir = {L(p1, p2), R(p1, p2) | (1, p2) € 6(Qw, 1)} U
{E(u), E(p2) | (p1, p2) € 6(Q3, )}

be the set oflirection markersThese symbols separate consecutive configurations of
the form (1) on the pushdown. As in [28], direction markers a@sed in order to orga-
nize a depth-first left-to-right traversal of the compudatiree of the ATMM on the
pushdown. Lef” = 2U{0,1} UDirandX = I"UT' U {\}, which is a fixed alphabet.
We define the fixed BPA to beTree (see Example 1) together with the rgle \, ¢),
which generates A-labeled loop at every node. In order to define BiaL" formula

», we need several auxiliary programs:



- X = U,ex Z for X C I': Pops a single symbal € X from the pushdown.

— pop; = {0,1} forall 0 < i < N: Popsi bits from the pushdown.

— cell = 2 o popy: Pops a cellu[¢] from the pushdown.

— elly = 200" : Pops a cello[0] from the pushdown.

el =T o1 Pops a cely[2V — 1] for v € I'y, from the pushdown.

Next, we define a prograinc, which is executable only if on top of the pushdown there
is a word of the formw[ijw’[i + 1] for somew,w’ € 2 and some) < i < 2V — 1.
The programinc popswl(i] during it execution. In order to definac we will use the
programsy; s (0 < j < N, 8 € {0,1}) which assure that, after poppirigits of the
current cell, a bif3 can be popped that matches the bit that can be popped aftgingop
anotherj bits of the subsequent cell. Afterwards, further bits maybeped:

Xjﬂ:popjoﬁo{(),l} oﬁopopjoﬁo{o,l}
N-1 .
fnc = cell N | (cell o cell) N o | (T’oﬁo{o,l} ocell N
=0
. ) . N—-1
O 0200 To T 0 () (ueU)| o1
j=i+1

The next progranzonf is only executable if the top of the pushdown is a legal con-
figuration in the sense of (1), i.e.: A word of the forg[0Jw: [1] - - - won 1 [2V — 1]

is assumed to be on top of the pushdown, for exactly®re i < 2V — 2 we have

w; € @, and for all other we havew; € I'y. This top configuration is being popped
during execution:

conf = (celly ocell ) N (inc” ocell;) N (I U{0,1} 0 QoI U{0,1} )

For allw,w’ € {2 the programn,, ., is only executable if the top of the pushdown is
a certain suffix of a configuration 0¥1 followed by a direction marked € Dir and a
complete configuration of1. More precisely,

wilk] - wan 2V = 1] dw)[0] - whn 2N — 1]

with wy, = w andw), = w’ must be on top of the pushdown. During its executian,,
popswy[k| from the pushdown:

N-1
Tw,w' :@ N m U wOpOpioBO{071}*o
=0 pBe{0,1}

ceu*omoceﬂ*oJOpOprO{OJ}*) ol™

The programr— = {J,,c, 7w, Checks whether the content of the top cellk] equals
the content of thé:-th cell of the subsequent configuration. Now we define a jaogr



check,, for ;1 € Moves, which is only executable ifdc’ is on top of the pushdown,
where: (i)c andc’ are configurations oM in the sense of (1), (iif € Dir, and (jii) M
moves from configuration’ to configuratiorc by the moveu. We restrict ourselves to
the case wherg = (¢, a, < ):

AN (conf oDiroconf N 7t o U (Tg,c 0 Tep ©Map) 0m= 0 Diro conf> ol™
PEQR,b,cEIMm

The rest of the proof is analogous to Walukiewicz's prooftfarEXP lower bound for
CTL over PDS [28]. Using the direction markers, we can defirgagramtraverse,
whose execution simulates on the pushdown a single step épth-first left-to-right
traversal of the computation tree 8f. Using a program init, which pushes the initial
configuration on the pushdown, we dete) € [initotraverse*] if and only if the initial
configurationgow is accepting. ad

In the rest of this paper, we sketcl2BXP upper bound for the combined com-
plexity of PDL" over PRS. For this, we need the concept of two-way altergdtize
automata. Vardi and Kupferman [15] reduced the model-dhggkroblem of the modal
p-calculus over PRS to the emptiness problem for two-wayradting tree automata,
and thereby deduced &XP upper bound for the former problem, see also [4, 29]. Our
general strategy for model-checkiRdL" over PRS is the same.

