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Abstract

It is shown that the existence of an Euler path in a recursieplyis complete
for the classDX:9 of all set differences of twaJ sets. The same problem for highly
recursive graphs as well as automatic graphs is shown f&)beomplete. Moreover,
the arithmetic level for bounding the number of ends in amattic/recursive graph
as well as computing the number of infinite paths in an autminecursive finitely
branching tree is determined.

1 Introduction

The theory ofrecursive structure$as its origins in computability theory. A structure is
recursive, if its domain is a recursive set of naturals, and every relatiagain recursive.
Starting with the work of Manaster and Rosenstein [21] and Bean [1, @jjtenvariants
of classical graph problems for finite graphs were studied for re@iggiaphs. It is not
surprising that these problems are mostly undecidable for recursighgyr&his motivates
the search for the precise level of undecidability. It turned out that safrtfee problems
reside on low levels of the arithmetic hierarchy (e3colorability), whereas others are
complete fors:! — the first level of the analytic hierarchy [17]. An example for the latter
situation is the question whether a given recursive graph kisvaltonian pathi.e., a one-
way infinite path that visits every node exactly once [10]. This result &adas for highly
recursive graphs, which are locally finite recursive graphs, waéist of the finitely many
neighbours of a node can be computed effectively.

For finite graphs, deciding the existence of an Euler path (i.e., a path titatexisry
edge exactly once) can be decided in polynomial time, and is therefore rasiehn than the
existence of a Hamiltonian path (NP-complete for finite graphs). The saméitasises
for infinite graphs. From a characterization of infinite graphs with an Epdd¢h [7], see
Theorem 2.1, it follows easily that the existence of an Euler path is an arithprepierty
for recursive graphs. More precisely, membershifihand hardness fdi] is stated in
[9], but the precise complexity remained open. In this paper, we closedhisvge prove
that the existence of an Euler path in a recursive graph is complete fdatsxs:, which
is the class of all set differences of tvﬁg sets. Moreover, we show that the existence of
an Euler path i§I3-complete for locally finite recursive graphs afif-complete for highly
recursive graphs; the latter result is also stated in [10] without proof.

In computer science, in particular in the area of automatic verification, tfoesishifted
in recent years from arbitrary recursive graphs to subclasselkatatmore amenable algo-
rithmic properties. An important example for this is the clasawtbmatic graph$4, 15].



A graph is called automatic if it has automatic presentatigrwhich consists of a finite
automaton that accepts the set of nodes and a two-tape automaton withosyrusty mov-

ing heads, which accepts the set of edges (if one allows the heads to rdepeilently,
then one obtaingtional graphg. One of the main motivations for investigating automatic
graphs is the fact that every automatic graph has a decidable firstthm@y [15], this
result extends to first-order logic with infinity and modulo quantifiers [4, d8well as

a restricted form of second-order quantification [12]. In contrast éselpositive results,
Khoussainov, Nies, and Rubin have shown that the isomorphism prololeaufomatic
graphs isvi-complete [16]. Results on the model theoretic complexity of automatic struc-
tures can be found in [14]. In [12], we proved that already for plang#gomatic graphs

of bounded degree, the existence of a Hamiltonian patlisomplete, and hence has
the same complexity as for general recursive graphs. On the otherdevedal other graph
problems that ar&}-complete for recursive graphs turned out to be decidable for automatic
graphs (e.g. the existence of an infinite clique). Therefore, we raisg®jrthe question

for a natural graph problem that becomes easier when moving fronmsiegtio automatic
graphs, but nevertheless stays undecidable. Here, we presararsexample: we prove
that for automatic graphs, the complexity of testing the existence of an Eulergpas
down from DX8-completeness (recursive graphs)-completeness (automatic graphs).
Moreover, thelld lower bound already holds for planar automatic graphs of bounded de-
gree.

