
Infinite State Model-Checking of Propositional Dynamic
Logics

Stefan G̈oller and Markus Lohrey

FMI, Universiẗat Stuttgart, Germany
goeller,lohrey@informatik.uni-stuttgart.de

Abstract. Model-checking problems for propositional dynamic logic (PDL) and
its extension PDL∩ (which includes the intersection operator on programs) over
various classes of infinite state systems (BPP, BPA, pushdown systems,prefix-
recognizable systems) are studied. Precise upper and lower bounds are shown for
the data/expression/combined complexity of these model-checking problems.

1 Introduction

Propositional Dynamic Logic (PDL) was introduced by Fischer and Ladner in 1979
as a modal logic for reasoning about programs [10]. In PDL, there are two syntactic
entities: formulas and programs. Formulas are interpretedin nodes of a Kripke structure
and can be built up from atomic propositions using boolean connectives. Programs are
interpreted by binary relations over the node set of a Kripkestructure and can be built
up from atomic programs using the operations of union, composition, and Kleene hull
(reflexive transitive closure). PDL contains two means for connecting formulas and
programs: Programs may appear in modalities in front of formulas, i.e., ifπ is a program
andϕ is a formula, then〈π〉ϕ is true in a nodeu if there exists a nodev, whereϕ holds
and which can be reached fromu via the programπ. Moreover, PDL allows to construct
programs from formulas using the test operator: Ifϕ is a formula, then the programϕ?
is the identity relation on the node set restricted to those nodes whereϕ holds. Since
its invention, many different extensions of PDL were proposed, mainly by allowing
further operators on programs, like for instance the converse or intersection operator,
see the monograph [13] for a detailed exposition. Recently,PDL, where programs are
defined via visibly pushdown automata, was investigated [18]. PDL and its variations
found numerous applications, e.g., in program verification, agent-based systems, and
XML-querying. In AI, PDL received attention by its close relationship to description
logics and epistemic logic, see [16] for references.

In the early days of PDL, researchers mainly concentrated onsatisfiability problems
and axiomatization of PDL and its variants. With the emergence of automatic verifica-
tion, also model-checking problems for modal logics becamea central research topic,
and consequently model-checking problems for PDL attracted attention [16]. In this
paper, we start to investigate model-checking problems forPDL over infinite state sys-
tems. In recent years, verification of infinite state systemsbecame a major topic in the
model-checking community. Usually, infinite state systems, like for instance systems
with unbounded communication buffers or unbounded stacks,are modeled by some

kind of abstract machine, which defines an infinite transition system (Kripke structure):
nodes correspond to system states and state transitions of the system are modeled by
labeled edges. Various classes of (finitely presented) infinite transition systems were
studied under the model-checking perspective in the past, see e.g. [25] for a survey.
In [22] Mayr introduced a uniform classification of infinite state systems in terms of
two basic operations: parallel and sequential composition. In this paper, we will mainly
follow Mayr’s classification.

We believe that model-checking of PDL and its variants over infinite state systems
is not only a natural topic, but also a useful and applicable research direction in ver-
ification. PDL allows directly to express regular reachability properties, which were
studied e.g. in [19, 22, 30] in the context of infinite state systems. For instance, consider
the property that a process can reach a state, where a condition ϕ holds, via a path on
which the action sequencea1a2 · · · an is repeated cyclically. Clearly, this can be ex-
pressed in CTL (ifϕ can be expressed in CTL), but we think that the PDL-formula
〈(a1 ◦a2 ◦ · · · ◦an)∗〉ϕ is a more readable specification. Secondly, and more important,
the extension of PDL with the intersection operator on programs [12], PDL∩ for short,
allows to formulate natural system properties that cannot be expressed in the modal
µ-calculus (since they do not have the tree model property), like for instance that a
system can be reset to the current state (Example 2) or that two forking processes may
synchronize in the future (Example 3).

In Section 5 we study model-checking problems for PDL and itsvariants over in-
finite state systems. For infinite state systems with parallel composition, PDL immedi-
ately becomes undecidable. More precisely, we show that PDLbecomes undecidable
over BPP (basic parallel processes), which correspond to Petri nets, where every tran-
sition needs exactly one token for firing (Proposition 1). This result follows from the
undecidability of the model-checking problem for EF (the fragment of CTL, which only
contains next-modalities and the “exists finally”-modality) for Petri nets [8]. Due to this
undecidability result we mainly concentrate on infinite state systems with only sequen-
tial composition. In Mayr’s classification these are pushdown systems (PDS) and basic
process algebras (BPA), where the latter correspond to stateless pushdown systems.
Pushdown systems were used to model the state space of programs with nested proce-
dure calls, see e.g. [9]. Model-checking problems for pushdown systems were studied
for various temporal logics (LTL, CTL, modalµ-calculus) [1, 9, 15, 28, 29]. We also
include prefix-recognizable systems (PRS) into our investigation [3, 5], which extend
pushdown systems. Model-checking problems for prefix-recognizable systems were
studied e.g. in [4, 14]. The decidability of PDL and even PDL∩ for prefix-recognizable
systems (and hence also BPA and PDS) follows from the fact that monadic second-order
logic (MSO) is decidable for these systems and that PDL∩ can be easily translated
into MSO. But from the viewpoint of complexity, this approach is quite unsatisfac-
tory, since it leads to a nonelementary algorithm. On the other hand, for PDL (without
the intersection operator) it turns out that based on the techniques of Walukiewicz for
model-checking CTL and EF over pushdown systems [28], we canobtain sharp (ele-
mentary) complexity bounds: Whereas test-free PDL behaves w.r.t. to the complexity
of the model-checking problem exactly in the same way as EF (PSPACE-complete in
most cases), PDL with the test-operator is more difficult (EXP-complete in most cases).

The analysis ofPDL∩ turns out to be more involved. This is not really surprising.
PDL∩ turned out to be notoriously difficult in the past. It does nothave the tree model
property, and as a consequence the applicability of tree automata theoretic methods is
quite limited. Whereas PDL is translatable into the modalµ-calculus, PDL∩ is orthog-
onal to the modalµ-calculus with respect to expressiveness. A very difficult result of
Danecki states that satisfiability of PDL∩ is in 2EXP [7]. Only recently, a matching
lower bound was obtained by Lange and Lutz [17]. Our main result of this paper states
that the expression/combined complexity of PDL∩ (and also the test-free fragment of
PDL∩) over BPA/PDS/PRS is2EXP-complete, whereas the data complexity goes down
to EXP. For the2EXP lower bound proof, we use a technique from [28] for describing
a traversal of the computation tree of an alternating Turingmachine in CTL using a
pushdown. The main difficulty that remains is to formalize inPDL∩ that two configura-
tions of an exponential space alternating Turing machine (these machines characterize
2EXP) are successor configurations. For the upper bound, we transform a PDL∩ for-
mulaϕ into a two-way alternating tree automatonA of exponential size, which has to
be tested for emptiness. Since emptiness of two-way alternating tree automata can be
checked in exponential time [27], we obtain a doubly exponential algorithm. Most of
the inductive construction ofA from ϕ uses standard constructions for two-way alter-
nating tree automata. It is no surprise that the intersection operator is the difficult part
in the construction ofϕ. The problem is that two paths from a source nodes to a target
nodet, where the first (resp. second) path is a witness that(s, t) belongs to the interpre-
tation of a programπ1 (resp.π2) may completely diverge. This makes it hard to check
for an automaton whether there is both aπ1-path and aπ2-path froms to t. Our solution
is based on a subtle analysis of such diverging paths in pushdown systems.

