
Parameter Reduction in Grammar-Compressed Trees

Markus Lohrey1, Sebastian Maneth2, and Manfred Schmidt-Schauß3

1 Universiẗat Leipzig, Institut f̈ur Informatik, Germany
2 NICTA and University of New South Wales, Australia

3 Johann Wolfgang Goethe-Universität Frankfurt, Institut f̈ur Informatik, Germany
lohrey@informatik.uni-leipzig.de, sebastian.maneth@nicta.com.au

schauss@cs.uni-frankfurt.de

Abstract. Trees can be conveniently compressed with linear straight-line context-
free tree grammars. Such grammars generalize straight-line context-free string
grammars which are widely used in the development of algorithms that execute
directly on compressed structures (without prior decompression). Itis shown that
every linear straight-line context-free tree grammar can be transformed in poly-
nomial time into a monadic (and linear) one. A tree grammar is monadic if each
nonterminal uses at most one context parameter. Based on this result,a polyno-
mial time algorithm is presented for testing whether a given nondeterministic tree
automaton with sibling constraints accepts a tree given by a linear straight-line
context-free tree grammar. It is shown that if tree grammars are nondeterministic
or non-linear, then reducing their numbers of parameters cannot be done without
an exponential blow-up in grammar size.

1 Introduction

The current massive increase in data volumes motivates the development of algorithms
oncompressed data, like for instance compressed strings, trees, and graphs. The general
goal is to construct algorithms that work directly on compressed data, without prior
decompression. Considerable amount of work has been done concerning algorithms
that execute on compressed strings, see [13] for a survey. Inthis field, a popular succinct
string representation are context-free grammars which generate exactly one string. It
can be statically guaranteed that only one string is generated, by restricting to acyclic
grammars with exactly one production per nonterminal. Suchgrammars are known as
straight-line programs, briefly SLPs. Since an SLP withn productions may generate a
string of length2n, an SLP can be seen as a compressed representation of the generated
string. Some of the nice features of SLPs are:

– Many dictionary based compression schemes, like for instance LZ78 and LZ77 can
be converted efficiently into SLPs, see, e.g., [13] for further details.

– SLPs are based on context-free grammars and are apt for concise and clean mathe-
matical proofs.

– For many algorithmic problems, SLPs allow efficient algorithms that avoid prior
decompression. The most studied example in this context is the pattern matching
problem for compressed strings, see the references in [13].

Due to these appealing properties, it is natural to generalize SLPs to other more complex
data structures. For trees, this is done in [3, 11]. In this context, a tree is represented by
a context-free tree grammarthat generates exactly one tree. Such grammars are called
straight-line context-free tree grammars, briefly SLCF tree grammars in [3, 11]. They
generalize the sharing of repeated subtrees in a tree as it iswell-known from DAGs
(directed acyclic graphs) to the sharing of repeated subpatterns in a tree (a subpattern
is a connected subgraph of the tree). In the context of commonly used XML docu-
ments, experiments show that SLCF tree grammars can give approximately 2-3 times
higher compression ratios [3] than DAGs [2] when compressing document tree struc-
tures. Since sharing of patterns in an SLCF tree grammar can occur along the paths of
a tree, it is possible to have a grammar of sizeO(n)1 that generates a tree of height2n;
this is not possible with a DAG (the DAG has the same height as its represented tree).
More dramatically, an SLCF tree grammar of sizeO(n) can even generate a full binary
tree of height2n, which has22n

many nodes. Hence, double exponential compression
rates can be achieved.

The downside of such extreme compression capabilities is that arbitrary SLCF tree
grammars do not inherit some of the nice algorithmic properties of (string) SLPs. For
instance, whereas evaluating a given automaton on an SLP representation of a string
can be done in polynomial time [13], this problem becomes PSPACE-complete for tree
automata and SLCF tree grammars [11]. This motivates the investigation of restricted
classes of SLCF tree grammars. Linearity is one of these restrictions: a context-free
tree grammar islinear if every context parameter occurs at most once in every right-
hand side. Note that our tree compression algorithm BPLEX [3] generates a smalllinear
SLCF tree grammar for a given input tree. It can be checked in polynomial time whether
two linear SLCF tree grammars generate the same tree [3, 14].This result generalizes
a corresponding result for (string) SLPs of Plandowski [12]. It remains open whether
polynomial time equality testing is also possible for non-linear SLCF tree grammars.

