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Abstract. Trees can be conveniently compressed with linear straight-line context-
free tree grammars. Such grammars generalize straight-line corgexstfing
grammars which are widely used in the development of algorithms thatiexe
directly on compressed structures (without prior decompresside)siitown that
every linear straight-line context-free tree grammar can be transébimeoly-
nomial time into a monadic (and linear) one. A tree grammar is monadiclif eac
nonterminal uses at most one context parameter. Based on this aegalyno-

mial time algorithm is presented for testing whether a given nondeterminisgic tr
automaton with sibling constraints accepts a tree given by a linear straight-line
context-free tree grammar. It is shown that if tree grammars areatermdinistic

or non-linear, then reducing their numbers of parameters cannairigewithout

an exponential blow-up in grammar size.

1 Introduction

The current massive increase in data volumes motivatestredapment of algorithms
oncompressed datéike for instance compressed strings, trees, and grajtesgé&neral
goal is to construct algorithms that work directly on congsedd data, without prior
decompression. Considerable amount of work has been dorm®rong algorithms
that execute on compressed strings, see [13] for a survihislfield, a popular succinct
string representation are context-free grammars whiclergea exactly one string. It
can be statically guaranteed that only one string is geeéraly restricting to acyclic
grammars with exactly one production per nonterminal. Syrelmmars are known as
straight-line programs, briefly SLPs. Since an SLP withroductions may generate a
string of length2™, an SLP can be seen as a compressed representation of thatgene
string. Some of the nice features of SLPs are:

— Many dictionary based compression schemes, like for iestaZz 78 and LZ77 can
be converted efficiently into SLPs, see, e.g., [13] for farttietails.

— SLPs are based on context-free grammars and are apt foseanudl clean mathe-
matical proofs.

— For many algorithmic problems, SLPs allow efficient alduris that avoid prior
decompression. The most studied example in this contekeipattern matching
problem for compressed strings, see the references in [13].



Due to these appealing properties, it is natural to germr 8L Ps to other more complex
data structures. For trees, this is done in [3, 11]. In thigext, a tree is represented by
a context-free tree grammadhat generates exactly one tree. Such grammars are called
straight-line context-free tree grammars, briefly SLCI tygeammars in [3, 11]. They
generalize the sharing of repeated subtrees in a tree asviliknown from DAGs
(directed acyclic graphs) to the sharing of repeated stdnpatin a tree (a subpattern
is a connected subgraph of the tree). In the context of coryneed XML docu-
ments, experiments show that SLCF tree grammars can givexappately 2-3 times
higher compression ratios [3] than DAGs [2] when comprassiocument tree struc-
tures. Since sharing of patterns in an SLCF tree grammar czur @along the paths of
atree, it is possible to have a grammar of gier)! that generates a tree of heighit,
this is not possible with a DAG (the DAG has the same heightsaepresented tree).
More dramatically, an SLCF tree grammar of si2é:) can even generate a full binary
tree of heigh”, which has2?” many nodes. Hence, double exponential compression
rates can be achieved.

The downside of such extreme compression capabilitiestsattbitrary SLCF tree
grammars do not inherit some of the nice algorithmic prapemf (string) SLPs. For
instance, whereas evaluating a given automaton on an SlktBsegation of a string
can be done in polynomial time [13], this problem becomesAZERcomplete for tree
automata and SLCF tree grammars [11]. This motivates thestigation of restricted
classes of SLCF tree grammars. Linearity is one of theseigishs: a context-free
tree grammar iginear if every context parameter occurs at most once in every-ight
hand side. Note that our tree compression algorithm BPLEXYd8erates a smdihear
SLCF tree grammar for a given input tree. It can be checkedlynpmial time whether
two linear SLCF tree grammars generate the same tree [3Th#.result generalizes
a corresponding result for (string) SLPs of Plandowski [1Rfemains open whether
polynomial time equality testing is also possible for nore&r SLCF tree grammars.

Another useful restriction on SLCF tree grammarstiboundednesgfor some
fixed k): a context-free tree grammar isbounded if every nonterminal uses at most
k context parameters; 1-bounded grammars are also calbexddic In this paper we
study the impact of the various restrictions on SLCF treengnars with respect to
compression. Our main result is the following: a given lin8&CF tree grammar can
be transformed in polynomial time into an equivalent linaad monadic SLCF tree
grammar (Theorem 7). In other words, for the purpose of cesgion by linear gram-
mars, one parameter is already enough; the correspondiegrlimonadic grammars
offer the same kind of compression as linear SLCF tree grasinhénear monadic
SLCF tree grammars are also used in [9, 10, 14], where thegadiedd singleton tree
grammars We present two algorithmic applications of Theorem 7: it be tested in
polynomial time whether a given tree automaton acceptsdiesgiven by a linear SLCF
tree grammar (Corollary 9). This solves our main open prolfi@m [11], where we
could only present a polynomial time algorithm for lindabounded SLCF tree gram-
mars (wherk is a fixed constant). Our second application generalizeslfaoy 9 to tree
automata with equality and disequality constraints beiwsdeling nodes [1, 4]. These
are bottom-up tree automata which can test whether theemsbtooted at children of

! The size of a grammar is defined as the sum of the sizes of all right-deslaf productions.



the current node are equal or not equal. Their recognizegukages are closed under
Boolean operations and are strictly more general than aegrde languages (for a re-
cent generalization see [5]). The running time of this selqorlynomial time algorithm
is much worse than the running time stated in Corollary 9 fadir@ry tree automata;
therefore we state the two results separately.