One might argue that the high complexity (2EXP-completeness) circumvents the
application of PDL∩ model checking for pushdown systems. But note that the data com-
plexity (which is a better approximation to the “real” complexity of model-checking,
since formulas are usually small) of PDL∩ over pushdown systems is onlyEXP, which
is the same as the data complexity of CTL [28]. Moreover, to obtain an exponential
time algorithm for PDL∩ it is not really necessary to fix the formula, but it suffices to
bound the nesting depth of intersection operators in programs. One may expect that this
nesting depth is small in natural formulas, like in Example 2or 3 (where it is 1). Table 1
gives an overview on our results. Proofs can be found in the technical report [11].

2 Preliminaries

Let Σ be a finite alphabet and letε denote the empty word. LetΣε = Σ ∪ {ε} and
let Σ = {a | a ∈ Σ} be adisjoint copyof Σ. For a wordw = a1 · · · an ∈ Σ∗

(a1, . . . , an ∈ Σ) let wrev = an · · · a1. ForL ⊆ Σ∗ let Lrev = {wrev | w ∈ L}. Let
R,U ⊆ A×A be binary relations over the setA. ThenR∗ is thereflexive and transitive
closure ofR. Thecompositionof R andU is R ◦ U = {(a, c) ∈ A × A | ∃b ∈ A :
(a, b) ∈ R∧(b, c) ∈ U}. Letf : A → C andg : B → C be functions, whereA∩B = ∅.
Thedisjoint unionf ⊎ g : A ∪ B → C of f andg is defined by(f ⊎ g)(a) = f(a) for
a ∈ A and(f ⊎ g)(b) = g(b) for b ∈ B. Let AB = {f | f : B → A} be the set of all
functions fromB to A.

We assume that the reader is familiar with standard complexity classes likeP (deter-
ministic polynomial time),PSPACE (polynomial space),EXP (deterministic exponen-
tial time), and2EXP (deterministic doubly exponential time), see [24] for moredetails.
Hardness results are always meant w.r.t. logspace reductions. Analternating Turing ma-
chine (ATM)is a tupleM = (Q,Σ, Γ, q0, δ,¤) where (i)Q = Qacc ⊎Qrej ⊎Q∃ ⊎Q∀

is a finite set ofstatesQ which is partitioned intoaccepting(Qacc), rejecting(Qrej),
existential(Q∃) anduniversal(Q∀) states, (ii)Γ is afinite tape alphabet, (iii) Σ ⊆ Γ

is the input alphabet, (iv) q0 ∈ Q is the initial state, (v) ¤ ∈ Γ \ Σ is the blank
symbol, and (vi) the mapδ : (Q∃ ∪ Q∀) × Γ → Moves × Moves with Moves =
Q × Γ × {←,→} assigns to every pair(q, γ) ∈ (Q∃ ∪ Q∀) × Γ a pair ofmoves. If
δ(q, a) = ((q1, a1, d1), (q2, a2, d2)), then this means that ifM is in stateq and reads
the symbola, then the left (right) successor configuration of the current configuration
results by writinga1 (a2), the read-write head moves in directiond1 (d2), and the new
state isq1 (q2). A configuration ofM is a word fromΓ ∗QΓ+. A configurationc of M,
where the current state isq, is acceptingif (i) q ∈ Qacc or (ii) q ∈ Q∃ and there exists
an accepting successor configuration ofc or (iii) q ∈ Q∀ and both successor configu-
rations ofc are accepting. The machineM accepts an inputw if and only if the initial
configurationq0w is accepting.

3 Propositional Dynamic Logic and extensions

Formulas of propositional dynamic logic (PDL) are interpreted overKripke structures:
Let P be a set ofatomic propositionsand letΣ a set ofatomic programs. A Kripke
structureover(P, Σ) is a tupleK = (S, {→σ| σ ∈ Σ}, ρ) where (i)S is a set ofnodes,
(ii) →σ⊆ S × S is a transition relationfor all σ ∈ Σ and (iii) ρ : S → 2P labels every
node with a set of atomic propositions. Formulas and programs of the logicPDL∩ (PDL
with intersection) over(P, Σ) are defined by the following grammar, wherep ∈ P and
σ ∈ Σ:

ϕ ::= p | ¬ϕ | ϕ1 ∨ ϕ2 | 〈π〉 ϕ

π ::= σ | π1 ∪ π2 | π1 ∩ π2 | π1 ◦ π2 | π∗ | ϕ?

We use the abbreviations(ϕ1∧ϕ2) = ¬(¬ϕ1∨¬ϕ2) and[π]ϕ = ¬〈π〉¬ϕ. Moreover, a
set{a1, . . . , an} ⊆ Σ of atomic programs is identified with the programa1 ∪ · · · ∪ an.
The semanticof PDL∩ is defined over Kripke structures. Given a Kripke structure
K = (S, {→σ | σ ∈ Σ}, ρ) over (P, Σ), we define via mutual induction for each
PDL∩ programπ a binary relation[[π]]K ⊆ S × S and for eachPDL∩ formula ϕ a
subset[[ϕ]]K ⊆ S as follows, whereσ ∈ Σ, p ∈ P, and op∈ {∪,∩, ◦}:

[[σ]]K =→σ [[p]]K = {s | p ∈ ρ(s)}

[[ϕ?]]K = {(s, s) | s ∈ [[ϕ]]K} [[¬ϕ]]K = S \ [[ϕ]]K

[[π∗]]K = [[π]]∗K [[ϕ1 ∨ ϕ2]]K = [[ϕ1]]K ∪ [[ϕ2]]K

[[π1 op π2]]K = [[π1]]K op [[π2]]K [[〈π〉ϕ]]K = {s | ∃t : (s, t) ∈ [[π]]K ∧ t ∈ [[ϕ]]K}

Note that[[〈ϕ?〉ψ]]K = [[ϕ ∧ ψ]]K. For s ∈ S we write (K, s) |= ϕ if and only if
s ∈ [[ϕ]]K. If the Kripke structureK is clear from the context we write[[ϕ]] for [[ϕ]]K.