Another useful restriction on SLCF tree grammars isk-boundedness(for some
fixed k): a context-free tree grammar isk-bounded if every nonterminal uses at most
k context parameters; 1-bounded grammars are also calledmonadic. In this paper we
study the impact of the various restrictions on SLCF tree grammars with respect to
compression. Our main result is the following: a given linear SLCF tree grammar can
be transformed in polynomial time into an equivalent linearand monadic SLCF tree
grammar (Theorem 7). In other words, for the purpose of compression by linear gram-
mars, one parameter is already enough; the corresponding linear monadic grammars
offer the same kind of compression as linear SLCF tree grammars. Linear monadic
SLCF tree grammars are also used in [9, 10, 14], where they arecalledsingleton tree
grammars. We present two algorithmic applications of Theorem 7: it can be tested in
polynomial time whether a given tree automaton accepts the tree given by a linear SLCF
tree grammar (Corollary 9). This solves our main open problem from [11], where we
could only present a polynomial time algorithm for lineark-bounded SLCF tree gram-
mars (whenk is a fixed constant). Our second application generalizes Corollary 9 to tree
automata with equality and disequality constraints between sibling nodes [1, 4]. These
are bottom-up tree automata which can test whether the subtrees rooted at children of

1 The size of a grammar is defined as the sum of the sizes of all right-hand sides of productions.

the current node are equal or not equal. Their recognized languages are closed under
Boolean operations and are strictly more general than regular tree languages (for a re-
cent generalization see [5]). The running time of this second polynomial time algorithm
is much worse than the running time stated in Corollary 9 for ordinary tree automata;
therefore we state the two results separately.

In Section 7 we show that Theorem 7 does not extend to larger classes of grammars.
First, we consider nondeterministic linear SLCF tree grammars, i.e., acyclic grammars
(no recursion) which may have several productions for each nonterminal. Such gram-
mars represent finite sets of trees. We give an example of a linear andn-bounded non-
deterministic SLCF tree grammar for which every equivalentk-bounded such grammar
(k < n) must be exponentially larger. Using a straightforward extension of our proof
of Theorem 7, we show that this exponential blow-up is also the worst case. Next,
we consider non-linear SLCF tree grammars. We present an example of a non-linearn-
bounded SLCF tree grammar of sizeO(n) for which every equivalentk-bounded SLCF
tree grammar (k < n) has size at least2n−k.

A full version of this paper including all proofs will appear.

2 Trees and SLCF Tree Grammars

A ranked alphabetis a pair(F, rank), whereF is a finite set of function symbols and
rank : F → IN assigns to eachα ∈ F its rank. LetFi = {α ∈ F | rank(α) = i}
and F≥i =

⋃
j≥i Fj . Symbols inF0 are calledconstants. We fix a ranked alphabet

(F, rank) in the following. AnF-labeled ordered treet (or ground termover F) is a
pair t = (domt, λt), where (i)domt ⊆ IN∗ is finite, (ii) λt : domt → F, (iii) if
w = vv′ ∈ domt, then alsov ∈ domt, and (iv) if v ∈ domt andλt(v) ∈ Fn, then
vi ∈ domt if and only if 1 ≤ i ≤ n. The edge relation oft is implicitly given as
{(v, vi) ∈ domt × domt | v ∈ IN∗, i ∈ IN}. The size oft is |t| = |domt|. We identify
an F-labeled treet with a term in the usual way: ifλt(ε) = α ∈ Fi, then this term
is α(t1, . . . , ti), wheretj is the term associated with the subtree oft rooted at nodej.
The set of allF-labeled trees isT (F). Let us fix a countable setY = {y1, y2, . . .} of
(formal context-) parameters(below we also use a distinguished parameterz 6∈ Y).
The set of allF-labeled trees with parameters fromY ⊆ Y is T (F, Y). Formally, we
consider parameters as new constants and defineT (F, Y) = T (F ∪ Y). The treet ∈
T (F, Y) is linear, if every parametery ∈ Y occurs at most once int. For treest ∈
T (F, {y1, . . . , yn}), t1, . . . , tn ∈ T (F, Y), by t[y1/t1 · · · yn/tn] we denote the tree that
is obtained by replacing int everyyi-labeled leaf withti (1 ≤ i ≤ n). A contextis a
treeC ∈ T (F, Y ∪ {z}), in which the distinguished parameterz appears exactly once.
Instead ofC[z/t] we write brieflyC[t]. When talking about algorithms on trees, we
assume the RAM model of computation, and we assume that treesare given by the
standard pointer representation.