LetI" be afinite alphabet. A'-treeis a suffix-closed subsé&t C '*,i.e.,ifaw € T
forw € I' anda € I', thenw € T. Elements ofl" are callechodes An infinite path
in the treeT is an infinite sequence, us, ... of nodes such that; = e and for
alli > 1, u;41 = a;u; for somea; € I'. A X-labeled I'-tree where X' is a finite
alphabet, is a paifT’, \), whereT is al-tree and\ : T — X is a labeling function.
The completel -treeis theI" W {_L}-labeledI"-tree (I"*, Ar) whereAr(¢) = L and
Ar(aw) = afora € I'andw € I'*. For a finite setX, let B+ (X) be the set of
all positive boolean formulas oveX; note thattrue and false are positive boolean
formulas. A subset” C X satisfies?) € BT (X), if § becomes true when assigning
true to all elements irt”. Letext(I") = I' W {¢, | } and define for alk € I'*,a € I":
eu = u, Jlau = u, whereag e is undefined.

A two-way alternating tree automatd@WATA) over I" is a triple7 = (S, 6, Acc),
wheresS is a finiteset of states) : S x (I"'U{L}) — B*(S x ext(I")) is thetransition
function and Acc : S — {0,...,m} is the priority function wherem € N. Let
u € I'*ands € S. An (s,u)-run of 7 (over the completd -tree (I"*, Ar)) is a
(S x I'*)-labeledf2-tree R = (Tr, Ar) for some finite sef? such that: (i) € Tx,
(i) Ar(e) = (s,u), and (jii) if « € Tr with Ag(a) = (¢',v) andd(s’, Ar(v)) = 0,
then there is a subs#&t C S x ext(I") that satisfies the formukaand for all(s”, e) €
Y there existsv € 2 with wa € Ty and Ag(wa) = (s, ev). An (s,u)-run R =
(Tr, Ar) of T is successfuf for every infinite pathw , wa, . . . of Tx, min({Acc(s’) |
Ar(w;) € {s'} x I'* for infinitely manyi}) is even. Le[T,s] = {u € I'* | thereis a
successfuls, u)-run of 7 }. Thesize|T| of T is |’ + S| + 3 gc an(s) 0] + [Acc],
where|Acc| := max{Acc(s) | s € S}. For TWATAS7; = (S;, d;, Acc;) (i € {1,2})
over['letTy W7y = (S1 W Se,d01 W da, Accy W Accy) be theirdisjoint union Note
that in our definition a TWATA over an alphabg&tonly runs on the complet€-tree.



Hence, our definition is a special case of the definition in {B427], where also runs
of TWATAs on arbitrarily labeled trees are considered. dg@i7], we obtain:

Theorem 2 ([27]). For a given TWATAI = (5,0, Acc) and a states € S, it can be
checked in time exponential j§| - |Acc| whethere € [T, s].

It should be noted that the size of a positive boolean fornthda appears in the
transition functiond of a TWATA 7 = (@, d, Acc) can be exponential ifQ)]|, but
the size ofé only appears polynomially in the upper bound for emptiness (not
exponentially, which would lead toZEXP upper bound for emptiness).

Let 7 = (5,4, Acc) be a TWATA overl'. A nondeterministic finite automaton
(briefly NFA) A overT is a pair(Q, — 1) whereQ is a finite state set and all transitions

are of the formp =4 g forp,q € Q,a € T'UT orp QA qgforp,g e @Q,s €S.
The latter transitions are calledst-transitionsLet A! (resp.A') be the NFA overl
that results fromA by removing all transitions with a label froffi (resp.l’), i.e., we
only keep test-transitions and transitions with a labeifrb (resp.l"). Let =, C
(I'* x Q) x (I'™ x Q) be the smallest relation with:

— (u,p) = (au,q) whenever, € I'* andp - 4 ¢
— (au,p) =4 (u,q) wheneven € I'* andp % 4 ¢
— (u,p) =a (u,q) whenevewn € [T, s] andp KELN q

Let[A,p,q] = {(w,v) € " x I | (u,p) =% (v,q)} forp,q € Q.

We will inductively transform a given PDl-formula (resp. PDL-program) into
an equivalent TWATA (resp. NFA over a TWATA). In order to hdamthe intersection
operator on programs, we first have to describe a generahatactheoretic construc-
tion: Let7 = (5,4, Acc) be a TWATA overl” and letA = (Q,— ) be an NFA over
7T.Lethop, C I'* x @ x @ be the smallest set such that:

forall uw € I'* andq € Q we have(u, ¢, q) € hop 4

if (au,p’,q') €hopy,p -S4 p,andqd %4 g, then(u,p,q) € hop,
If (uapa T)? (U’a T, Q) S hOpA’ then(u’pa Q) S hOpA

ifuel7,s],p EA q, then(u, p, q) € hop,4

Intuitively, (u,p,q) € hop, if and only if we can walk from node of the complete
I'-tree back tau along a path consisting of nodes frafitfu. At the beginning of this
walk, the automatom is initialized in statep, each time we move in the tree fromto
av (resp.av to u) we reada (resp.a) in A, andA ends in state. Formally, we have:

Lemma 1. We have(u, p,q) € hop, if and only if there exisk > 1, uy,...,u, €
I'*u,andq,...,q, € Qsuchthatu; = u, = u, 1 = p, ¢n = ¢, and(u1,q1) =24
(U27 q2) = A (un7 QH)-

The inductive definition of the sép 4, can be translated into a TWATA:

Lemma 2. There exists a TWATK = (5’, 4, Acc’) with state sets’ = S (Q x Q)
such that ()[4, s] = [7,s] fors € S, (ii) [U, (p,q)] = {v € I'* | (u,p,q) € hop,}
for (p,q) € Q x Q, and (iii) |Acc’| = |Acc|.



Define a new NFAB = (Q, —p) over the TWATAU by adding toA for every pair

(p,q) € Q x Q the test-transitiop 2, ¢

Lemma 3. Letu,v € I'* andp, g € Q. Then the following statements are equivalent:
- (’LL,'U) € IIAvpy Q]]
- (U,’U) € IIBapaQ]]
— there exist a common suffixof v andv and a state € Q with (u,w) € [B*, p,7]
and(w,v) € [B1,r,q]

Letdropy C I'* x @ x @ be the smallest set such that:

forall uw € I'* andp € Q we have(u, p, p) € dropg
if (u,p’,q') € dropg, p =5 p/, andq’ %5 ¢, then(au, p, q) € dropp

if €S ueld,s]p Ye and(u,r,q) € dropg, then(u, p, q) € dropg

if s €S uells]r u’—S>B q, and(u, p,r) € dropg, then(u, p,q) € dropg

Lemma 4. We havgu, p, q) € dropy if and only if there exist € @ and a suffix of
u such that(u, v) € [B*, p,7] and (v,u) € [BT,r, q].

Again, the inductive definition odrop 5 can be translated into a TWATA:

Lemma 5. There exists a TWATA = (S”, 6", Acc”) with state seb” = S'W(Q x Q)
such that: (i)[V, s'] = [U, s'] for every states’ € S’ of U4, (ii) [V, (p,q)] = {u € '™ |
(u,p,q) € dropg} for every statép, q) € Q x @, and (iii) [Acc”| = |Acc|.

Let C = (@, —¢) be the NFA over the TWATAY that results fromB by adding for

every pair(p, q) € Q x Q the test-transitiop ~ 22,

the longest common suffix of andv.

g. Foru,v € I'* letinf(u, v)

Lemma 6. Letu,v € I'* andp, g € Q. Then the following statements are equivalent:

- (U,’U) € HAvpv q]]
- (U,’U) S IIC7pa Q]]
— there exists' € Q with (u, inf(u,v)) € [C, p,7] and (inf (u, v),v) € [CT, 7, q]

Now we are ready to prove the announ@&XP upper bound for the combined com-
plexity of PDL™ over PRS. LeZ = (I',a) be a PRS ang be a PDL' formula each
over Y. We translateZ andy into a TWATA 7 = (S, §, Acc) over I" together with a
states € S such that((2),¢) | ¢ ifand only ife € [T, s]. The number of states
of 7" will be exponentially in the size of the formulaand polynomially in the size of
Z and the size of the priority functioAcc will be linear in the size ofy, which proves
a 2EXP upper bound by Theorem 2. From now on any occurring TWATA igliaitly
overI" and the size of the priority function is at ledstThe construction of” is done
inductively over the structure of the formuja More precisely, (i) for every subfor-
mula of ¢ we construct a TWATAT () together with a state of 7 (1) such that
[¥] = [T (v), s] and (ii) for every programr that occurs inp we construct an NFA
A(w) over a TWATAT () such thaffx] = [A(x), p, ¢] for statep andq of A(r).



The case) = true is clear, the cas¢ = 11 A - can be skipped sineg; Ay <
(01 M)ha. If 1p = —0, then we apply the standard complementation procedure [23]
where all positive boolean formulas in the right-hand sifithe transition function are
dualized and the acceptance condition is complementeddsgrirenting the priority
of every state. Iy = ()0, then we have already constructddr), 7 (), and7 (6)
such thaf[r] = [A(r),p, q] for two statep andq of A(w) and[0] = [7 (9), s] for
a states of 7 (#). Basically, the TWATAT () results from the disjoint union of ()
and7 (7) W 7 (¢), additionally 7 (1)) can move from state to states. It remains to
constructA(r) and7 () for a PDL" subprogranr of .

Caser = 7. We can assume that there exists a TWATA)) and a state of 7 (v)
such thafly)] = [7 (¢),r]. The TWATA T (x) is 7 (¢). The automatom (x) has two

stateg andq with the only transitiorp > ¢.