PDL is the fragment ofPDL∩, where the intersection operator∩ on programs is not
allowed.Test-free PDL(resp.test-freePDL∩) is the fragment of PDL (resp.PDL∩),
where the test-operator “?” is not allowed. The size|ϕ| of a PDL∩ formulaϕ and the
size |π| of a PDL∩ programπ is defined as follows:|p| = |σ| = 1 for all p ∈ P

andσ ∈ Σ, |¬ϕ| = |ϕ?| = |ϕ| + 1, |ϕ ∨ ψ| = |ϕ| + |ψ| + 1, |〈π〉ϕ| = |π| + |ϕ|,
|π1 op π2| = |π1| + |π2| + 1 for op∈ {∪,∩, ◦}, and|π∗| = |π| + 1. The fragment EF
of CTL (where only the next and “exists finally” modality is allowed) can be defined
as the fragment of test-free PDL, consisting of all formulasϕ such that every for every
subformula of the form〈π〉ψ, eitherπ ∈ Σ or π = Σ∗.

A PDL programπ (where the intersection operator is not allowed) can be viewed
as a regular expression and translated into a finite automaton A, where transitions are
labeled by symbols fromΣ and test formulasϕ?. The semantic[[A]] of this automaton
is the union of all relations[[c1]] ◦ · · · ◦ [[cn]], wherec1 · · · cn labels a path from the
initial state ofA to a final state; note thatci can be of the formϕ?. This PDL-variant is
sometimes called APDL. ForPDL∩ such a translation does not exist. Moreover,PDL∩

neither possesses the finite model property nor the tree model property in contrast to
PDL [13].

Given a classC of Kripke structures and a logicL (e.g. PDL orPDL∩), themodel-
checking problemasks: Given a Kripke structureK ∈ C, a nodes of K, and a formula
ϕ ∈ L, does(K, s) |= ϕ hold. Following Vardi [26], we distinguish between three
measures of complexity:

– Data Complexity: The complexity of verifying for a fixed formulaϕ ∈ L, whether
(K, s) |= ϕ for a given Kripke structureK ∈ C and a nodes of K.

– Expression Complexity: The complexity of verifying for a fixed Kripke structure
K ∈ C and nodes, whether(K, s) |= ϕ for a given formulaϕ ∈ L.

– Combined Complexity: The complexity of verifying(K, s) |= ϕ for a given formula
ϕ ∈ L, a given Kripke structureK ∈ C, and a nodes.

Convention In the rest of this paper, we will considerPDL∩ without atomic propo-
sitions. A Kripke structure will be just a tupleK = (S, {→σ| σ ∈ Σ}) where→σ⊆
S×S. Formally, we introduce the only atomic propositiontrue and define[[true]]K = S.
This is not a restriction, since a Kripke structure(S, {→σ| σ ∈ Σ}, ρ) (whereρ : S →
2P, Σ ∩ P = ∅) can be replaced by the new Kripke structure(S, {→σ| σ ∈ Σ ∪ P})
where→p = {(s, s) | p ∈ ρ(s)} for all p ∈ P. For the formalisms for specifying
infinite Kripke structures that we will introduce in the nextsection, we will see that (a
finite description of) this propositionless Kripke structure can be easily computed from
(a finite description of) the original Kripke structure. Moreover, inPDL∩ formulas, we
have to replace every occurrence of an atomic propositionp by the formula〈p〉true.

4 Infinite state systems

In this section, we consider several formalisms for describing infinite Kripke structures.
Let Σ be be a set of atomic programs andΓ be a finite alphabet.

A basic parallel process(BPP) is a communication free Petri net, i.e., a Petri net,
where every transition needs exactly one token for firing. Bylabeling transitions of a

Petri net with labels fromΣ, one can associate an infinite Kripke structureK(N) with
a BPPN , see [21] for more details.

A basic process algebra(BPA) overΣ is a tupleX = (Γ,∆) where∆ ⊆ Γε ×Σ×
Γ ∗ is a finite transition relation. The BPAX describes the Kripke structureK(X) =
(Γ ∗, {→σ| σ ∈ Σ}) overΣ, where→σ= {(γw, vw) | w ∈ Γ ∗ and(γ, σ, v) ∈ ∆}
for all σ ∈ Σ. Thesize|X | of X is |Γ | + |Σ| +

∑

(γ,σ,v)∈∆ |v|. If (γ, σ, v) ∈ ∆, we

also writeγ
σ
−→X v.

Example 1.For a finite alphabetΓ we will use the BPATreeΓ = (Γ,∆) overΓ ∪ Γ

where∆ = {(ε, a, a) | a ∈ Γ} ∪ {(a, a, ε) | a ∈ Γ}. ThenK(TreeΓ) is the complete
tree overΓ with backwards edges.

A pushdown system(PDS) overΣ is a tupleY = (Γ, P,∆) where (i)P is a finite set
of control states, and (ii)∆ ⊆ P ×Γε ×Σ ×P ×Γ ∗ is a finitetransition relation. The
PDSY describes the Kripke structureK(Y) = (PΓ ∗, {→σ| σ ∈ Σ}) overΣ, where
→σ= {(pγw, qvw) | w ∈ Γ ∗ and(p, γ, σ, q, v) ∈ ∆} for all σ ∈ Σ. Thesize|Y| of Y
is |Γ |+ |P |+ |Σ|+

∑

(p,γ,σ,q,v)∈∆ |v|. If (p, γ, σ, q, v) ∈ ∆, we also writepγ
σ
−→Y qv.

Note that a BPA is just a stateless PDS.

Example 2.Let K = (S, {→σ| σ ∈ Σ}) be a deterministic Kripke structure, i.e., for
every states ∈ S and everyσ ∈ Σ there is at most onet ∈ S with s →σ t. For PDL over
BPA and PDS, determinism is no restriction: it can be ensuredby choosing a possibly
larger setΣ′ of atomic programs such that every transition of the BPA (PDS) can be
labeled with a uniqueσ′ ∈ Σ′. Every original atomic programσ can be recovered as
a union of some of these new atomic programs (for PRS, this doesn’t work). We now
want to express that the current states ∈ S is a recovery state of the system in the
sense that wherever we go froms, we can always move back tos. This property cannot
be expressed in the modalµ-calculus unless the states is somehow uniquely marked,
e.g., by a special atomic proposition (but here, we want to define the set of all recovery
states). One can show thats is a recovery state if and only if

(K, s) |= [Σ∗]
∧

σ∈Σ

(

〈σ〉true ⇒ 〈true? ∩ σ ◦ Σ∗〉true
)

.

Note thattrue? defines the identity relation onS.