For further consideration, let us fix a countable infinite setNi of symbols of rank
i with Fi ∩ Ni = ∅. Hence, every finite subsetN ⊆

⋃
i≥0 Ni is a ranked alphabet. A

context-free tree grammar(overF) is a tripleG = (N,P, S), where (i)N ⊆
⋃

i≥0 Ni

is a finite set ofnonterminals, (ii) P (the set ofproductions) is a finite set of pairs of
the form (A → t), whereA ∈ N and t ∈ T (F ∪ N, {y1, . . . , yrank(A)}), and (iii)

S ∈ N ∩ N0 is thestart nonterminalof rank0. We assume that every nonterminalB ∈
N \{S} as well as every terminal symbol fromF occurs in the right-hand sidet of some
production(A → t) ∈ P . For a production(A → t) ∈ P with A ∈ N ∩ Nn, we also
write A(y1 . . . , yn) → t(y1, . . . , yn) in order to emphasize thatrank(A) = n. Thesize
|G| of G is |G| =

∑
(A→t)∈P |t|. Let us define the derivation relation⇒G onT (F∪N, Y)

as follows:s ⇒G s′ if there exist a production(A → t) ∈ P with rank(A) = n,
a contextC ∈ T (F ∪ N, Y ∪ {z}), and treest1, . . . , tn ∈ T (F ∪ N, Y) such that
s = C[A(t1, . . . , tn)] ands′ = C[t[y1/t1 · · · yn/tn]]. Let L(G) = {t ∈ T (F) | S ⇒∗

G

t} ⊆ T (F). We consider several subclasses of context-free tree grammars:

– G is linear, if for every production(A → t) ∈ P the termt is linear.
– G is non-erasing, if t 6∈ Y for every production(A → t) ∈ P .
– G is non-deleting, if for every production(A → t) ∈ P , each of the parameters

y1, . . . , yrank(A) appears int.
– G is productive, if it is non-erasing and non-deleting.
– G is k-bounded(for k ∈ IN), if rank(A) ≤ k for everyA ∈ N .
– G is monadicif it is 1-bounded.

Finally, a straight-line context-free tree grammar(SLCF tree grammar) is a context-
free tree grammarG = (N,P, S), where (i) for everyA ∈ N there isexactly one
production(A → tA) ∈ P with left-hand sideA and (ii) the relation{(A,B) ∈
N × N | B occurs intA} is acyclic; we call the reflexive transitive closure of this
relation thehierarchical orderof G. Conditions (i) and (ii) ensure thatL(G) contains
exactly one tree, which we denote withval(G). Alternatively, for every termt ∈ T (F∪
N, {y1, . . . , yn}) we can define a termvalG(t) ∈ T (F, {y1, . . . , yn}) by induction on
the hierarchical order as follows, where1 ≤ i ≤ n, f ∈ Fm, andA ∈ N ∩ Nm:

– valG(yi) = yi

– valG(f(t1, . . . , tm)) = f(valG(t1), . . . , valG(tm))
– valG(A(t1, . . . , tm)) = valG(tA)[y1/valG(t1) · · · ym/valG(tm)]

Finally, let valG(A) = valG(A(y1, . . . , yrank(A))) andval(G) = valG(S). SLCF tree
grammars generalizestring generating straight-line programs [13] in a natural way to
trees. The following example shows that SLCF tree grammars may lead to doubly expo-
nential compression ratios; thus, they can be exponentially more succinct than DAGs.

Example 1.Let the (non-linear) monadic SLCF tree grammarGn consist of the produc-
tionsS → A0(a), Ai(y1) → Ai+1(Ai+1(y1)) for 0 ≤ i < n, andAn(y1) → f(y1, y1).
Thenval(Gn) is a complete binary tree of height2n + 1. Thus,|val(Gn)| = 2 · 22n

− 1.

On the other hand, it is not difficult to show that for alinear SLCF tree grammarG
one has|val(G)| ≤ 2O(|G|). Thus, linear SLCF tree grammars have at most expo-
nential compression ratios, just like DAGs, which can be seen as0-bounded SLCF
tree grammars. But even linear SLCF tree grammars can be exponentially more suc-
cinct than DAGs: the linear SLCF tree grammarGn with the productionsS → A0(a),
Ai(y1) → Ai+1(Ai+1(y1)) for 0 ≤ i < n, andAn(y1) → f(y1) generates a monadic
tree of height2n + 1. The minimal DAG for this tree is the tree itself and thus has size
2n + 1. The following result was shown in [3].

Theorem 2. There exists a polynomial time algorithm that tests for two given linear
SLCF tree grammarsG andH, whetherval(G) = val(H).

It is open whether Theorem 2 can be generalized to non-linearSLCF tree grammars.
In [3] we could only prove a PSPACE upper bound for the equality problem for non-
linear SLCF tree grammars.