As already mentioned, our upper complexity bounds for the existence Bdil@n path
are heavily based on the characterization of [7]. One of the conditionssichhracteriza-
tion requires that the graph has only onenfinite connected component after removing an
arbitrary finite set of edges (it is easy to see that this condition is negdes#ne existence
of an Euler path). This condition is closely related to tlhuenber of endsf a graph, which
is usually only defined for locally finite graphs. For a locally finite graplthe number
of ends is the supremum of the numbeiirdinite connected components that remain after
removing an arbitrary finite set of edges. We use this definition also f@hgréhat are
not locally finite! The number of ends turned out to be an important concept in combi-
natorial group theory, see e.g. [5]. In [20] it was shown that it is citble whether a
given automatic graph has only one end. Here we precisely charadtezizemplexity of
the question, whether a given automatic/recursive graph has atmeasis (for some fixed
k > 0): For recursive graphs (of bounded degree) this question tutrte ballj-complete,
whereas for automatic and highly recursive graphs we obtg§inompleteness. In fact, the
lower bounds already hold for a more restricted probleni i§ a finitely branching tree,
then the number of ends @f equals the number of infinite branchesTin We prove that
the property of having at moétinfinite branches i$I3-complete for finitely branching re-
cursive trees antly-complete for finitely branching highly recursive/automatic trees. Note
that by Konig’'s lemma every finitely branching infinite tree has at least one infinite path.
Moreover, for recursive trees with infinite branching, the existencanoinfinite path is
¥1-complete, this result already holds for automatic graphs [12].

For locally finite graphs the number of ends can be defined alternatiig@bevtain equivalence classes of
infinite rays. This alternative definition is no longer equivalent to our d&fmif graphs are not necessarily
locally finite.



2 Preliminaries

Infinite graphs, Euler paths, and ends For details on graph theory see [6]. directed
graphis a pair(V, E') whereV is the possibly infinite set of nodes ardC V' x V' is the
set of edges withy # v for all edgequ, v) € E. An undirected graplis a pairG = (V, E),
whereV is the (possibly infinite) set of nodes atid C (‘2/) is the set of edges. In the
following, when just speaking of a graph, we always mean an undiregegeh. For a
directed graphG = (V, E), we denote byG its undirected versiofV, {{u, v} | (u,v) €
E}).

Let G = (V, E) be a graph. Ifu,v} € E, then we say that andv areneighbors
The order of a vertexv € V is the number of its neighbors. Thiegreeof a graphG
is the supremum of the orders of its vertices; if this supremum is finite, we sagréph
hasbounded degredf it is only required that every node has finite order, ttieis called
locally finite The graphG is planar if it can be embedded in the Euclidean plane without
crossing edges and without accumulation points.

A finite pathin the directed (resp. undirected) graph= (V, E) is a sequencf, v,
...,vy] of nodes such thaw;, v;11) € E (resp.{v;,vi+1} € E)forall1 <i < n;itis
simpleif the nodes, ..., v, are mutually distinct. The nodes andv,, are the end points
of this path. A graphG = (V, E) is connected if for alk., v € V distinct there exists a
finite path with end points, andv. A directed graphty is connectedf G is connected. An
infinite (simple) patlin G is an infinite sequende, v, . . .| such that every initial segment
is a finite (simple) path. For a finite set of edgésC E of G = (V, E), let f(H) be the
number of infinite connected components(bf £ \ H). Thenumber of ends off is the
maximum of allf(H) for H C F finite (if this maximum exists) ando otherwise.

An Euler pathof aninfinite undirected grapld- is an infinite pathuv, v, .. .] in G that
passes every edge 6f exactly once, i.e., the mapping— {v;,vi+1} is a bijection from
N onto the set of edgeFg’, a graph with an Euler path is callétulerian Euler’'s well-
known characterisation of Eulerian finite graphs [8] was extended #@§<s-GKkinwald, and
Vazsonyi as follows:

Theorem 2.1 ([7]) An infinite countable graplé- = (V, E) is Eulerian if and only if it
satisfies the following conditions:

(E1) G is connected.

(E2) G has a vertex of odd or infinite order.

(E3) G has at most one vertex of odd order.

(E4) G has only one end.

A treeis a directed grapii’ = (V, E)) such that there exists a root node V' with the

following properties:

e There does not exist € V with (v,r) € E.

e Foreveryv € V' \ {r} there exists exactly onec V with (u,v) € E.

e (r,v) € E*foreveryveV.
A tree isn-branching(n € N) if [{w € V | (v,w) € E}| < nforallv € V;itis
finitely branchingif {w € V | (v,w) € E} is finite for allv € V. An infinite branchin
atree(V, E) is an infinite pathvg, v1,v9,...] in T, wherev, is the root node of". If T
is a finitely branching tree, then the number of infinite branchés efjuals the number of
ends of the undirected grapih A combis a 2-branching tree that has an infinite branch
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Figure 1: A comb: The spine is the horizontal ray, the forth tooth is infinite

containing all the branching points (i.e., all those vertieewith two verticesv, w with
(u,v), (u,w) € E); any such infinite branch is calledsping the complement of a (fixed)
spine is formed of théeeth Note that a comb may have at most two spines. Fig. 1 shows a
comb.