Example 3.Let us consider two PDSYi = (Γ, Pi,∆i) (with a common pushdown
alphabetΓ) over Σi (i ∈ {1, 2}), whereΣ1 ∩ Σ2 = ∅, and such thatK(Y1) and
K(Y2) are deterministic (which, by the remarks from Example 2, is not a restriction).
The systemsY1 andY2 may synchronize over states from the intersectionP1 ∩ P2.
These two systems can be modeled by the single PDSY = (Γ, P1 ∪P2,∆1 ∪∆2) over
Σ1 ∪ Σ2. In this context, it might be interesting to express that wheneverY1 andY2

can reach a common nodes, and froms, Yi can reach a nodesi by a local action, then
the two systems can reach froms1 ands2 again a common node. This property can be
expressed by the PDL∩ formula

[Σ∗
1 ∩ Σ∗

2]
∧

a∈Σ1,b∈Σ2

(

〈a〉true ∧ 〈b〉true ⇒ 〈a ◦ Σ∗
1 ∩ b ◦ Σ∗

2 〉true
)

.

BPA PDS PRS

data P-complete EXP-complete
EF

expression PSPACE-complete
PDL\?

combined EXP-complete

data P-complete

PDL expression EXP-complete

combined

data PSPACE-hard, inEXP EXP-complete
PDL∩

expression
PDL∩\?

combined
2EXP-complete

Table 1.

Note that[[a ◦ Σ∗
1 ∩ b ◦ Σ∗

2]] is in general not the empty relation, although of course
a ◦ Σ∗

1 ∩ b ◦ Σ∗
2 = ∅ when interpreted as a regular expression with intersection.

A relation U ⊆ Γ ∗ × Γ ∗ is prefix-recognizableover Γ , if U =
⋃n

i=1 Ri (n ≥
1) and Ri = {(uw, vw) | u ∈ Ui, v ∈ Vi, w ∈ Wi} for some regular languages
Ui, Vi,Wi ⊆ Γ ∗ (1 ≤ i ≤ n). We briefly write Ri = (Ui × Vi)Wi. A prefix-
recognizable system(PRS) (which should not be confused with Mayr’s PRS (pro-
cess rewrite systems) [21]) overΣ is a pairZ = (Γ, α) whereα assigns to every
atomic programσ ∈ Σ a prefix-recognizable relationα(σ) over Γ , which is given
by finite automataAσ

1 ,Bσ
1 , Cσ

1 , . . . ,Aσ
nσ

,Bσ
nσ

, Cσ
nσ

such thatα(σ) =
⋃nσ

i=1(L(Aσ
i) ×

L(Bσ
i))L(Cσ

i). The PRSZ describes the Kripke structureK(Z) = (Γ ∗, {α(σ) | σ ∈
Σ}) overΣ. Thesize|Z| of Z is |Γ |+ |Σ|+

∑

σ∈Σ

∑nσ

i=1 |A
σ
i |+ |Bσ

i |+ |Cσ
i |, where

|A| is the number of states of a finite automatonA.
Our definition of BPA (resp. PDS) allows transitions of the form ε

σ
−→X v (resp.

p
σ
−→Y qv for control statesp and q). It is easy to see that our definition describes

exactly the same class of BPA (resp. PDS) as defined in [20, 21](resp. [2, 21, 29, 28]),
and there are logspace translations between the two formalisms.

Usually, in the literature a PDSY describes a Kripke structure with atomic propo-
sitions from some setP. For this purpose,Y contains a mapping̺ : P → 2P, whereP

is the set of control states ofY, and one associates with the atomic propositionη ∈ P

the set of all configurations where the current control statep satisfiesη ∈ ̺(p). In our
formalism, which does not contain atomic propositions, we can simulate such an atomic
propositionsη by introducing the new transition rulep

η
→ p wheneverη ∈ ̺(p), see

also the convention from the end of Section 3. Similar remarks apply to BPA and PRS.
Table 1 summarizes our complexity results for PDL and its variants.

5 Model-checking PDL over infinite state systems

It was shown in [8] that the model-checking problem of EF over(the Kripke structures
defined by) Petri nets is undecidable. A reduction of this problem to the model-checking
problem of test-free PDL over BPP shows:

Proposition 1. The model-checking problem for test-free PDL over BPP is undecid-
able.

Hence, in the following we will concentrate on the (sequential) system classes BPA,
PDS, and PRS. Our results for (test-free) PDL without intersection over BPA/PDS/PRS
mainly use results or adapt techniques from [2, 22, 28, 29], see Table 1. It turns out
that PDL without test behaves in exactly the same way as EF, and that adding the test
operator leads in most cases to a complexity jump up toEXP-completeness.

In the rest of the paper, we concentrate onPDL∩, for which we prove that the
expression and combined complexity over BPA/PDS/PRS is complete for2EXP. Our
lower bound proof uses a technique from [28] for describing atraversal of the com-
putation tree of an alternating Turing machine in CTL using apushdown. The main
difficulty that remains is to formalize in PDL∩ that two configurations of an exponen-
tial space alternating Turing machine (these machines characterize 2EXP) are successor
configurations. For doing this, we adjoin to every tape cell abinary counter, which rep-
resents the position of the tape cell. This encoding of configurations is also used in the
recent2EXP lower bound proof of Lange and Lutz for satisfiability of PDL∩ [17].

Theorem 1. There exists a fixed BPAX such that the following problem is2EXP-hard:
INPUT: A test-free PDL∩-formulaϕ.
QUESTION:(K(X), ε) |= ϕ?

Proof. Since 2EXP equals the class of all languages that can be accepted by an ATM
in exponential space [6], we can choose a fixed2p(m) − 1 space bounded ATMM =
(Q,ΣM, ΓM, q0, δ,¤) (wherep(m) is a polynomial) with a 2EXP-complete accep-
tance problem. The machineM satisfies the conventions of Section 2. Letw ∈ Σ∗

M

be an input of lengthn. We construct a fixed BPAX = X (M) = (Γ,∆) and a test-
free PDL∩-formula ϕ = ϕ(w,M) each overΣ = Σ(M) such thatw ∈ L(M)
if and only if (K(X), ε) |= ϕ. Let N = p(n) andΩ = Q ∪ ΓM. A configuration

c of M is a word from the language
⋃

0≤i≤2N−2 Γ i
MQΓ 2N−1−i

M . We will represent
c = γ0 · · · γi−1qγi+1 · · · γ2N−1 by the word

γ0[0] · · · γi−1[i − 1]q[i]γi+1[i + 1] · · · γ2N−1[2
N − 1], (1)

where[k] denotes the binary representation ofk (0 ≤ k ≤ 2N − 1) with N bits, i.e.,
[k] = β0 · · ·βN−1 with βj ∈ {0, 1} andk =

∑N−1
j=0 2j · βj . A cell is a stringω[i],

whereω ∈ Ω and0 ≤ i ≤ 2N − 1. Let Moves = Q × ΓM × {←,→} be the set of
moves ofM and let

Dir = {L(µ1, µ2), R(µ1, µ2) | (µ1, µ2) ∈ δ(Q∀, Γ)} ∪

{E(µ1), E(µ2) | (µ1, µ2) ∈ δ(Q∃, Γ)}

be the set ofdirection markers. These symbols separate consecutive configurations of
the form (1) on the pushdown. As in [28], direction markers are used in order to orga-
nize a depth-first left-to-right traversal of the computation tree of the ATMM on the
pushdown. LetΓ = Ω ∪{0, 1}∪Dir andΣ = Γ ∪Γ ∪{λ}, which is a fixed alphabet.
We define the fixed BPAX to beTreeΓ (see Example 1) together with the rule(ε, λ, ε),
which generates aλ-labeled loop at every node. In order to define thePDL∩ formula
ϕ, we need several auxiliary programs:

– X =
⋃

x∈X x for X ⊆ Γ : Pops a single symbolx ∈ X from the pushdown.