In Section 7 we show that Theorem 7 does not extend to largeses of grammars.
First, we consider nondeterministic linear SLCF tree gramrani.e., acyclic grammars
(no recursion) which may have several productions for eactienminal. Such gram-
mars represent finite sets of trees. We give an example oéarlend»-bounded non-
deterministic SLCF tree grammar for which every equivalebbunded such grammar
(k < m) must be exponentially larger. Using a straightforwarceagton of our proof
of Theorem 7, we show that this exponential blow-up is alsowlorst case. Next,
we consider non-linear SLCF tree grammars. We present anggaf a non-linean-
bounded SLCF tree grammar of si2¢n) for which every equivalent-bounded SLCF
tree grammark < n) has size at leagt**.

A full version of this paper including all proofs will appear

2 Trees and SLCF Tree Grammars

A ranked alphabeis a pair(F, rank), whereF is a finite set of function symbols and
rank : F — IN assigns to each € F its rank. LetF; = {a € F | rank(a) = i}
andFs; = Uj>iIE‘j. Symbols inlFy are calledconstants We fix a ranked alphabet
(F,rank) in the following. AnF-labeled ordered tree (or ground termoverT) is a
pairt = (domy, \¢), where (i)dom; C IN* is finite, (i) A\; : dom; — T, (i) if
w = vv’ € domy, then alsov € domy, and (iv) if v € dom; and\;(v) € F,, then
vi € dom, if and only if 1 < ¢ < n. The edge relation of is implicitly given as
{(v,vi) € dom; x dom, | v € IN*,i € IN}. The size of is [t| = |dom,|. We identify
anF-labeled treg with a term in the usual way: ik, (¢) = o € F;, then this term
is a(ty, ..., t;), wheret; is the term associated with the subtreg ofoted at nodg.
The set of allF-labeled trees i§'(F). Let us fix a countable s&f = {y;,yo,...} of
(formal context-) parameterfelow we also use a distinguished parameter Y).
The set of allF-labeled trees with parameters framC Y is 7'(F, Y'). Formally, we
consider parameters as new constants and déf{fieY’) = T(FUY). The treet €
T(F,Y) is linear, if every parameteyy € Y occurs at most once i For treest €
T(F Ay, sYn})itt, - tn € T(F,Y), bytlys/t1 - - - yn/t,] We denote the tree that
is obtained by replacing ineveryy;-labeled leaf witht; (1 < ¢ < n). A contextis a
treeC € T(F,Y U {z}), in which the distinguished parameteappears exactly once.
Instead ofC|z/t] we write briefly C[¢t]. When talking about algorithms on trees, we
assume the RAM model of computation, and we assume that areegiven by the
standard pointer representation.

For further consideration, let us fix a countable infinite Sebf symbols of rank
i with F; N N; = . Hence, every finite subséf C (J,-,N; is a ranked alphabet. A
context-free tree grammgpverF) is a tripleG = (N, P, S), where ()N C (J,~oN;
is a finite set ofhonterminals (i) P (the set ofproduction$ is a finite set of pairs of
the form (A — t), whereA € N andt € T(F U N, {y1,.. ., Yrank(a)}), and (iii)



S € N NNy is thestart nonterminabf rank0. We assume that every nontermiralk
N\ {S} as well as every terminal symbol frafhoccurs in the right-hand sidef some
production(A — t) € P. For a productiofA — ¢) € P with A € N NN, we also
write A(y1 ..., yn) — t(y1,...,ys) in order to emphasize thaink(A) = n. Thesize
|G| of Gis |G| = >_(4_ep |t|- Letus define the derivation relatieng on7'(FUN, Y)
as follows:s =g ¢ if there exist a productiofd — ¢) € P with rank(A) = n,
a contextC € T(F U N,Y U {z}), and treeg,...,t, € T(F U N,Y) such that
s = C[A(t1,...,ty)] ands’ = Cltly1/t1-- - yn/tn]]. Lt L(G) = {t € T(F) | S =¢
t} C T(F). We consider several subclasses of context-free tree gaasnm

— G islinear, if for every productionN A — t) € P the term¢ is linear.

— G isnon-erasingif ¢ ¢ Y for every productiofA — t¢) € P.

— G is non-deleting if for every production(lA — t) € P, each of the parameters
Y1, - - Yrank(A) APPEArS irt.

— @G is productive if it is non-erasing and non-deleting.

— G is k-boundedfor k € IN), if rank(A) < k for everyA € N.

— G ismonadicifitis 1-bounded.

Finally, astraight-line context-free tree grammégé8LCF tree grammaris a context-
free tree grammag = (N, P, S), where (i) for everyA € N there isexactly one
production(A — t4) € P with left-hand sideA and (i) the relation{(4, B) €

N x N | Boceursints} is acyclic; we call the reflexive transitive closure of this
relation thehierarchical orderof G. Conditions (i) and (ii) ensure thdt(G) contains
exactly one tree, which we denote withl(G). Alternatively, for every term € T(F U
N.{y1,...,yn}) we can define a termalg(t) € T(F, {y1,...,yn}) by induction on
the hierarchical order as follows, where< : < n, f € F,,,andA € NN N,,:

— valg(yi) = v
—valg(f(ti,...,tm)) = f(valg(t1),...,valg(tm))
— valg(A(t1, ..., tm)) = valg(ta)[yr/valg(t1) - - - ym /valg (tm)]

Finally, letvalg(A) = valg(A(y1, ..., Yrank(4))) @ndval(G) = valg(S). SLCF tree
grammars generalizgtring generating straight-line programs [13] in a natural way to
trees. The following example shows that SLCF tree grammaisslead to doubly expo-
nential compression ratios; thus, they can be expongntiadre succinct than DAGS.