Recursive graphs and automatic graphs A recursive (directed) graplis a (directed)
graphG = (V, E) such thal” andF are recursive subsetstand(g) or N?, respectively.
In caseG is infinite, one can w.l.0.g. assume tHat= N. A recursive graphV, E) is
very recursivef one can compute, from a nodeits order (which may bec). A locally
finite and very recursive graph éghly recursive A recursivedirectedgraphG is highly
recursiveif the graphG is highly recursive.

Next we introduce automatic graphs, see [15, 4] for more details. Let us4iN and a
finite alphabel’. Let# ¢ I' be an additional padding symbol. For words, . . . , w, € I'*
we define theonvolutionw; ® we ®- - -@w,,, Which is a word over the alphab@uU{#1})",
as follows: Letw; = a;1a;2 - --a;k, With a; ; € I' andk = max{ki,...,k,}. Fork; <
i<k defineam- =#. Thenw; ® --- @ wy, = (alyl, e ,aml) cee (aLk, ce an’k). Thus,
for instancenba ® bbabb = (a,b)(b,b)(a,a)(#,b)(#,b). An n-ary relationR C (I')" is
calledautomatidf the languagdw; ® - - - ®@w,, | (w1,...,w,) € R} is aregular language.

Now let A = (A, (R;)ics) be a relational structure with finitely many relations, where
R; C A™. Atuple (I',L,h) is called anautomatic presentatiofor A if (i) I"is a fi-
nite alphabet C I'* a regular language, and: L — A a surjection, (ii) the relation
{(u,v) € L x L | h(u) = h(v)} is automatic, and (iii) the relatiof(uy, . .., u,,) € L™ |
(h(u1),...,h(uy;)) € R;} is automatic for every € J. We say that4 is automaticif
there exists an automatic presentationforSince directed graphs are relational structures
(with one binary relation), this defines whatamomatic directed grapts. A graph(V, E)
is automaticif the directed grapiV, {(u,v) € V2 | {u,v} € E}) is automatic.

In contrast to recursive graphs, automatic graphs have some nicélaigorproper-
ties. In [15] it was shown that every first-order definable relation inwgnraatic structure
is effectively automatic (this result extends to first-order logic with infinity amatulo
quantifiers [4, 18] as well as restricted second-order quantificati®f). [Hence, the first-
order theory of every automatic structure is decidabléV]fE) is an automatic graph, then
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for a given nodey € V one can effectively compute a finite automaton that accepts the set
of neighbours o). Thus, an automatic graph is very recursive.

In contrast to these positive results, several strong undecidabilititsetiow that al-
gorithmic methods for automatic structures are quite limited. Since the configugatiph
of a Turing machine is automatic, it follows easily that reachability in automatichgrap
is undecidable. Khoussainov, Nies, and Rubin have shown that the ighisor problem
for automatic graphs i&{-complete [16], whereas isomorphism of locally finite automatic
graphs islI-complete [22]. In [12], we proved that Hamiltonicity of planar automatic
graphs of bounded degreeig-complete (which improves the corresponding result of Hirst
and Harel on highly recursive graphs [11]) and that the same hotdkdcexistence of an
infinite branch in an automatic tree (for automatic order trees, the existerareinfinite
branch was shown decidable [19]).

A notational remark The difficulty of graph problems will be measured in the arithmeti-
cal hierarchy [13]. In addition to the usual clas&sandII® for n > 0, we will encounter
the classDX§ that consists of all the set& \ L for K,L € X, i.e., it is the class of
differences of recursively enumerable sets relativizeld}o

By Turing machine, we always mean a deterministic Turing machineith one tape
that is infinite in one direction and accepts by halting; its language is deddted. We
will also use the following classes of Turing machines (cf. [17] for the detepess results):

1. TOTAL denotes the class of Turing machines that halt on every input. This set
TOTAL is I13-complete.

2. FIN denotes the class of Turing machines that halt for only finitely many inputs. Th
setFIN is ¥9-complete.

3. COF denotes the class of Turing machines that halt for almost all inputs. This set
COF is X3-complete.

4. COF denotes the class of Turing machines that diverge for infinitely many inputs.
SinceCOF is the complement of OF, this setCOF is I13-complete.