Caser = o € X: Assume thatv(o) = JI,(L(A}) x L(B}))L(C!). Define the
homomorphisnt: : I'* — T by h(a) = @ for all a € I'. From the representation
of a(o) we can construct finite automatd;, B;, C; such thatL(A;) = h(L(A4})),
L(B;) = L(B))™, and L(C;) = h(L(C)). Basically, the automator(r) first
chooses nondeterministically are {1,...,n} and then simulates the automatdn
until a current tree node € I'* belongs to the language(C;). Then it continues by
simulating the automatoB;. Whether the current tree nodec I'* belongs taL(C;)
has to be checked by the TWATA(7), which can be built from the automatar).

Casen = m Umg, m = 71 0 T, OF m = x*: We constructd(r) by using the standard
automata constructions for union, concatenation, andri€estar. We sef (7, Ums) =
T(momy) =T (m)WT(m) and7 (x*) = 7 (x)-

It remains to construcl(m; N w2) and 7 (w1 N m3). For this, we use the hop/drop-
construction described above: Assume that the NKA;) = (Q;,—:) (@ € {1,2})
over the TWATAT (;) = (S;, d;, Acc;) is already constructed. ThusA(7;), pi, ¢;] =
[r;] for some statep;,q; € Q,. We first construct the NFAC(;) over the TWATA
V(m;) = (S,687, Acc)) as described in Lemma 6. Note that the state sét(of;) is
Q; (the state set ofi(r;)) and thatS!’| = |S;| + 2 - |Q;|*. Let T (1 Nm2) = V(m1) W
V(mz). The NFA A(m N m2) is the product automaton @ (7;) and C(m2), where
test-transitions can be done asynchronously:At; N ) = (Q1 X Q2,—), where
fora € I'UT we have(ry,ry) = (rf,r4) if and only if r; %,y 7l fori € {1,2}.

Finally, for a states of V() W V() we have the test-transiticir,, ) T(mnma).s,

(r1,r5) if and only if for somei € {1,2}: sis a state ol (m;), r; Mc(m) r}, and

— 2t
r3—; = Tg_;-

Lemma 7. We haVﬂA(ﬂ'l 0772), (pl,pg), (q17q2)]] = [[71'1 077'2]]. Moreover, |fA(7T1) =
(Qi7*>i),A(7T107T2) = (Q,H),T(Tﬁ) = (Si,(;i,ACCi), and’T(mﬂﬂ'g) = (S, (57 ACC),
then: [Q = [Q1] - 1Qal, 1] = 81] + S2] +2 - [Q1[2 + 2 - [Qaf?, and | Ace| =
max{|Accy |, |Acea|}.

Recall that we want to chedC(2), ¢) = ¢ for the PRSZ and the PDL formulap.
A careful analysis of the constructions above allows to prioductively:



Lemma 8. If | Z] and || are sufficiently large, then:

— For every subformula of o with 7 (v) = (S, 8, Acc) we have S| < | Z|21¥I" and
|Acc| < [¢].

— For every subprogramr of ¢ with A(w) = (Q,—) and 7 (x) = (S, 9, Acc) we
have|Q| < ||, |S| < |Z*I"", and|Acc| < [x].

From our construction, Lemma 8, and Theorem 2 we get:

Theorem 3. It can be checked iREXP, whether(K(Z2),¢) = ¢ for a given PRSZ
and a given PDL formula . For a fixed PDL formula, it can be checked iBXP,
whether(C(Z2),¢) |= ¢ for a given PRZ.

For the data complexity of test-free PDlover PDA we can prove a matchirigXP
lower bound, by translating the fixed CTL formula from Walekicz’s lower bound
proof for the data complexity of CTL over PDS [28] into a fixasst-freePDL" for-
mula. For the data complexity of test-free PDhver BPA we can only prove a lower
bound ofPSPACE by a reduction from the universality problem from non-detigistic
finite automata. Altogether, we obtain the resultsB&L" in Table 1.

One might ask, whether an elementary upper bound also holdthé model-
checking problem of PDL with the complement operator on ot over pushdown
systems. But this model-checking problem allows to expeesstiness for a given ex-
tended regular expression (i.e., regular expression wiereomplement operator is
allowed), which is a well known nonelementary problem.

6 Open problems

On the technical side it remains to close the gap betWSEACE andEXP for the data
complexity of PDL' over BPA. Another fruitful research direction might be tdend
PDL" by a unary fixpoint operator. The resulting logic is striatipre expressive than
PDL" and the moda}:-calculus. We are confident that our upper bounds for PDL
from Theorem 3 can be extended to this logic.
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