Example 1.Let the (non-linear) monadic SLCF tree gramrgarconsist of the produc-
tionsS — Ao(a), Az(yl) — Ai+1(Ai+1(yl)) for0 <i<n, andA"(yl) — f(y}l, yl)-
Thenval(G,,) is a complete binary tree of heig?it + 1. Thus,|val(G,,)| = 222" — 1.

On the other hand, it is not difficult to show that foliaear SLCF tree gramma@

one hasjval(G)| < 2909, Thus, linear SLCF tree grammars have at most expo-
nential compression ratios, just like DAGs, which can bensag0-bounded SLCF
tree grammars. But even linear SLCF tree grammars can benerpally more suc-
cinct than DAGs: the linear SLCF tree gramnggy with the productionss — Ag(a),
Ai(y1) — Aiv1(Aip1(y1)) for 0 < i < n, andA,(y1) — f(y1) generates a monadic
tree of heigh™ + 1. The minimal DAG for this tree is the tree itself and thus has s

2™ + 1. The following result was shown in [3].



Theorem 2. There exists a polynomial time algorithm that tests for tixaeg linear
SLCF tree grammar§ and, whetherval(G) = val(H).

It is open whether Theorem 2 can be generalized to non-lige&f tree grammars.
In [3] we could only prove a PSPACE upper bound for the egualibblem for non-
linear SLCF tree grammars.

3 Tree Automata

LetF be a ranked alphabet. #ondeterministic tree automatgaverF), NTA for short,
is atupled = (Q, A, F), where (i)Q is a finite set oftates (i) F' C @ is the set of

final statesand (jii) A is a set otransitionsof the form(qi, . . . , ¢rank(y), f, ¢), Where
feFandqy,. .., Ganks),q € Q. We define the mappin.{i : T(F) — 2% inductively
as follows, wherex > 0, f € F,,, andty, ..., t, € T(F):

Alf(tr, . tn) ={q€Q | a1, qns frQ) €EA:qu € A(t1),- ... qn € Altn)}

Thelanguagedefined byA is L(A) = {t € T(F) | A(t) N F # 0}. Thesizeof the
NTA A= (Q,A F)isdefinedagA| =3, .+ ealn-log|Q|+log|Fl).

A nondeterministic tree automaton with sibling-constraifdver ), NTAC for
short, is a tupled = (Q, A, F), where@ and F' are as for NTAs and\ is a set of
transitionsof the form(E, D, q1, . . ., qrank(s), [, @), WhereE, D C {1,. .. ,rank(f)}?
are disjoint relations such that is irreflexive, f € IF, andqy, . . ., Grank(f), ¢ € Q. The
relation £ (resp.D) is a set ofequality(resp.disequality constraints between siblings
We define the mapping\ : T(F) — 29 inductively as follows, where > 0, f € F,,,
andty,...,t, € T(F):

A(f(th?tn)) :{qu ‘ El(E7DaQI7"'7qnafﬂq) GA:
@ € At),... qn € A(ty),Y(i,§) € E:t; = t;,¥(i,j) € D : t; # t;}

Again, the language defined byis (4) = {t € T(F) | A(t) N F* # 0} The size of
o prea(®® +n-log|Q| + log [F).

.....

4 Normal Forms for Linear SLCF Tree Grammars

In this section, we only deal withnear SLCF tree grammars. It is easy to see that
a linear SLCF tree gramma} = (N, P, S) can be transformed in linear time into
an equivalent linear andon-deletingSLCF tree grammar: if for a productiodA —

ta (with rank(A4) = n) the parameters;,,...,v;. € {v1,...,yn} do not occur in

t 4, then we can reduce the rank dfto n — k. Moreover, if A occurs in a right-
hand sidet g at positionv € dom,,, then we remove fronip the subtrees rooted at
positionswiy, ..., vii. We now produce an equivalent non-deleting grammar in one
pass througly: starting from the leaves of the hierarchical ordeGofwe reduce the
rank of each nonterminal and store with it the indices of removed parameters (so that



in later occurrences ofl we know which subtrees to remove). Note that the size of the
new grammar is at mogg|.

Now, let G be a linear and non-deleting SLCF tree grammar. Again it &y ¢a
see thag can be transformed in linear time into an equivalent linewt productive
SLCF tree grammar: we remove each production with right tsiahely;, and apply the
removed productions in all remaining right-hand sides. Afoke, this can be done in
one pass through the gramn@rand the resulting grammar has size at mgst

Alinear SLCF tree grammaj = (N, P, .S) is in Chomsky normal forrfCNF) if it
is productive, and for every productidd — ¢4) € P with rank(A) = n, the termt 4
has one of the following two forms:

@) f(y1,...,yn) wWith f € F,,
(b) B(yh>yz—17c(yu7%71)72/]7’%1) with B7C€N11 §Z§j§n+1

The proof of the following proposition is a straightforwaxtension of the correspond-
ing construction for context-free string grammars.