A recursive (directed) grapty is determined by a Turing machind that decides the set
of edges ofGG. A very recursive (directed) graph needs, in addition, a Turing machih
that computes the number of neighbors of every node. A highly reeu¢divected) graph
is given by a Turing maching/ that, on input of» € N, computes a tuple of the neighbors
of n in G. Finally, an automatic directed graph is given by two finite automata that accept
the set of nodes and edges, resp.

In the following, we will often make statements like “For graphs frém propertyY’
belongs taC” or “...is C-hard” whereX is a class of graphs ar@@flis some class from the
arithmetical hierarchy. Formally, the first means “There is alset C such that for every
input M that describes a graptyr € X, we haveM € L iff G has propertyy’”. Similarly,
the second means “For all € C, there exists a computable functighsuch that, for all
inputsw, f(w) describes a grapl’ € X, andw € L iff G has propertyy™.

Finally, we will always identify a finitary object (like words, tuples of wordsiring
machines etc) with its &del number.



3 Upper bounds

The following proposition gives upper bounds for testing whether angivery) recursive
graph has at most ends. These upper bounds (for= 1) will be crucial for our upper
bounds concerning Euler paths.

Proposition 3.1 Letk > 0.
(1) For recursive graphs, the property to have at mosinds belongs tol}.
(2) For very recursive graphs, the property to have at nioshds belongs tal9.

Proof. (1) Consider the followingI3-formula
VH C EfiniteVzg, z1,..., 2, € V :

\/ 3Jpathfromz;toz;in (V,E\ H) v
0<i<j<k

37 C V finite : ( \/ x;i € Z)AN{z1,22} € E\ H(z1 € Z < 23 € Z),
0<i<k

expressing that of everyy + 1 verticeszy, . . . xx, two belong to the same connected com-
ponent or one belongs to some finite connected componémt & \ H).

(2) Now assuméV, E') to be very recursive and lgf C F andZ C V be finite.
If Z contains a vertex of infinite order, it cannot be a union of connected coemts of
(V,E \ H). Otherwise, for each € Z, one can decide whether it is adjacent to any of
the edges ind. Hence it is decidable whethef is a union of connected components of
(V, E\ H). Thus, the property to have at mdsends is inll3. []

The characterisation of Eulerian infinite graphs from Theorem 2.1 asawéirop. 3.1
gives the following upper bounds:

Proposition 3.2 The following holds:
(1) For recursive graphs, existence of an Euler path i©iR?.
(2) For locally finite recursive graphs, existence of an Euler path EHjn
(3) For very recursive graphs, existence of an Euler path EHjn

Proof. (1) Itis an easy exercise to express (E1)Ifi The existence of a vertex of odd
order is expressible il and the existence of a vertex of infinite orderif). Hence (E2)
is in X3 and (E3) inIly. By Prop. 3.1, (E4) is expressible iif). Hence the existence of an
Euler path is a conjunction af3- andI1$-properties and therefore iR:9.

(2) This holds since all the properties in the previous paragraph etteepkistence of
a vertex of infinite order are ifiY.

(3) Assume(V, E) to be very recursive. Then the number of neighbors of a noide
computable fromr. Hence (E2) is expressible B} and (E3) inIlY. Again, by Prop. 3.1,
(E4) is expressible ifil). 0]

4 Lower bounds

In this section we will establish lower complexity bounds. We will present twistractions
(Lemma 4.1 and 4.5), from which all lower bounds will be deduced.
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4.1 Recursive graphs

Our first main construction concerns recursive graphs. Recal(histhe undirected ver-
sion of the directed grap®y.

Lemma 4.1 From two Turing machined/; and Ms, one can compute a connected recur-
sive directed grapldz(M;, M>) such that

(@ M; € COF ifand only ifG(M;, M2) has more than one end.

(b) My € COF ifand only ifG(M;1, M2) has a vertex of infinite order.

(c) If M diverges for every input, the@ (M, M) is a comb with a recursive spine.