3 Tree Automata

Let F be a ranked alphabet. Anondeterministic tree automaton(overF), NTA for short,
is a tupleA = (Q,∆,F), where (i)Q is a finite set ofstates, (ii) F ⊆ Q is the set of
final states, and (iii) ∆ is a set oftransitionsof the form(q1, . . . , qrank(f), f, q), where

f ∈ F andq1, . . . , qrank(f), q ∈ Q. We define the mapping̃∆ : T (F) → 2Q inductively
as follows, wheren ≥ 0, f ∈ Fn, andt1, . . . , tn ∈ T (F):

∆̃(f(t1, . . . , tn)) = {q ∈ Q | ∃(q1, . . . , qn, f, q) ∈ ∆ : q1 ∈ ∆̃(t1), . . . , qn ∈ ∆̃(tn)}

The languagedefined byA is L(A) = {t ∈ T (F) | ∆̃(t) ∩ F 6= ∅}. Thesizeof the
NTA A = (Q,∆,F) is defined as|A| =

∑
(q1,...,qn,f,q)∈∆(n · log |Q| + log |F|).

A nondeterministic tree automaton with sibling-constraints (over F), NTAC for
short, is a tupleA = (Q,∆,F), whereQ andF are as for NTAs and∆ is a set of
transitionsof the form(E,D, q1, . . . , qrank(f), f, q), whereE,D ⊆ {1, . . . , rank(f)}2

are disjoint relations such thatD is irreflexive,f ∈ F, andq1, . . . , qrank(f), q ∈ Q. The
relationE (resp.D) is a set ofequality(resp.disequality) constraints between siblings.
We define the mapping̃∆ : T (F) → 2Q inductively as follows, wheren ≥ 0, f ∈ Fn,
andt1, . . . , tn ∈ T (F):

∆̃(f(t1, . . . , tn)) = {q ∈ Q | ∃(E,D, q1, . . . , qn, f, q) ∈ ∆ :

q1 ∈ ∆̃(t1), . . . , qn ∈ ∆̃(tn),∀(i, j) ∈ E : ti = tj ,∀(i, j) ∈ D : ti 6= tj}

Again, the language defined byA is L(A) = {t ∈ T (F) | ∆̃(t) ∩ F 6= ∅}. The size of
the NTACA is |A| =

∑
(E,D,q1,...,qn,f)∈∆(n2 + n · log |Q| + log |F|).

4 Normal Forms for Linear SLCF Tree Grammars

In this section, we only deal withlinear SLCF tree grammars. It is easy to see that
a linear SLCF tree grammarG = (N,P, S) can be transformed in linear time into
an equivalent linear andnon-deletingSLCF tree grammar: if for a productionA →
tA (with rank(A) = n) the parametersyi1 , . . . , yik

∈ {y1, . . . , yn} do not occur in
tA, then we can reduce the rank ofA to n − k. Moreover, if A occurs in a right-
hand sidetB at positionv ∈ domtB

, then we remove fromtB the subtrees rooted at
positionsvi1, . . . , vik. We now produce an equivalent non-deleting grammar in one
pass throughG: starting from the leaves of the hierarchical order ofG, we reduce the
rank of each nonterminalA and store with it the indices of removed parameters (so that

in later occurrences ofA we know which subtrees to remove). Note that the size of the
new grammar is at most|G|.

Now, let G be a linear and non-deleting SLCF tree grammar. Again it is easy to
see thatG can be transformed in linear time into an equivalent linear and productive
SLCF tree grammar: we remove each production with right handsidey1, and apply the
removed productions in all remaining right-hand sides. As before, this can be done in
one pass through the grammarG, and the resulting grammar has size at most|G|.

A linear SLCF tree grammarG = (N,P, S) is in Chomsky normal form(CNF) if it
is productive, and for every production(A → tA) ∈ P with rank(A) = n, the termtA
has one of the following two forms:

(a) f(y1, . . . , yn) with f ∈ Fn

(b) B(y1, . . . , yi−1, C(yi, . . . , yj−1), yj , . . . , yn) with B,C ∈ N , 1 ≤ i ≤ j ≤ n + 1.

The proof of the following proposition is a straightforwardextension of the correspond-
ing construction for context-free string grammars.

Proposition 3. LetG = (N,P, S) be a linear and productive SLCF tree grammar over
F and letr be the maximal rank inN ∪ F. We can construct in timeO(r · |G|) a linear
SLCF tree grammarG′ = (N ′, P ′, S) in CNF such thatN ′ ⊇ N , |N ′| ≤ 2 · |G|, G′ is
k′-bounded,k′ ≤ 2r − 1, andvalG′(A) = valG(A) for all A ∈ N .

For macro grammars, a normal form similar to CNF exists (called IO standard form
in [7, Definition 3.1.7]), where the nonterminalC in the second type (b) can even be
assumed to be the first argument ofB (for us this does not work, because in CNF the
parameters have to occur in the ordery1, . . . , yrank(A) in the right-hand side forA).
Macro grammars are similar to context-free tree grammars except that they generate
strings. Since in an SLCF tree grammar, every nonterminal has exactly one production,
it is not difficult to see that the derivation order (IO or OI, see e.g. [4] for a definition)
does not matter for SLCF tree grammars. It is also known that for arbitrary linear and
non-deleting context-free tree grammars the derivation order again does not matter [8].