Proposition 3. Letg = (N, P, S) be alinear and productive SLCF tree grammar over
F and letr be the maximal rank itV U F. We can construct in tim@(r - |G|) a linear
SLCF tree grammag’ = (N', P’,S) in CNF such thatv' O N, [N'| < 2-|G|, G’ is
k'-boundedf’ < 2r — 1, andvalg/(A) = valg(A) forall A € N.

For macro grammars, a normal form similar to CNF exists échllO standard form
in [7, Definition 3.1.7]), where the nonterminél in the second type (b) can even be
assumed to be the first argument®f(for us this does not work, because in CNF the
parameters have to occur in the order. . ., y.ankc4) in the right-hand side fort).
Macro grammars are similar to context-free tree grammacsmxthat they generate
strings. Since in an SLCF tree grammar, every nontermirgekactly one production,

it is not difficult to see that the derivation order (10 or O¢ese.g. [4] for a definition)
does not matter for SLCF tree grammars. It is also known tvaarbitrary linear and
non-deleting context-free tree grammars the derivatideioagain does not matter [8].

Example 4.Consider the linear and productive SLCF tree grammar wightwo pro-
ductionsS — X (X(a,b), X (b,a)) and X (y1,y2) — h(i(y1),i(y2)). An equivalent
linear SLCF tree grammar in CNF consists of the followingdurctions:

S — Xo(X1) X(y1,92) = YL (y1),92)
Xo(y1) — X(y1, X2)  Y(yi,y2) — H(y1, 1(y2))
X1 — X3(A) A—a
Xy — X4(B) B—b
X3(y1) — X (1, B) I(y1) — i(y1)

Xa(y1) — X(y1, A) H(y1,y2) — h(y1,92)-

Linear SLCF tree grammars in CNF can be stored more effigi¢imdin ordinary SLCF
tree grammars: if we know the rank of each (non)terminaly thoe a right-hand side

B(ylv"' ayiac(yi-‘rh' e 7yj)7yj+1a-"7y7n) (resp'f(ylv"'7y7l)) we Only need to



store the triple(B, C, ) (resp. the symbo}) which has sizeD(log k) if the gram-
mar isk-bounded. We call this new representation of a CNF gramrearifife nota-
tion. From a given linear SLCF tree gramnfarwe can construct an equivalent linear
SLCF tree grammar in CNF in tim@(r - |G|) (wherer is again the maximal rank of
(non)terminals) which needs only spa@élog(r) - |G|) in triple notation.

5 Parameter Reduction in Linear SLCF Tree Grammars

In this section our main result is proved. We show that a givesar SLCF tree grammar
can be made monadic in polynomial time.

A skeleton treef rankn > O is alinear trees € T(No UN; UF >0, {y1,- -, Yn}),
such that every parametgy (1 < ¢ < n) occurs ins and the following additional
properties are satisfied.

(a) The trees does not contain a subtree of the foA{Y (¢)) for X,V € Nj.
(b) For every subtreg¢(t1,...,t,) of s with f € F>, there exist at least two distinct
i € {1,...,m} such that; contains a parameter frofy, ..., yn }.

In our construction, a skeleton tree will store the brangtstructure (with respect to
those leaf nodes that are parameters) of the tree genesageckbtain nonterminal, i.e.,
the information on how the paths from the root to parameteanadi. Nonterminals of
rank 1 in a skeleton tree represent those tree parts thah dretiveen two branching
nodes in this branching structure. The crucial point abkelieton trees is that their size
can be bounded polynomially. For the following lemma, itrigpibrtant that a skeleton
tree only contains function symbols of rapk2.

Lemma 5. Let r be the maximal rank of a symbol frofh A skeleton tree of rank
n > 1 contains at mos2(r - n — r + 1) many nodes.

LetG = (N, P, S) be a linear SLCF tree grammar. By Proposition 3 we may assume
thatG is in CNF. The set of nonterminal§ is a finite subset dfJ,., N;. We now define

in a bottom-up process, for every nontermialabf rankn > 1, a skeleton treek 4 of

rank n. Simultaneously, we construct a new linear and monadic Strt&€-grammar

G’ = (N', P',S). Consider a productiod — t 4 from P and letn = rank(A).

Case 1t4 = f(y1,...,yn), Wheref € F,:if n < 1, then we add the production
A(y1,...,yn) — tato P and sekka = A(y1,...,yn). If n > 2, then we setky =
t 4 and do not add any new productionsita

Case 24 = B(y1,- -, ¥i-1,C(¥i, - -, Yj-1): Y5> - - -, Yn), Wherei < j and the trees
skg, skc are already constructed. In a first step we define the tree

s = skplyi/skclyi /yi, y2 /Yiv1s - ¥j—i/Yi-1],
yi+1/yja yi+2/yj+la B yn+z‘<7‘+1/yn]- (1)

But this tree is not necessarily a skeleton tree; it may lpcablate the conditions (a)
and (b) on skeleton trees. Hence, we apply a contract-opertt s which yields the
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skeleton treek 4. Moreover, as a side effect, the contract-operation addspneduc-
tions and nonterminals ©@'. The contract-operation works in two steps:

Contract-1.Assume thag contains a subtree of the forln(Z(¢)). There can be only
one subtree of this form in, see the left tree in Figure 1. We now do the following:

1. Add a fresh nonterminaX’ € N; of rank1 to N'.
2. Add the productiorX (y1) — Y (Z(y1)) to P'.
3. Replace the subtréé(Z(t)) by X (¢).