Proof. Let B denote the set of nonempty wordscg#c; . . . #c¢, Where each; is the
halting computation of the maching with inputm + i (for somem € N). Then the set
of verticesV of G(M;, M>) is given byl = N U B. We also fix a computable bijection
f:N?® — N. The set of edges af (M1, M>) is given by:

(1) (n,n+1),(n,#c) € E for all n € N andc the halting computation af/; on inputn
(if this halting computation exists).

(2) (w,w#c) € E for all w, w#c € B.
(3) (n, f(k,¢,m)) € FE iff the following hold

(3.1) m =n,

(3.2) M, halts for each of the inputs,n + 1,...,n + k after at most computation
steps, and

(3.3) there exist® < j < k such thatM> halts for the inputr + j after precisely
computation steps

This graph is recursive since also the bijectipn® : N — N? is computable and since
condition (3) requires finitely many checks.

Note that the vertices of the forftogether with the edges from (1) between them form
an infinite path. The nodécy#c;: ... #c, € B is connected to this ray via a path (formed
by the prefixes of the forrdtco#cy . . . #c¢; of this word) to the vertexn, the input of the
halting computatiorey. HenceG(M;, Ms) is connected.

(a) First suppose that/; € COF, i.e., M7 halts for almost all inputs. Then there
existsm € N such thatM/; halts for all inputsn,m + 1,m + 2,..., i.e., there are halting
computationg, for £ > m on inputk. But then the set of word&c,, #cm1 - - - #cj for
k > m forms an infinite path. Deleting the edge betweemand+#c,, therefore leaves two
infinite connected components, i.&(M;, M>) has at least two ends.

Conversely suppos&'(Mi, Ms) has more than one end. Since the nodes ffoere
connected by a ray-like structure, the graph\/,, M) has to have an infinite path formed
by nodes fromB. But this implies that there are infinitely many consecutive inputs: +
1,m 4+ 2... that allow a halting computation @/, i.e.,M; € COF.

(b) Supposél, € COF stops for all inputsn > n. Let, form > n, £,, be the maximal
length of a halting computation with input betweeandm. Then(n, f(m —n, l,,n)) €
F, i.e.,n has infinite order.



Conversely, suppos@ (M, Ms) contains a vertex of infinite order. By the very con-
struction, every node from8 has at most two neighbors (M1, M2). Hence there exists
a vertexn € N of infinite order. Note that the neighbors afaren — 1 (if n > 0),
n + 1, the halting computation of/; with input n (if it exists), possibly the node’
with f~1(n) = (K¥',¢,n’), and some nodes of the forif{k, ¢, n) with k,¢/ € N. Since
n has infinitely many neighbors, there are therefore p@irs/;) € N2 for i € N with
(n, f(ki,4;,n)) € E. By condition (3.3) k; = k; implies¢; = /;. Hence, for everyn > n
there exists: > m — n and? such thatn, f(k,¢,n)) € E ensuring that\/, halts for all
inputsn,n+1,...,n+(m—n),...,n+k. Thus,M, halts for all inputsn > n, implying
My € COF.

(c) If M> never stops, then condition (3) does never hold. HEnQY,, M) is a comb,
the setN of nodes forms a recursive spine. ]

Proposition 4.2 For recursive graphs, the existence of an Euler pat)-hard.

Proof. SinceCOF and COF are complete fofl} and>$, resp.,COF x COF is hard
for DX9 and it suffices for our result to reduce this direct product to the setafrsive
graphs with an Euler path. To this end, Iefy and M> be Turing machines and consider
G (M, My) from Lemma 4.1. In this graph, replace every edge {a, b} by four edges
{a,x¢}, {xe, b}, {a,y.}, and{y., b}. Then the resulting grapf¥ is recursive, connected,
without node of odd order and therefore satisfies (E1) and (E3dditian, it satisfies (E2)
iff it has a vertex of infinite degree iff/s € COF by Lemma 4.1. FinallyiZ satisfies (E4)
iff it has at most one end ifi/; ¢ COF by Lemma 4.1 iffM; € COF. 0]

Proposition 4.3 For planar recursive graphs of degrele the existence of an Euler path is
I1$-hard.