– popi = {0, 1}
i

for all 0 ≤ i ≤ N : Popsi bits from the pushdown.
– cell = Ω ◦ popN : Pops a cellω[i] from the pushdown.

– cell0 = Ω ◦ 0
N

: Pops a cellω[0] from the pushdown.

– cell1 = ΓM ◦ 1
N

: Pops a cellγ[2N − 1] for γ ∈ ΓM from the pushdown.

Next, we define a programinc, which is executable only if on top of the pushdown there
is a word of the formω[i]ω′[i + 1] for someω, ω′ ∈ Ω and some0 ≤ i < 2N − 1.
The programinc popsω[i] during it execution. In order to defineinc we will use the
programsχj,β (0 ≤ j < N , β ∈ {0, 1}) which assure that, after poppingj bits of the
current cell, a bitβ can be popped that matches the bit that can be popped after popping
anotherj bits of the subsequent cell. Afterwards, further bits may bepopped:

χj,β = popj ◦ β ◦ {0, 1}
∗
◦ Ω ◦ popj ◦ β ◦ {0, 1}

∗

inc = cell ∩

[

(cell ◦ cell) ∩ Ω ◦
N−1
⋃

i=0

(

1
i
◦ 0 ◦ {0, 1}

∗
◦ cell ∩

{0, 1}
∗
◦ Ω ◦ 0

i
◦ 1 ◦ {0, 1}

∗
∩

N−1
⋂

j=i+1

(χj,0 ∪ χj,1)
)

]

◦ Γ ∗

The next programconf is only executable if the top of the pushdown is a legal con-
figuration in the sense of (1), i.e.: A word of the formω0[0]ω1[1] · · ·ω2N−1[2

N − 1]
is assumed to be on top of the pushdown, for exactly one0 ≤ i ≤ 2N − 2 we have
ωi ∈ Q, and for all otheri we haveωi ∈ ΓM. This top configuration is being popped
during execution:

conf = (cell0 ◦ cell
∗
) ∩ (inc

∗
◦ cell1) ∩ (ΓM ∪ {0, 1}

∗
◦ Q ◦ ΓM ∪ {0, 1}

∗
)

For all ω, ω′ ∈ Ω the programπω,ω′ is only executable if the top of the pushdown is
a certain suffix of a configuration ofM followed by a direction markerd ∈ Dir and a
complete configuration ofM. More precisely,

ωk[k] · · ·ω2N−1[2
N − 1] dω′

0[0] · · ·ω′
2N−1[2

N − 1]

with ωk = ω andω′
k = ω′ must be on top of the pushdown. During its execution,πω,ω′

popsωk[k] from the pushdown:

πω,ω′ = cell ∩





N−1
⋂

i=0

⋃

β∈{0,1}

ω ◦ popi ◦ β ◦ {0, 1}
∗
◦

cell
∗
◦ Dir ◦ cell

∗
◦ ω′ ◦ popi ◦ β ◦ {0, 1}

∗

)

◦ Γ ∗

The programπ= =
⋃

ω∈Ω πω,ω checks whether the content of the top cellω[k] equals
the content of thek-th cell of the subsequent configuration. Now we define a program

checkµ for µ ∈ Moves, which is only executable ifcdc′ is on top of the pushdown,
where: (i)c andc′ are configurations ofM in the sense of (1), (ii)d ∈ Dir, and (iii)M
moves from configurationc′ to configurationc by the moveµ. We restrict ourselves to
the case whereµ = (q, a,←):

λ ∩

(

conf ◦ Dir ◦ conf ∩ π∗
= ◦

⋃

p∈Q,b,c∈ΓM

(πq,c ◦ πc,p ◦ πa,b) ◦ π∗
= ◦ Dir ◦ conf

)

◦ Γ ∗

The rest of the proof is analogous to Walukiewicz’s proof fortheEXP lower bound for
CTL over PDS [28]. Using the direction markers, we can define aprogramtraverse,
whose execution simulates on the pushdown a single step in a depth-first left-to-right
traversal of the computation tree ofM. Using a program init, which pushes the initial
configuration on the pushdown, we get(ε, ε) ∈ [[init◦traverse∗]] if and only if the initial
configurationq0w is accepting. ⊓⊔

In the rest of this paper, we sketch a2EXP upper bound for the combined com-
plexity of PDL∩ over PRS. For this, we need the concept of two-way alternating tree
automata. Vardi and Kupferman [15] reduced the model-checking problem of the modal
µ-calculus over PRS to the emptiness problem for two-way alternating tree automata,
and thereby deduced anEXP upper bound for the former problem, see also [4, 29]. Our
general strategy for model-checkingPDL∩ over PRS is the same.

Let Γ be a finite alphabet. AΓ -treeis a suffix-closed subsetT ⊆ Γ ∗, i.e., ifaw ∈ T

for w ∈ Γ ∗ anda ∈ Γ , thenw ∈ T . Elements ofT are callednodes. An infinite path
in the treeT is an infinite sequenceu1, u2, . . . of nodes such thatu1 = ε and for
all i ≥ 1, ui+1 = aiui for someai ∈ Γ . A Σ-labeledΓ -tree, whereΣ is a finite
alphabet, is a pair(T, λ), whereT is aΓ -tree andλ : T → Σ is a labeling function.
The completeΓ -tree is theΓ ⊎ {⊥}-labeledΓ -tree(Γ ∗, λΓ) whereλΓ (ε) = ⊥ and
λΓ (aw) = a for a ∈ Γ andw ∈ Γ ∗. For a finite setX, let B+(X) be the set of
all positive boolean formulas overX; note thattrue and false are positive boolean
formulas. A subsetY ⊆ X satisfiesθ ∈ B+(X), if θ becomes true when assigning
true to all elements inY . Let ext(Γ) = Γ ⊎ {ε, ↓} and define for allu ∈ Γ ∗, a ∈ Γ :
εu = u, ↓au = u, whereas↓ε is undefined.