Contract-2.After contract-1, can only violate condition (b) for skeleton trees. Hence,
assume that contains a subtree of the forfitt,, . .., t,,,) such thatf € F~, and there
is exactly oné: € {1,...,m} such that,, contains a parameter frofw:, . .., y, }, say
yp- Again there can be only one subtree of this form.iiMoreover, this case may only
occur, if C has rank. In the following consideration, it is useful to s€t) = ¢ for an
arbitrary term. Hence; is just the identity function on all terms.

Since condition (a) is already satisfied, every subtie@ = k) is of the form
~ve(Yy) with Y, € Ny and~y, € {e} UNy, whereag;, can be written asy(t), where
1 € {e} UN; andt is a tree that does not start with a non-terminal of rank 1. @e n
do the following:

1. Add a fresh nonterminal € N, of rank1 to V.
2. Add to P’ the production

X(y) = fn(Y1)s s M1 (Y1) e (1) Yokt (Yat1)s - o5 Ym (Yom))-

3. Replace the subtree

Fn(Y1), oo =1 (Yie—1), ve (8)s Yot (Yet1), - -+, Ym (Vo))
of s by X(¢).

After this operation, another contract-1 operation mighhbcessary (if the new subtree
X (t) is below anN; -labeled node). The resulting tree is the skeletongkee

Note that the SLCF tree grammg@tis linear, productive, and monadic. The follow-
ing lemma can be shown by induction on the hierarchical cofl€r.

Lemma 6. For every nonterminal of G we havevalg(A) = valg (ska).



Theorem 7. Letr be the maximal rank of a symbol frofh From a given linear and
k-bounded SLCF tree grammgr= (N, P, S) we can construct in timé&(k - r - |G|) a
linear, productive, and monadic SLCF tree gramrgar= (N', P’, S) of sizeO(r - |G|)
such thatv N (NoUN;) € N’ andvalg: (A) = valg(A) for everyA € NN (NoUNy).

Proof. Using the constructions from Section 4, we first transfgrimto a linear CNF
grammarH with O(|G|) many nonterminals. This needs tiémax{k, r} - |G|). Now
we construct for every nonterminal of H the skeleton treek 4 and simultaneously
the linear and monadic SLCF tree gramriér In order to construct the tregin Equa-
tion (1), we have to copy the already constructed skelet®estkz and sk (since
we may need these trees in later steps), which by Lemma 5 tiegel® (% - ). The
construction ofsk4 from s needs at most three contraction steps, each of which re-
quiresO(1) many pointer operations. Moreover, in every contracti@p ste add to
'H’ a production of size at mosk(r). Hence, the total size &’ is O(r - |G|) and the
construction takes timé@(k - r - |G|). We obtain the final gramma}’ by adding toH’
every nonterminall € N N (Np U N;), which does not already belongtd, together
with the productionA — sk 4. By Lemma 6 we havealg: (A) = valg(A). Note that
in generalg’ is not in CNF, and that it might contain useless productions. O

Finite unions of linear monadic SLCF tree grammars are stldig. in [10] under the
namesingleton tree grammaSTG). They are, by Theorem 7, polynomially equivalent
to finite unions of linear SLCF grammars and hence their teszdn be applied for
linear grammars.

Example 8.We transform the linear CNF grammar constructed in Exampteatan
equivalent linear monadic SLCF tree grammar. We start withdet of productions
P'={A—a,B—b,I(y;) — i(y1)} (see case 1) and the following skeleton trees:

ska = A, skp = B, skr = I(y1), skg = h(y1,y2)-
Next, for X andY we obtain without contract operations:

sky = h(y1, I(y2)), skx = h(I(y1),1(y2))
Let us now constructkx,, skx,, skx,, skx,, skx,, andskg in this order:

— construction ofskx,: For the trees in (1) we obtains = h(I(y1),(A)). With
contract-2, we obtain the new productiOiiy, ) — h(I(y1), I(A)) and the skeleton
treesky, = C(y1).

— Construction okk x,: we gets = h(I(y1), I(B)). With contract-2, we obtain the
new productionD(y1) — h(I(y1),I(B)) and the skeleton treé x, = D(y1).

— Construction ofkx,: we gets = C(B). Thus, we do not add a new production to
P’ and setkx, = C(B).

— Construction ok x, : we gets = D(A). Again, we do not add a new production
to P’ and setky, = D(A).

— Construction okkx,: we gets = h(I(y1), I(C(B))). Afirst contract-1 operation
adds the productioR(y;) — I(C(y1)) to P’ and updatestos = h(I(y1), E(B)).
Now, we have to apply another contract-2 operation, whidltsatie production
F(y1) — h(I(y1), E(B)) to P'. We setskx, = F(y1).



— Construction okks. We sets = F(D(A)). Hence, we add té’ the production
G(y1) — F(D(y1)) and setks = G(A).

Thus, an equivalent linear and monadic SLCF tree grammatactnthe following
productions:

S—=G(A)  Cly) = hI(y),1(4))  F(y) — h(I(y1), E(B))
A—a D(y1) — h(I(y1), 1(B)) G(y1) — F(D(y1))
B—b E(y1) — 1(C(y1)) I(y1) — i(y1)

6 Applications to Tree Automata Evaluation

In [11], we have shown how to check for (i) a given NTAwith n states and (ii) a
given linear andi-bounded SLCF tree grammdrin time O(|G| - |A| - n**+1), whether
val(G) € L(A). If the automaton is a deterministic bottom-up tree autom#ten time
O(|G| - |A| - n¥) suffices. Together with Theorem 7 we obtain the following.