Proof. First, fix a Turing machind/, that never halts. Then the cor6ly M/, M5 ) contains
arecursive spiné. Let G be obtained frontz (M, M) by replacing every edge= {a, b}
that is not in the spiné& by four edges{a, z.}, {z.,b}, {a,v.}, and{y.,b}. ThenG is
connected, i.e., satisfies (E1). Sine® never haltsG(M, M-) is a comb implying tha&z
has degred. Note that the root is the only node 6f(M, M>) that is adjacent to an odd
number of edges from the spine. Hence(Ginthe root of G(M, M) is the only vertex of
odd degree. This shows th@tsatisfies (E2) and (E3). By Lemma 4.1, it satisfies (E4) if
and only if M € COF. SinceCOF is I1J-complete, the result follows. 0]

Proposition 4.4 For recursive combs, the existence of only one infinite bran€l}ikard.

Proof. Again, fix a Turing machiné/, that never halts. Now le¥/ be a Turing machine.
ThenG(M, M,) is a comb. Furthermore, the tré§ M, M5) has only one infinite branch
iff G(M, M) has at most one end ifff ¢ COF (by Lemma 4.1) iffA/ € COF. Since
COF is II}-hard, the result follows. 0]

4.2 Automatic graphs

The configuration graph of a Turing machihéis a typical example of an automatic graph.
The set of nodes is the sBtQI'™ of all configurations of\/, wherel” (resp.Q) is the tape
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alphabet (state set) @ff, and there is an edge between configuratioaadc’ if ¢ Fj; ¢/,

i.e., M can go in one step fromto ¢’. Since we consider Turing machines with a one-sided
tape, the relatiofr 5, is automatic. This automaticity was used in several papers [12, 14, 16]
as a tool to encode complex behaviour in automatic graphs. In the prooé ébltbwing
theorem, we use configuration graphs as well.

Lemma 4.5 From a Turing machineél/, one can compute an automatic coffip\/) with
regular spine such that the number of infinite teetfi’6l/ ) equals|N \ L(M)|.

Proof. Let M; be a Turing machine that behaves like but recalls the transitions of the
M-computation. Then the configuration graph\éf is a disjoint union of finite and infinite
paths. Furthermord,(M;) = L(M). The machiné\/; is a reversible version aff [3].

We next construct a self-stabilizing versiai, of M; (see also [20]) as follows. The
machinel, is obtained fromi/; by adding two counters. Initially, the first counter is set
to 0 and the second counter is setlto Incrementing the first counter in every step, the
machine then simulate®/; until the first counter equals the second one. At this point, the
machine simulated/; backwards (which is possible sindé; is reversible) until the first
counter is0 or it cannot simulate a backward step. If, at this point, the machine is not in
an initial configuration ofi/;,? it stops. Otherwise, it increments the second counter and
proceeds as before.

The configuration graph ab/ is, again, a disjoint union of finite and infinite paths.
Moreover, there is a bijection betwedn\ L(M;) = N\ L(M) and the set of infinite paths
of the configuration graph af/,. Let

S = {c| cis a configuration of\fs, -3¢’ : ¢’ -y, ¢}

be the set of alource configurationsThen every initial configuration af/, belongs toS.

Now consider the following grapf'(M) = (V, E) whose vertices are the configura-
tions of M,. For two configurationg, ¢/, we have(c,c’) € Eiff ¢ by, ¢ or ' is the
length-lexicographically minimal source configuration length-lexicograglyitarger than
the source configuration

The graph?’(M) is thus obtained from the configuration graphMd§ by placing the
source configurations in an-chain, i.e., it is a comb. The infinite teeth of this comb are
the infinite paths of the configuration graphak. Thus, the number of infinite teeths of
T(M) equalsN \ L(M)|.

Recall that the relatiok s, as well as the length-lexicographic order on the configura-
tions of M, are automatic. Moreover, sinégis a regular language, it follows that the edge
relation E is automatic. Hence the conflf( M) is automatic [4]. []

By Lemma 4.5, the comiy’(M) has only one infinite path if and only/ € TOTAL.
As an immediate consequence of fiig-hardness oTOTAL, we obtain:

Proposition 4.6 For automatic combs, the existence of only one infinite brantt}ibard.

Proposition 4.7 For planar automatic graphs of degrdethe existence of an Euler path is
119-hard.

2The set of initial configurations a4, is goX*, whereq is the initial state ofd/; and X is the input
alphabet.