A two-way alternating tree automaton(TWATA) over Γ is a tripleT = (S, δ,Acc),
whereS is a finiteset of states, δ : S × (Γ ∪{⊥}) → B+(S × ext(Γ)) is thetransition
function, andAcc : S → {0, . . . ,m} is the priority function, wherem ∈ N. Let
u ∈ Γ ∗ and s ∈ S. An (s, u)-run of T (over the completeΓ -tree (Γ ∗, λΓ)) is a
(S × Γ ∗)-labeledΩ-treeR = (TR, λR) for some finite setΩ such that: (i)ε ∈ TR,
(ii) λR(ε) = (s, u), and (iii) if α ∈ TR with λR(α) = (s′, v) andδ(s′, λΓ (v)) = θ,
then there is a subsetY ⊆ S × ext(Γ) that satisfies the formulaθ and for all(s′′, e) ∈
Y there existsω ∈ Ω with ωα ∈ TR andλR(ωα) = (s′′, ev). An (s, u)-run R =
(TR, λR) of T is successfulif for every infinite pathw1, w2, . . . of TR, min({Acc(s′) |
λR(wi) ∈ {s′} × Γ ∗ for infinitely manyi}) is even. Let[[T , s]] = {u ∈ Γ ∗ | there is a
successful(s, u)-run of T }. Thesize|T | of T is |Γ | + |S| +

∑

θ∈ran(δ) |θ| + |Acc|,
where|Acc| := max{Acc(s) | s ∈ S}. For TWATAsTi = (Si, δi,Acci) (i ∈ {1, 2})
over Γ let T1 ⊎ T2 = (S1 ⊎ S2, δ1 ⊎ δ2,Acc1 ⊎ Acc2) be theirdisjoint union. Note
that in our definition a TWATA over an alphabetΓ only runs on the completeΓ -tree.

Hence, our definition is a special case of the definition in [14, 15, 27], where also runs
of TWATAs on arbitrarily labeled trees are considered. Using [27], we obtain:

Theorem 2 ([27]). For a given TWATAT = (S, δ,Acc) and a states ∈ S, it can be
checked in time exponential in|S| · |Acc| whetherε ∈ [[T , s]].

It should be noted that the size of a positive boolean formulathat appears in the
transition functionδ of a TWATA T = (Q, δ,Acc) can be exponential in|Q|, but
the size ofδ only appears polynomially in the upper bound for emptiness (and not
exponentially, which would lead to a2EXP upper bound for emptiness).

Let T = (S, δ,Acc) be a TWATA overΓ . A nondeterministic finite automaton
(briefly NFA) A overT is a pair(Q,→A) whereQ is a finite state set and all transitions

are of the formp
a
−→A q for p, q ∈ Q, a ∈ Γ ∪ Γ or p

T ,s
−−→A q for p, q ∈ Q, s ∈ S.

The latter transitions are calledtest-transitions. Let A↓ (resp.A↑) be the NFA overT
that results fromA by removing all transitions with a label fromΓ (resp.Γ), i.e., we
only keep test-transitions and transitions with a label from Γ (resp.Γ). Let ⇒A ⊆
(Γ ∗ × Q) × (Γ ∗ × Q) be the smallest relation with:

– (u, p) ⇒A (au, q) wheneveru ∈ Γ ∗ andp
a
→A q

– (au, p) ⇒A (u, q) wheneveru ∈ Γ ∗ andp
ā
→A q

– (u, p) ⇒A (u, q) wheneveru ∈ [[T , s]] andp
T ,s
−−→A q

Let [[A, p, q]] = {(u, v) ∈ Γ ∗ × Γ ∗ | (u, p) ⇒∗
A (v, q)} for p, q ∈ Q.

We will inductively transform a given PDL∩-formula (resp. PDL∩-program) into
an equivalent TWATA (resp. NFA over a TWATA). In order to handle the intersection
operator on programs, we first have to describe a general automata theoretic construc-
tion: Let T = (S, δ,Acc) be a TWATA overΓ and letA = (Q,→A) be an NFA over
T . Let hopA ⊆ Γ ∗ × Q × Q be the smallest set such that:

– for all u ∈ Γ ∗ andq ∈ Q we have(u, q, q) ∈ hopA

– if (au, p′, q′) ∈ hopA, p
a
→A p′, andq′

ā
→A q, then(u, p, q) ∈ hopA

– if (u, p, r), (u, r, q) ∈ hopA, then(u, p, q) ∈ hopA

– if u ∈ [[T , s]], p
T ,s
−−→A q, then(u, p, q) ∈ hopA

Intuitively, (u, p, q) ∈ hopA if and only if we can walk from nodeu of the complete
Γ -tree back tou along a path consisting of nodes fromΓ ∗u. At the beginning of this
walk, the automatonA is initialized in statep, each time we move in the tree fromv to
av (resp.av to u) we reada (resp.̄a) in A, andA ends in stateq. Formally, we have:

Lemma 1. We have(u, p, q) ∈ hopA if and only if there existn ≥ 1, u1, . . . , un ∈
Γ ∗u, andq1, . . . , qn ∈ Q such thatu1 = un = u, q1 = p, qn = q, and(u1, q1) ⇒A

(u2, q2) · · · ⇒A (un, qn).

The inductive definition of the sethopA can be translated into a TWATA:

Lemma 2. There exists a TWATAU = (S′, δ′,Acc′) with state setS′ = S ⊎ (Q × Q)
such that (i)[[U , s]] = [[T , s]] for s ∈ S, (ii) [[U , (p, q)]] = {u ∈ Γ ∗ | (u, p, q) ∈ hopA}
for (p, q) ∈ Q × Q, and (iii) |Acc′| = |Acc|.

Define a new NFAB = (Q,→B) over the TWATAU by adding toA for every pair

(p, q) ∈ Q × Q the test-transitionp
U,(p,q)
−−−−→ q.

Lemma 3. Letu, v ∈ Γ ∗ andp, q ∈ Q. Then the following statements are equivalent:

– (u, v) ∈ [[A, p, q]]
– (u, v) ∈ [[B, p, q]]
– there exist a common suffixw of u andv and a stater ∈ Q with (u,w) ∈ [[B↓, p, r]]

and(w, v) ∈ [[B↑, r, q]]

Let dropB ⊆ Γ ∗ × Q × Q be the smallest set such that:

– for all u ∈ Γ ∗ andp ∈ Q we have(u, p, p) ∈ dropB

– if (u, p′, q′) ∈ dropB , p
ā
→B p′, andq′

a
→B q, then(au, p, q) ∈ dropB

– if s′ ∈ S′, u ∈ [[U , s′]], p
U,s′

−−→B r, and(u, r, q) ∈ dropB , then(u, p, q) ∈ dropB

– if s′ ∈ S′, u ∈ [[U , s′]], r
U,s′

−−→B q, and(u, p, r) ∈ dropB , then(u, p, q) ∈ dropB

Lemma 4. We have(u, p, q) ∈ dropB if and only if there existr ∈ Q and a suffixv of
u such that(u, v) ∈ [[B↓, p, r]] and(v, u) ∈ [[B↑, r, q]].