Corollary 9. For a given NTAA with n states and a given linear aridbounded SLCF
tree grammarg such thatr is the maximal rank of a terminal symbol frdiip we can
checkin timeO(r - |G| - (k + |A] - n?)), whetherwal(G) € L(A).

We may assume that & < |G| in Corollary 9, since we assume for context-free
tree grammars that every (non)terminal occurs in a rightdrgde. Moreover, we can
eliminate states from an NTA that do not occur in transitioplés. Hencep < |A|.
Thus, the time bound in Corollary 9 can be replacedtyg|® + |G|* - |.AJ*). Hence,
val(G) € L(A) can be checked in polynomial time. In the rest of this sectiaextend
this result to tree automata with sibling-constraints.

Theorem 10. The problem of checkingnl(G) € L(A) for a given linear SLCF tree
grammargG and a given NTACA can be solved in polynomial time.

Proof. By Theorem 7 we can assume tldat (N, P, .S) is linear and monadic. More-
over, we can assume that all productiong’irare of one of the following 4 types:

- A— f(Ay,...,A,)forAJAy ..., A, e Ngandf € F,
- A— B(C)for A,C € NgandB € N;
- A(y) — f(Ala---aAi—layaAi7~-~7An) for A ¢ Nl, Al,...,An S NQ, f S
II:Tn+1
— A(y) = B(C(y)) for A, B,C € Ny
Let A = (Q, A, F) be an NTAC. We will compute for everyt € Ny N N the set of
statesA(valg(A)). Consider such a nontermindle Ny N N.

Case 1.The production forA is of the formA — f(A,..., A,). Assume that for
everyl < i < n, the set of statesi(valg(4,)) is already computed. Using Theorem 2,
we can find out in polynomial time which of the treedg (A;) (1 < i < n) are equal or
disequal. Using this information, it is straightforwarddmmpute the sefl(valg(A)).

Case 2The production forA is of the formA — B(C). This case requires more work.
Assume that the set of statevalg(C)) is already computed. Define a straight-line
context-freestring grammarg g as follows:



— The set of nonterminals i§; N NV, i.e., the nonterminals @ of rank 1.

— The set of terminal symbols 5 = {[A41,..., 4;_1,y, Aiy ..., Ap, f] |
fEF,H_l,Al,...,An eNgNN,1 §z§n+1}

- If (X(y) — Y(Z(y))) € P, thenGp contains the productioX — ZY; if
(X(y) — f(A1,...,Ai1,y,Ai, ... Ay)) € P, thenGp contains the produc-
tion X — [Ay...,4;,_1,y, A, ..., Ay, f]. These are all productions 6fs.

— The start nonterminal dj s is B.

The string generated by represents the outcome of a partial derivation from the
nonterminalB in the tree grammag, where the derivation process is stopped as soon
as a nonterminal of rank O is reached.

Example 11.Let G contain the following four productions for nonterminals rahk
one:B(y) — Bi(B1(y)), B2(y) — f(A2, A2,y, A3), Bi(y) — Ba2(Bs(y)), Bs(y) —
g(A1,y, Ar). HereAy, Ay, A3 are nonterminals of rank 0. Then, the SLCF string gram-
mar Gp consists of the production8 — BBy, Ba — [A2, As,y, As, f], B1 —

B3 B, andB; — [A1,y, A1, g] and generates the string

Val(gB) - [Ala Yy, Alag] [AQa AQa Y, A37 f] [A17 Y, Ala g] [A27 A27 Y, A3a f]
This string represents the following tree:

A, Ay A A

2 2
Azk Azk

y f f
g g
Al»‘/AB,/AlA/AS

For a nonterminalX € Ny N N of rank 0, let s(X) = [|valg(X)| be the number
of nodes of the generated tree; this number can be compuigalynomial time. For
a terminal symbolAy,..., A;—1,y, A;, ..., A, f] € X of the string grammags
let s([A1,..., Ai—1,y, Ay ..., Any f]) = 1+ s(41) + -+ + s(A,). The mapping
s : X — Nis extended ta~* in the natural ways(a; - - - a,) = s(ay) + -+ - + s(a,)
for ai,...,a, € X. Finally, for a positiond < p < |val(Gp)| let s(p) = s(C) +
s(val(Gg)[: p]), wherewl: k| is the prefix of length of the stringw. Also the value
s(p) can be computed for a given positiprin polynomial time by first constructing in
polynomial time an SLCF string grammar for the prefat(Gz)|: p]. Then the number
s(val(Gp)[: p]) can be easily computed bottom-up. The vakig) is the size of a
certain subtree ofalg(A) = valg(B)[y/valg(C)], namely the subtree that is obtained
by goingp steps up (towards the root) from the unique occurrenceinfvalg (B)(y).
Let us next determine the satz o C Ny N NV of all nonterminals of rank O that
appear in terminal symbols ebl(Gp): If X — [A1,..., Ai—1,y,Ai,..., Ay, f]lisa
production ofGg, then setNx o = {A4,,..., A, }. If X — Y Z is a production of 3,
then setVx o = Ny,0 U Nz . In this way we can compute the s¥f;  in polynomial
time. Let{ky, ko, ..., kn} = {s(X) | X € Npo}, wherek; < ky < -+ < k.
Also this enumeration can be computed in polynomial time ndle compute a certain
splitting of the stringval(Gp). More precisely, for everyy < i < m we compute
the largest position (i.e. highest position in the tréeX p; < |val(Gg)| such that



s(p;) < k;. This positionp; can be computed in polynomial time with binary search
(using the fact that(p) can be computed in polynomial time for a given

Example 11 (continuedfssume thas(C) = s(A1) = 2, s(A2) = 7 ands(As) = 9.
Then, we obtaitk; = 2, ko = 7, andks = 9, aswell ass(0) = 2, s(1) =7, s(2) = 31,
s(3) = 36, ands(4) = 60. Thus,p; = 0, po = p3 = 1.