Proof. Let M be a Turing machine. In the grafif M) (whereT'(M) is the graph from
Lemma 4.5), replace every edge= {a,b} in a tooth by four edgega, z.}, {z., b},
{a,ye}, and{ye, b}. Then the resulting grapfi is connected, planar, automatic (since the
spine of T'(M) is regular), of degred. All its nodes except the root af (M) have even
degree and the degree of the rooflisr 3. Hence,G satisfies (E1), (E2), and (E3). It
therefore has an Euler path iff it satisfies (E4)fiffA/) has only one end iffi/ halts for all
inputs, i.e., iff M € TOTAL. Since the seTOTAL is Hg-hard, the result follows. []

5 Completeness

We summarize our main results.

Theorem 5.1 The existence of an Euler path is
1. DxY-complete for recursive graphs,
2. T$-complete for (planar) locally finite recursive graphs (of degtie
3. II9-complete for (planar) very recursive graphs (of degree 4), and
4. T19-complete for (planar) automatic graphs (of degre

Proof. The first statement follows immediately from Prop. 3.2(1) and 4.2, the sdoamd
Prop. 3.2(2) and 4.3, and the third from Prop. 3.2(3) and Prop. 4.@ swery automatic
graph is very recursive. The last statement follows again from Pr@(8)3and Prop. 4.7 ]

Concerning Theorem 5.1(1) and (3), [9] mentions upp&r&ndI1y, resp.) and lower
bounds {1 and bothx:{ andI1{, resp.) and asks for the exact complexities that we provide
here. Actually, (3) is stated without proof in [10], where unpublishedkvwad Beigel and
Gasarch is cited. In [10], it is also spuriously stated (without proof)tthaexistence of an
Euler path in a recursive graphli-complete which is (by (1) and (2)) only true for locally
finite recursive graphs. To our knowledge, (2) and (4) have nen lsensidered before.

Recall that the existence of an infinite branch in a recursive trEg-somplete and the
same holds for automatic trees [12]. On the other hand, @yid{s lemma, every infinite
finitely branching tree contains an infinite branch. Since infinity of an autorsaticture
is decidable [4], it follows that the existence of at least one infinite bramehautomatic
finitely branching tree is decidable. The following shows that bounding tmebeu of
infinite branches is difficult for both, recursive and automatic trees.

Theorem 5.2 Letk > 0. The existence of at mastinfinite branches is

1. TIJ-complete for recursive finitely branching trees.

2. TI9-complete for automatic and for very recursive finitely branching trees.
In both cases, hardness holds even for combs.

Proof. Containment inll andIIj follow from Prop. 3.1 since, for a finitely branching
treeT’, the number of ends @F equals the number of infinite branchesTaf Hardness for
k = 1is shown in Prop. 4.4 and Prop. 4.6, resp. To reduce theicasd to the general
case, just adé¢ — 1 many infinite branches to a recursive or automatic comb. []

Theorem 5.3 Letk > 0. The existence of at mastends is
1. TI9-complete for (planar) recursive graphs (of degBe
2. TI9-complete for automatic and for very recursive planar graphs (of degye
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Proof. Containment was shown in Prop. 3.1, hardness follows immediately from-Theo
rem 5.2 and the fact that the number of end%'@fnd of infinite branches &f coincide for
every finitely branching tre@. []

Let us finally consider the property of having infinitely many finite branches

Theorem 5.4 The existence of infinitely many infinite branches is

1. inTI§ for recursive finitely branching trees.

2. T$-complete for automatic and for very recursive finitely branching trees.
Hardness in the second point holds even for combs.

Proof. The upper bounds follow from Theorem 5.2, siritdnas infinitely many infinite
branches if and only if for everk > 0, T' does not have at mostmany infinite branches.
For the lower bound in (2), note that for the cormip)\/) from Lemma 4.5 we have:
T(M) has infinitely many infinite paths if and only ¥ \ L(M) is infinite if and only if
M € COF. SinceCOF is I13-complete, the result follows. 0]

Highly recursive and rational graphs Note that for all graph theoretic properties consid-
ered in this paper, very recursive and automatic graphs are compldie femme classes of
the arithmetical hierarchy. Hence the same holds for all classes of grapbsveen these
two classes. The two most prominent examples are highly recursive tiodategraphs
(cf. [23]).
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