Again, the inductive definition ofdropB can be translated into a TWATA:

Lemma 5. There exists a TWATAV = (S′′, δ′′,Acc′′) with state setS′′ = S′⊎(Q×Q)
such that: (i)[[V, s′]] = [[U , s′]] for every states′ ∈ S′ of U , (ii) [[V, (p, q)]] = {u ∈ Γ ∗ |
(u, p, q) ∈ dropB} for every state(p, q) ∈ Q × Q, and (iii) |Acc′′| = |Acc|.

Let C = (Q,→C) be the NFA over the TWATAV that results fromB by adding for

every pair(p, q) ∈ Q × Q the test-transitionp
V,(p,q)
−−−−→ q. For u, v ∈ Γ ∗ let inf(u, v)

the longest common suffix ofu andv.

Lemma 6. Letu, v ∈ Γ ∗ andp, q ∈ Q. Then the following statements are equivalent:

– (u, v) ∈ [[A, p, q]]
– (u, v) ∈ [[C, p, q]]
– there existsr ∈ Q with (u, inf(u, v)) ∈ [[C↓, p, r]] and(inf(u, v), v) ∈ [[C↑, r, q]]

Now we are ready to prove the announced2EXP upper bound for the combined com-
plexity of PDL∩ over PRS. LetZ = (Γ, α) be a PRS andϕ be a PDL∩ formula each
overΣ. We translateZ andϕ into a TWATA T = (S, δ,Acc) overΓ together with a
states ∈ S such that(K(Z), ε) |= ϕ if and only if ε ∈ [[T , s]]. The number of states
of T will be exponentially in the size of the formulaϕ and polynomially in the size of
Z and the size of the priority functionAcc will be linear in the size ofϕ, which proves
a 2EXP upper bound by Theorem 2. From now on any occurring TWATA is implicitly
overΓ and the size of the priority function is at least1. The construction ofT is done
inductively over the structure of the formulaϕ. More precisely, (i) for every subfor-
mula ψ of ϕ we construct a TWATAT (ψ) together with a states of T (ψ) such that
[[ψ]] = [[T (ψ), s]] and (ii) for every programπ that occurs inϕ we construct an NFA
A(π) over a TWATAT (π) such that[[π]] = [[A(π), p, q]] for statesp andq of A(π).

The caseψ = true is clear, the caseψ = ψ1 ∧ψ2 can be skipped sinceψ1 ∧ψ2 ⇔
〈ψ1?〉ψ2. If ψ = ¬θ, then we apply the standard complementation procedure [23],
where all positive boolean formulas in the right-hand side of the transition function are
dualized and the acceptance condition is complemented by incrementing the priority
of every state. Ifψ = 〈π〉θ, then we have already constructedA(π), T (π), andT (θ)
such that[[π]] = [[A(π), p, q]] for two statesp andq of A(π) and [[θ]] = [[T (θ), s]] for
a states of T (θ). Basically, the TWATAT (ψ) results from the disjoint union ofA(π)
andT (π) ⊎ T (θ), additionallyT (ψ) can move from stateq to states. It remains to
constructA(π) andT (π) for a PDL∩ subprogramπ of ϕ.

Caseπ = ψ?: We can assume that there exists a TWATAT (ψ) and a stater of T (ψ)
such that[[ψ]] = [[T (ψ), r]]. The TWATA T (π) is T (ψ). The automatonA(π) has two

statesp andq with the only transitionp
T ,r
−−→ q.

Caseπ = σ ∈ Σ: Assume thatα(σ) =
⋃n

i=1(L(A′
i) × L(B′

i))L(C ′
i). Define the

homomorphismh : Γ ∗ → Γ
∗

by h(a) = a for all a ∈ Γ . From the representation
of α(σ) we can construct finite automataAi, Bi, Ci such thatL(Ai) = h(L(A′

i)),
L(Bi) = L(B′

i)
rev, and L(Ci) = h(L(C ′

i)). Basically, the automatonA(π) first
chooses nondeterministically ani ∈ {1, . . . , n} and then simulates the automatonAi,
until a current tree nodeu ∈ Γ ∗ belongs to the languageL(Ci). Then it continues by
simulating the automatonBi. Whether the current tree nodeu ∈ Γ ∗ belongs toL(Ci)
has to be checked by the TWATAT (π), which can be built from the automatonCi.

Case π = π1 ∪ π2, π = π1 ◦ π2, or π = χ∗: We constructA(π) by using the standard
automata constructions for union, concatenation, and Kleene-star. We setT (π1∪π2) =
T (π1 ◦ π2) = T (π1) ⊎ T (π2) andT (χ∗) = T (χ).

It remains to constructA(π1 ∩ π2) andT (π1 ∩ π2). For this, we use the hop/drop-
construction described above: Assume that the NFAA(πi) = (Qi,→i) (i ∈ {1, 2})
over the TWATAT (πi) = (Si, δi,Acci) is already constructed. Thus,[[A(πi), pi, qi]] =
[[πi]] for some statespi, qi ∈ Qi. We first construct the NFAC(πi) over the TWATA
V(πi) = (S′′

i , δ′′i ,Acc′′i) as described in Lemma 6. Note that the state set ofC(πi) is
Qi (the state set ofA(πi)) and that|S′′

i | = |Si| + 2 · |Qi|2. LetT (π1 ∩ π2) = V(π1) ⊎
V(π2). The NFA A(π1 ∩ π2) is the product automaton ofC(π1) andC(π2), where
test-transitions can be done asynchronously: LetA(π1 ∩ π2) = (Q1 × Q2,→), where
for a ∈ Γ ∪ Γ we have(r1, r2)

a
→ (r′1, r

′
2) if and only if ri

a
→C(πi) r′i for i ∈ {1, 2}.

Finally, for a states of V(π1) ⊎ V(π1) we have the test-transition(r1, r2)
T (π1∩π2),s
−−−−−−−→

(r′1, r
′
2) if and only if for somei ∈ {1, 2}: s is a state ofV(πi), ri

V(πi),s
−−−−−→C(πi) r′i, and

r3−i = r′3−i.

Lemma 7. We have[[A(π1∩π2), (p1, p2), (q1, q2)]] = [[π1∩π2]]. Moreover, ifA(πi) =
(Qi,→i), A(π1∩π2) = (Q,→), T (πi) = (Si, δi,Acci), andT (π1∩π2) = (S, δ,Acc),
then: |Q| = |Q1| · |Q2|, |S| = |S1| + |S2| + 2 · |Q1|2 + 2 · |Q2|2, and |Acc| =
max{|Acc1|, |Acc2|}.