From the list0 < p; < py < -+ < p,, < |val(Gp)|, we remove every positiop;
such thats(p;) # k; or p; = |val(Gp)|. Let0 < p} < ph < -+ < p, < |val(Gp)| be
the resulting list. In our example, we only kegp = 0 andp), = 1. This list defines
our splitting ofval(Gg). More precisely, we compute in polynomial time the symbols
a; = val(Gg)[p; + 1] € X (wp] is thep-th symbol of the stringv) and SLCF string
grammargjo, . .., G, such that

val(Gp) = val(Go) ai val(Gy) ag - - - val(Ge—1) ag val(Ge). 2

Recall that every prefix ofal(Gg) represents a tree with a unique occurrence of the
parametey (if this prefix is the empty string then the tree is jy$t For0 < ¢ < /¢ let
t;(y) be the tree represented by the prefiX(Gy) a; - - - val(G;_1) a; (thusto(y) = y)
and letu;(y) be the tree represented by the prefiX(Gy) a; - - - val(G;_1) a;val(G;).
We compute the set of statdd = A(t;[y/valg(C)]) and Q; = A(us[y/valg(C)))
successively. We start witR, = A(valg(C)); recall that this set is already computed.

Computing the sef’; from Q;_1 (« > 0) is straightforward: assume that =
[A1,...,Aj1,y, 4, ..., Ay, f]. From (2) we can easily compute a monadic SLCF-
tree grammar for the treg;_,[y/valg(C)]. Hence, using Theorem 2, we can check in
polynomial time, whether the trag_, [y/valg(C)] equals somealg(A;). Using this
information, we can compute in polynomial time the set ofeg®; from Q;_.

In order to comput&); from P;, one has to note that when walking down from
the root ofu;(y) to the unique occurrence af for |val(G;)| steps, then the current
subtree is never equal to one of its sibling nodes. Hencegvery terminal symbol
a=[A,...,A;_1,y,Aj41,..., A,, f]that occurs in the grammég; we can compute
a transition mapping, : Q — 2% as follows, where; € @ (recall that the sets

A(valg(Ay)) for k € {1,...,n}\ {j} are already computed):

6@(Q) :{q/ S Q ‘ 3(E7Daql7"'7qj—17anj+17"'7qnafaq/) € A
Ve e {1,...,n}\ {j} : @ € A(valg(Ay)),
V(k,m)e E:k=mV (k# j#mAvalg(A) = valg(4,,)),
V(k,m)e D :k=jVm=jV(k+#j#mAvalg(Ay) # valg(An))}.

Using the mapping§, and the SLCF string grammgt, we can computé); from P;
easily in polynomial time. O

7 Adding Nondeterminism or Non-Linearity
If we relax condition (i) of the definition of SLCF tree grammaao (i’) P contains

for every A € N at least ongproduction with left-hand sidel (but keep the acyclic-
ity condition (ii)) then we obtaimondeterministicSLCF tree grammars (NSLCF tree



grammars). Such grammars generate finite sets of treeshwhithe following exam-
ple may contain double-exponentially many trees.

Example 12.Forn > 1, let the linear, productive, and monadic NSLCF tree grammar
G,, consist of the productionS — Ag(a), Ai(y1) — Ait1(Aiz1(y1)) for 0 < i < n,
An(y1) — f(y1), andA, (y1) — g(y1). ThenL(G,,) consists of all monadic trees with
2" many internal nodes, each of which is labefedr g. Thus|L(G,,)| = 22".

We now want to show that given a linear and productive NSL@E grammag;, we
can, in generalnot obtain an equivalentnonadicgrammar of sizgG|°("). In fact,
there is a familyg,, (n > 1) of linear and productive NSLCF tree grammars such that
any monadic, linear, and productive NSLCF tree grammardkaerated.(G,,) is of
size20(9:1"*) Thus, for nondeterministic grammars an exponential higacannot

be avoided when going to monadic grammars. Later we showthisis the worst
case blow-up and that in fact any linear and non-deleting GFstree grammar can be
transformed into an equivalent monadic one which is at mqsbeentially larger.

Example 13.For n > 1, let the symbolf, be of rankn and define the linear and

productive NSLCF tree grammés, (of sizeO(n?)) with the following productions:
S — Aola,...,a)
Ay, yn) = A (f(ya)s -0 flyn)) foro <i<n
(

Ai(yry oy yn) — Aiv1(g(v1), -, 9(yn)) foro <i<n
An(yh'"vyn) _)fn(yh?yn)

ThenL,, = L(G,) consists of all treeg, (t,t,...,t) wheret is a monadic tree with
many internal nodes, each of which is labejedr g.