Example 4.Consider the linear and productive SLCF tree grammar with the two pro-
ductionsS → X(X(a, b),X(b, a)) andX(y1, y2) → h(i(y1), i(y2)). An equivalent
linear SLCF tree grammar in CNF consists of the following productions:

S → X0(X1) X(y1, y2) → Y (I(y1), y2)

X0(y1) → X(y1,X2) Y (y1, y2) → H(y1, I(y2))

X1 → X3(A) A → a

X2 → X4(B) B → b

X3(y1) → X(y1, B) I(y1) → i(y1)

X4(y1) → X(y1, A) H(y1, y2) → h(y1, y2).

Linear SLCF tree grammars in CNF can be stored more efficiently than ordinary SLCF
tree grammars: if we know the rank of each (non)terminal, then for a right-hand side
B(y1, . . . , yi, C(yi+1, . . . , yj), yj+1, . . . , ym) (resp.f(y1, . . . , yn)) we only need to

store the triple(B,C, i) (resp. the symbolf) which has sizeO(log k) if the gram-
mar isk-bounded. We call this new representation of a CNF grammar its triple nota-
tion. From a given linear SLCF tree grammarG, we can construct an equivalent linear
SLCF tree grammar in CNF in timeO(r · |G|) (wherer is again the maximal rank of
(non)terminals) which needs only spaceO(log(r) · |G|) in triple notation.

5 Parameter Reduction in Linear SLCF Tree Grammars

In this section our main result is proved. We show that a givenlinear SLCF tree grammar
can be made monadic in polynomial time.

A skeleton treeof rankn ≥ 0 is a linear trees ∈ T (N0 ∪ N1 ∪ F≥2, {y1, . . . , yn}),
such that every parameteryi (1 ≤ i ≤ n) occurs ins and the following additional
properties are satisfied.

(a) The trees does not contain a subtree of the formX(Y (t)) for X,Y ∈ N1.
(b) For every subtreef(t1, . . . , tm) of s with f ∈ F≥2 there exist at least two distinct

i ∈ {1, . . . ,m} such thatti contains a parameter from{y1, . . . , yn}.

In our construction, a skeleton tree will store the branching structure (with respect to
those leaf nodes that are parameters) of the tree generated by a certain nonterminal, i.e.,
the information on how the paths from the root to parameters branch. Nonterminals of
rank 1 in a skeleton tree represent those tree parts that are in between two branching
nodes in this branching structure. The crucial point about skeleton trees is that their size
can be bounded polynomially. For the following lemma, it is important that a skeleton
tree only contains function symbols of rank≥ 2.

Lemma 5. Let r be the maximal rank of a symbol fromF. A skeleton trees of rank
n ≥ 1 contains at most2(r · n − r + 1) many nodes.

Let G = (N,P, S) be a linear SLCF tree grammar. By Proposition 3 we may assume
thatG is in CNF. The set of nonterminalsN is a finite subset of

⋃
i≥0 Ni. We now define

in a bottom-up process, for every nonterminalA of rankn ≥ 1, a skeleton treeskA of
rank n. Simultaneously, we construct a new linear and monadic SLCFtree grammar
G′ = (N ′, P ′, S). Consider a productionA → tA from P and letn = rank(A).

Case 1.tA = f(y1, . . . , yn), wheref ∈ Fn: if n ≤ 1, then we add the production
A(y1, . . . , yn) → tA to P ′ and setskA = A(y1, . . . , yn). If n ≥ 2, then we setskA =
tA and do not add any new productions toP ′.

Case 2.tA = B(y1, . . . , yi−1, C(yi, . . . , yj−1), yj , . . . , yn), wherei ≤ j and the trees
skB , skC are already constructed. In a first step we define the tree

s = skB [yi/skC [y1/yi, y2/yi+1, . . . , yj−i/yj−1],

yi+1/yj , yi+2/yj+1, . . . , yn+i−j+1/yn]. (1)

But this tree is not necessarily a skeleton tree; it may locally violate the conditions (a)
and (b) on skeleton trees. Hence, we apply a contract-operation to s which yields the

Y

Z

s

XskB

skC

Fig. 1.Contract-1

f

· · · · · ·

Y1 Ym

γ1
γk

γm

t

X

t

Fig. 2.Contract-2

skeleton treeskA. Moreover, as a side effect, the contract-operation adds new produc-
tions and nonterminals toG′. The contract-operation works in two steps:

Contract-1.Assume thats contains a subtree of the formY (Z(t)). There can be only
one subtree of this form ins, see the left tree in Figure 1. We now do the following:

1. Add a fresh nonterminalX ∈ N1 of rank1 to N ′.
2. Add the productionX(y1) → Y (Z(y1)) to P ′.
3. Replace the subtreeY (Z(t)) by X(t).