Recall that we want to check(K(Z), ε) |= ϕ for the PRSZ and the PDL∩ formulaϕ.
A careful analysis of the constructions above allows to prove inductively:

Lemma 8. If |Z| and|ϕ| are sufficiently large, then:

– For every subformulaψ of ϕ with T (ψ) = (S, δ,Acc) we have|S| ≤ |Z|2·|ψ|2 and
|Acc| ≤ |ψ|.

– For every subprogramπ of ϕ with A(π) = (Q,→) and T (π) = (S, δ,Acc) we
have|Q| ≤ |Z||π|, |S| ≤ |Z|2·|π|

2

, and|Acc| ≤ |π|.

From our construction, Lemma 8, and Theorem 2 we get:

Theorem 3. It can be checked in2EXP, whether(K(Z), ε) |= ϕ for a given PRSZ
and a given PDL∩ formula ϕ. For a fixed PDL∩ formula, it can be checked inEXP,
whether(K(Z), ε) |= ϕ for a given PRSZ.

For the data complexity of test-free PDL∩ over PDA we can prove a matchingEXP

lower bound, by translating the fixed CTL formula from Walukiewicz’s lower bound
proof for the data complexity of CTL over PDS [28] into a fixed test-freePDL∩ for-
mula. For the data complexity of test-free PDL∩ over BPA we can only prove a lower
bound ofPSPACE by a reduction from the universality problem from non-deterministic
finite automata. Altogether, we obtain the results forPDL∩ in Table 1.

One might ask, whether an elementary upper bound also holds for the model-
checking problem of PDL with the complement operator on programs over pushdown
systems. But this model-checking problem allows to expressemptiness for a given ex-
tended regular expression (i.e., regular expression wherethe complement operator is
allowed), which is a well known nonelementary problem.

6 Open problems

On the technical side it remains to close the gap betweenPSPACE andEXP for the data
complexity of PDL∩ over BPA. Another fruitful research direction might be to extend
PDL∩ by a unary fixpoint operator. The resulting logic is strictlymore expressive than
PDL∩ and the modalµ-calculus. We are confident that our upper bounds for PDL∩

from Theorem 3 can be extended to this logic.

References

1. R. Alur, M. Benedikt, K. Etessami, P. Godefroid, T. W. Reps, and M.Yannakakis. Analysis
of recursive state machines.ACM Trans. Program. Lang. Syst, 27(4):786–818, 2005.

2. A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown automata: Ap-
plication to model-checking. InProc. CONCUR’97, LNCS 1243, pages 135–150. Springer,
1997.

3. A. Blumensath. Prefix-recognizable graphs and monadic second-order logic. Tech. Rep.
2001-06, RWTH Aachen, Germany, 2001.

4. T. Cachat. Uniform solution of parity games on prefix-recognizable graphs.ENTCS, 68(6),
2002.

5. D. Caucal. On infinite transition graphs having a decidable monadic theory. Theor. Comput.
Sci., 290(1):79–115, 2002.

6. A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation.J. Assoc. Comput. Mach.,
28(1):114–133, 1981.

7. R. Danecki. Nondeterministic propositional dynamic logic with intersectionis decidable. In
Proc. 5th Symp. Computation Theory, LNCS 208, pages 34–53, 1984.

8. J. Esparza. On the decidabilty of model checking for several mu-calculi and petri nets. In
Proc. CAAP ’94, LNCS 787, pages 115–129. Springer, 1994.

9. J. Esparza, A. Kucera, and S. Schwoon. Model checking LTL withregular valuations for
pushdown systems.Inf. Comput., 186(2):355–376, 2003.

10. M. J. Fischer and R. E. Ladner. Propositional dynamic logic of regular programs.J. Comput.
Syst. Sci., 18(2):194–211, 1979.

11. S. G̈oller and M. Lohrey. Infinite State Model-Checking of Propositional Dynamic Log-
ics Technical Report 2006/04, University of Stuttgart, Germany, 2006. ftp://ftp.informatik.
uni-stuttgart.de/pub/library/ncstrl.ustuttgartfi/TR-2006-04/.

12. D. Harel. Recurring dominoes: making the highly undecidable highly understandable.Ann.
Discrete Math., 24:51–72, 1985.

13. D. Harel, D. Kozen, and J. Tiuryn.Dynamic Logic. Foundations of computing. The MIT
Press, 2000.

14. O. Kupferman, N. Piterman, and M. Vardi. Model checking linear properties of prefix-
recognizable systems. InProc. CAV 2002, LNCS 2404, pages 371–385, 2002.

15. O. Kupferman and M. Y. Vardi. An automata-theoretic approach to reasoning about infinite-
state systems. InProc. CAV 2000, LNCS 1855, pages 36–52. Springer, 2000.

16. M. Lange. Model checking propositional dynamic logic with all extras. J. Appl. Log.,
4(1):39–49, 2005.

17. M. Lange and C. Lutz. 2-Exptime lower bounds for propositional dynamic logics with inter-
section.J. Symb. Log., 70(4):1072–1086, 2005.

18. Ch. L̈oding and O. Serre. Propositional dynamic logic with recursive programs. InProc.
FOSSACS 2006, LNCS 3921 pages 292–306. Springer, 2006.

19. D. Lugiez and P. Schnoebelen. The regular viewpoint on PA-processes.Theor. Comput. Sci.,
274(1–2):89–115, 2002.

20. R. Mayr. Strict lower bounds for model checking BPA.ENTCS, 18, 1998.
21. R. Mayr. Process rewrite systems.Inf. Comput., 156(1):264–286, 2000.
22. R. Mayr. Decidability of model checking with the temporal logic EF.Theor. Comput. Sci.,

256(1-2):31–62, 2001.
23. D. Muller and P. Schupp. Alternating automata on infinite trees.Theor. Comput. Sci., 54(2-

3):267–276, 1987.
24. C. H. Papadimitriou.Computational Complexity. Addison Wesley, 1994.
25. W. Thomas. Some perspectives of infinite-state verification. InProc. ATVA 2005, LNCS

3707, pages 3–10. Springer, 2005.
26. M. Y. Vardi. The complexity of relational query languages (extended abstract). InProc.

STOC 1982, pages 137–146. ACM Press, 1982.
27. M. Y. Vardi. Reasoning about the past with two-way automata. InProc. ICALP ’98, LNCS

1443, pages 628–641. Springer, 1998.
28. I. Walukiewicz. Model checking CTL properties of pushdown systems. InProc. FSTTCS

2000, LNCS 1974, pages 127–138. Springer, 2000.
29. I. Walukiewicz. Pushdown processes: Games and model-checking. Inf. Comput.,

164(2):234–263, 2001.
30. S. Ẅohrle. Decision problems over infinite graphs: Higher-order pushdown systems and

synchronized products. Dissertation, RWTH Aachen, Germany, 2005.