Lemma 14. Letn > 1, k < n, and letG be a linear, non-deleting, ané-bounded
NSLCF grammar such thdt(G) = L,, is the set from Example 13. Thgp > 2.

Proof. Assume thatj is a linear, non-deleting, anttbounded NSLCF tree grammar
such thatt < n andL(G) = L,. W.l.o.g. we can assume that every nonterminal of
G appears in a successful derivationtflLet P(f,,) be the set of all productions of
the form A — t, wheret contains a subtree of the forify (¢4, . ..,t,). Clearly, since

G is non-deleting, every right-hand side of a production frBiy,,) contains a unique
such subtree. Moreover, in every successful derivatiof, @ production fromP( f,,)

has to be applied exactly once. We claim th&{ f,,)| > 2". Consider a production
(A —t) € P(f,)and consider the unique subtree of the formf,, (¢, . .., ). Since
rank(A) < k < n andg is linear, there exists ahe {1,...,n} such that, does not
contain a parameter, i.¢,, € T(F U N). Assume that two different terminal trees can
be derived fromt;. Then we can derive with a tree, where the root has two different
subtrees, a contradiction. Hence, frejjwe can generate exactly one tree. We denote
this tree byr[A — t], since it can be associated with the productidn— ¢) € P(f,,).
Hence, for every successful derivatioh=-; s, where the productioid — t) €
P(f,) is applied (exactly once), we must have= f,(7[4 — t],..., T[4 — {t]).
Since we can generat® many terminal trees frony' and in each derivation exactly
one production fronP( f,,) is applied, it follows thatP(f,)| > 2™. O



For arbitrary linear context-free tree grammars (thushwécursion and nondetermin-
ism), the number of parameters gives rise to a hierarchyngfuages which is strict at
each level. In fact, the family of languages that can be usaatdve the strictness of
this hierarchy is similar to the one of Example 13.

Example 15.Forn > 1, let f,, be a symbol of rank:. and A be a nonterminal of
rankn. Define the linear and productive context-free tree grantmawith the produc-
tionsS — A(a,...,a), A(y1, -, yn) = A(f(y1),. .-, f(yn)), @andA(y1, ..., yn) —
fa(y1,...,yn). ThenL! = L(G,) consists of all treed,(t,t,...,t) wheret is a
monadic tree of the fornf™ (a) for somem > 0.

The proof of the following lemma is similar to the one of Lemfna

Lemma 16. Letn > 1 andk < n. The setl], from Example 15 cannot be generated
by a linear, non-deleting, ank-bounded context-free tree grammar.

By the following theorem, the lower bound from Lemma 14 camia¢ched by an upper
bound. The proof of this result is similar to the proof of Thero 7.

Theorem 17. For a given linear NSLCF tree grammear= (N, P, S) we can construct
in time 2°090) a linear and monadic NSLCF tree gramm@f = (N, P, S) of size
2009D) such thatL(G') = L(G).

One might also think about extending Theorem hoém-linear SLCF tree grammars.
But results from [11] make such an extension quite unlikils. PSPACE-complete to
check whether a deterministic bottom-up tree automatoepseal(G), whereg is a
given (non-linear) SLCF tree grammar. If we restrict thishdem by requiringg to be
k-bounded for a fixed constaht then it becomes P-complete. Here is an explicit ex-
ample showing that Theorem 7 cannot be extended to norrI8is@F tree grammars.

Example 18.Forn > 1, let the symbolf,, be of rankn, let g have rank, and let0 and
1 have rank). Define the productive (but non-linear) SLCF tree gramawith the
following productions, wherel; is a nonterminal of rank (1 < 7 < n):

S — g(A1(0), A1 (1))
Ayt yi) = 9(Aita(yr, -5 96,0), Aia (Y, -y, 1) for 1 < <n
An(yla-'-vyH) an(yla---yyn)

Thenval(G,,) results from a complete binagttree of height: by replacing thek-th
leaf 0 < k < 2™ — 1) by the treef,,(b1,...,b,), wherebybs - -- b, is the binary
representation of. The size ofG,, is O(n?).

Lemma 19. Letn > 1, k < n, and letG be ak-bounded SLCF tree grammar such
that val(G) = val(G,), whereg,, is the SLCF tree grammar of Example 18. Then
|g| Z 2n7k:.



Proof. Let T,, be the set of all occurrences of subterms of the fotn(t:,...,t,)
that occur in right-hand sides ¢f. We claim that|7},,| > 2"~*. Consider a term
fulty,...,t,) € T,. Sinceg is k-bounded, at most parameters can occur among
the termsty,...,t,. During the derivation, each of these parameters may bereith
substituted by the constafitor 1. Hence, from eaclyf, (¢1,...,t,) € T,, we can
obtain during the derivation at mogt different trees of the forny (b4, ..., b,) with
bi,...,b, € {0,1}. Sinceval(G, ) contain®" such subtrees, we ggf,| > 2"~*. O

Clearly, Lemma 19 implies that without an exponential blegy-we cannot reduce
the number of parameters in any non-linear SLCF tree grantmar constant. But
we cannot even reduce the number of parameters frdme - n (wheree < 1is a

constant) without an exponential blowup. For arbitrarytegtifree tree grammars with
Ol derivation order it is proved in Theorem 6.5 of [6] that tmember of parameters
gives rise to a hierarchy that is proper at each step (evethdastring yield languages).
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