Contract-2.After contract-1,s can only violate condition (b) for skeleton trees. Hence,
assume thats contains a subtree of the formf(t1, . . . , tm) such thatf ∈ F≥2 and there
is exactly onek ∈ {1, . . . ,m} such thattk contains a parameter from{y1, . . . , yn}, say
yp. Again there can be only one subtree of this form ins. Moreover, this case may only
occur, ifC has rank0. In the following consideration, it is useful to setε(t) = t for an
arbitrary term. Hence,ε is just the identity function on all terms.

Since condition (a) is already satisfied, every subtreetℓ (ℓ 6= k) is of the form
γℓ(Yℓ) with Yℓ ∈ N0 andγℓ ∈ {ε} ∪ N1, whereastk can be written asγk(t), where
γk ∈ {ε} ∪ N1 andt is a tree that does not start with a non-terminal of rank 1. We now
do the following:

1. Add a fresh nonterminalX ∈ N1 of rank1 to N ′.
2. Add toP ′ the production

X(y1) → f(γ1(Y1), . . . , γk−1(Yk−1), γk(y1), γk+1(Yk+1), . . . , γm(Ym)).

3. Replace the subtree

f(γ1(Y1), . . . , γk−1(Yk−1), γk(t), γk+1(Yk+1), . . . , γm(Ym))

of s by X(t).

After this operation, another contract-1 operation might be necessary (if the new subtree
X(t) is below anN1-labeled node). The resulting tree is the skeleton treeskA.

Note that the SLCF tree grammarG′ is linear, productive, and monadic. The follow-
ing lemma can be shown by induction on the hierarchical orderof G.

Lemma 6. For every nonterminalA of G we havevalG(A) = valG′(skA).

Theorem 7. Let r be the maximal rank of a symbol fromF. From a given linear and
k-bounded SLCF tree grammarG = (N,P, S) we can construct in timeO(k · r · |G|) a
linear, productive, and monadic SLCF tree grammarG′ = (N ′, P ′, S) of sizeO(r · |G|)
such thatN ∩ (N0 ∪N1) ⊆ N ′ andvalG′(A) = valG(A) for everyA ∈ N ∩ (N0 ∪N1).

Proof. Using the constructions from Section 4, we first transformG into a linear CNF
grammarH with O(|G|) many nonterminals. This needs timeO(max{k, r} · |G|). Now
we construct for every nonterminalA of H the skeleton treeskA and simultaneously
the linear and monadic SLCF tree grammarH′. In order to construct the trees in Equa-
tion (1), we have to copy the already constructed skeleton treesskB and skC (since
we may need these trees in later steps), which by Lemma 5 needstime O(k · r). The
construction ofskA from s needs at most three contraction steps, each of which re-
quiresO(1) many pointer operations. Moreover, in every contraction step we add to
H′ a production of size at mostO(r). Hence, the total size ofH′ is O(r · |G|) and the
construction takes timeO(k · r · |G|). We obtain the final grammarG′ by adding toH′

every nonterminalA ∈ N ∩ (N0 ∪ N1), which does not already belong toH′, together
with the productionA → skA. By Lemma 6 we havevalG′(A) = valG(A). Note that
in generalG′ is not in CNF, and that it might contain useless productions. ⊓⊔

Finite unions of linear monadic SLCF tree grammars are studied e.g. in [10] under the
namesingleton tree grammar(STG). They are, by Theorem 7, polynomially equivalent
to finite unions of linear SLCF grammars and hence their results can be applied for
linear grammars.

Example 8.We transform the linear CNF grammar constructed in Example 4into an
equivalent linear monadic SLCF tree grammar. We start with the set of productions
P ′ = {A → a,B → b, I(y1) → i(y1)} (see case 1) and the following skeleton trees:

skA = A, skB = B, skI = I(y1), skH = h(y1, y2).

Next, forX andY we obtain without contract operations:

skY = h(y1, I(y2)), skX = h(I(y1), I(y2))

Let us now constructskX4
, skX3

, skX2
, skX1

, skX0
, andskS in this order:

– construction ofskX4
: For the trees in (1) we obtains = h(I(y1), I(A)). With

contract-2, we obtain the new productionC(y1) → h(I(y1), I(A)) and the skeleton
treeskX4

= C(y1).
– Construction ofskX3

: we gets = h(I(y1), I(B)). With contract-2, we obtain the
new productionD(y1) → h(I(y1), I(B)) and the skeleton treeskX3

= D(y1).
– Construction ofskX2

: we gets = C(B). Thus, we do not add a new production to
P ′ and setskX2

= C(B).
– Construction ofskX1

: we gets = D(A). Again, we do not add a new production
to P ′ and setskX1

= D(A).
– Construction ofskX0

: we gets = h(I(y1), I(C(B))). A first contract-1 operation
adds the productionE(y1) → I(C(y1)) toP ′ and updatess tos = h(I(y1), E(B)).
Now, we have to apply another contract-2 operation, which adds the production
F (y1) → h(I(y1), E(B)) to P ′. We setskX0

= F (y1).

– Construction ofskS . We sets = F (D(A)). Hence, we add toP ′ the production
G(y1) → F (D(y1)) and setskS = G(A).

Thus, an equivalent linear and monadic SLCF tree grammar contains the following
productions:

S → G(A) C(y1) → h(I(y1), I(A)) F (y1) → h(I(y1), E(B))

A → a D(y1) → h(I(y1), I(B)) G(y1) → F (D(y1))

B → b E(y1) → I(C(y1)) I(y1) → i(y1)

6 Applications to Tree Automata Evaluation

In [11], we have shown how to check for (i) a given NTAA with n states and (ii) a
given linear andk-bounded SLCF tree grammarG in timeO(|G| · |A| · nk+1), whether
val(G) ∈ L(A). If the automaton is a deterministic bottom-up tree automaton then time
O(|G| · |A| · nk) suffices. Together with Theorem 7 we obtain the following.

Corollary 9. For a given NTAA with n states and a given linear andk-bounded SLCF
tree grammarG such thatr is the maximal rank of a terminal symbol fromF, we can
check in timeO(r · |G| · (k + |A| · n2)), whetherval(G) ∈ L(A).

We may assume thatr, k ≤ |G| in Corollary 9, since we assume for context-free
tree grammars that every (non)terminal occurs in a right-hand side. Moreover, we can
eliminate states from an NTA that do not occur in transition tuples. Hence,n ≤ |A|.
Thus, the time bound in Corollary 9 can be replaced byO(|G|3 + |G|2 · |A|3). Hence,
val(G) ∈ L(A) can be checked in polynomial time. In the rest of this section, we extend
this result to tree automata with sibling-constraints.

Theorem 10. The problem of checkingval(G) ∈ L(A) for a given linear SLCF tree
grammarG and a given NTACA can be solved in polynomial time.

Proof. By Theorem 7 we can assume thatG = (N,P, S) is linear and monadic. More-
over, we can assume that all productions inP are of one of the following 4 types:

– A → f(A1, . . . , An) for A,A1 . . . , An ∈ N0 andf ∈ Fn

– A → B(C) for A,C ∈ N0 andB ∈ N1

– A(y) → f(A1, . . . , Ai−1, y, Ai, . . . , An) for A ∈ N1, A1, . . . , An ∈ N0, f ∈
Fn+1

– A(y) → B(C(y)) for A,B,C ∈ N1

Let A = (Q,∆,F) be an NTAC. We will compute for everyA ∈ N0 ∩ N the set of
states∆̃(valG(A)). Consider such a nonterminalA ∈ N0 ∩ N .

Case 1.The production forA is of the formA → f(A1, . . . , An). Assume that for
every1 ≤ i ≤ n, the set of states̃∆(valG(Ai)) is already computed. Using Theorem 2,
we can find out in polynomial time which of the treesvalG(Ai) (1 ≤ i ≤ n) are equal or
disequal. Using this information, it is straightforward tocompute the set̃∆(valG(A)).

Case 2.The production forA is of the formA → B(C). This case requires more work.
Assume that the set of states̃∆(valG(C)) is already computed. Define a straight-line
context-freestringgrammarGB as follows:

– The set of nonterminals isN1 ∩ N , i.e., the nonterminals ofG of rank 1.
– The set of terminal symbols isΣ = {[A1, . . . , Ai−1, y, Ai, . . . , An, f] |

f ∈ Fn+1, A1, . . . , An ∈ N0 ∩ N, 1 ≤ i ≤ n + 1}.
– If (X(y) → Y (Z(y))) ∈ P , thenGB contains the productionX → ZY ; if

(X(y) → f(A1, . . . , Ai−1, y, Ai, . . . , An)) ∈ P , thenGB contains the produc-
tion X → [A1 . . . , Ai−1, y, Ai, . . . , An, f]. These are all productions ofGB .

– The start nonterminal ofGB is B.

The string generated byGB represents the outcome of a partial derivation from the
nonterminalB in the tree grammarG, where the derivation process is stopped as soon
as a nonterminal of rank 0 is reached.

Example 11.Let G contain the following four productions for nonterminals ofrank
one:B(y) → B1(B1(y)), B2(y) → f(A2, A2, y, A3), B1(y) → B2(B3(y)), B3(y) →
g(A1, y, A1). HereA1, A2, A3 are nonterminals of rank 0. Then, the SLCF string gram-
mar GB consists of the productionsB → B1B1, B2 → [A2, A2, y, A3, f], B1 →
B3B2, andB3 → [A1, y, A1, g] and generates the string

val(GB) = [A1, y, A1, g] [A2, A2, y, A3, f] [A1, y, A1, g] [A2, A2, y, A3, f].

This string represents the following tree:

A1

y

A1

g

A3

A2

A2

f

A1

A1

g

A3

A2

A2

f

For a nonterminalX ∈ N0 ∩ N of rank 0, let s(X) = |valG(X)| be the number
of nodes of the generated tree; this number can be computed inpolynomial time. For
a terminal symbol[A1, . . . , Ai−1, y, Ai, . . . , An, f] ∈ Σ of the string grammarGB

let s([A1, . . . , Ai−1, y, Ai, . . . , An, f]) = 1 + s(A1) + · · · + s(An). The mapping
s : Σ → N is extended toΣ∗ in the natural way:s(a1 · · · an) = s(a1) + · · · + s(an)
for a1, . . . , an ∈ Σ. Finally, for a position0 ≤ p ≤ |val(GB)| let s(p) = s(C) +
s(val(GB)[: p]), wherew[: k] is the prefix of lengthk of the stringw. Also the value
s(p) can be computed for a given positionp in polynomial time by first constructing in
polynomial time an SLCF string grammar for the prefixval(GB)[: p]. Then the number
s(val(GB)[: p]) can be easily computed bottom-up. The values(p) is the size of a
certain subtree ofvalG(A) = valG(B)[y/valG(C)], namely the subtree that is obtained
by goingp steps up (towards the root) from the unique occurrence ofy in valG(B)(y).

Let us next determine the setNB,0 ⊆ N0 ∩ N of all nonterminals of rank 0 that
appear in terminal symbols ofval(GB): If X → [A1, . . . , Ai−1, y, Ai, . . . , An, f] is a
production ofGB , then setNX,0 = {A1, . . . , An}. If X → Y Z is a production ofGB ,
then setNX,0 = NY,0 ∪ NZ,0. In this way we can compute the setNB,0 in polynomial
time. Let {k1, k2, . . . , km} = {s(X) | X ∈ NB,0}, wherek1 < k2 < · · · < km.
Also this enumeration can be computed in polynomial time. Wenow compute a certain
splitting of the stringval(GB). More precisely, for every1 ≤ i ≤ m we compute
the largest position (i.e. highest position in the tree)0 ≤ pi ≤ |val(GB)| such that

s(pi) ≤ ki. This positionpi can be computed in polynomial time with binary search
(using the fact thats(p) can be computed in polynomial time for a givenp).

Example 11 (continued).Assume thats(C) = s(A1) = 2, s(A2) = 7 ands(A3) = 9.
Then, we obtaink1 = 2, k2 = 7, andk3 = 9, as well ass(0) = 2, s(1) = 7, s(2) = 31,
s(3) = 36, ands(4) = 60. Thus,p1 = 0, p2 = p3 = 1.

From the list0 ≤ p1 ≤ p2 ≤ · · · ≤ pm ≤ |val(GB)|, we remove every positionpi

such thats(pi) 6= ki or pi = |val(GB)|. Let 0 ≤ p′1 < p′2 < · · · < p′ℓ < |val(GB)| be
the resulting list. In our example, we only keepp′1 = 0 andp′2 = 1. This list defines
our splitting ofval(GB). More precisely, we compute in polynomial time the symbols
ai = val(GB)[p′i + 1] ∈ Σ (w[p] is thep-th symbol of the stringw) and SLCF string
grammarsG0, . . . ,Gℓ such that

val(GB) = val(G0) a1 val(G1) a2 · · · val(Gℓ−1) aℓ val(Gℓ). (2)

Recall that every prefix ofval(GB) represents a tree with a unique occurrence of the
parametery (if this prefix is the empty string then the tree is justy). For0 ≤ i ≤ ℓ let
ti(y) be the tree represented by the prefixval(G0) a1 · · · val(Gi−1) ai (thust0(y) = y)
and letui(y) be the tree represented by the prefixval(G0) a1 · · · val(Gi−1) aival(Gi).
We compute the set of statesPi = ∆̃(ti[y/valG(C)]) andQi = ∆̃(ui[y/valG(C)])

successively. We start withP0 = ∆̃(valG(C)); recall that this set is already computed.
Computing the setPi from Qi−1 (i > 0) is straightforward: assume thatai =

[A1, . . . , Aj−1, y, Aj , . . . , An, f]. From (2) we can easily compute a monadic SLCF-
tree grammar for the treeui−1[y/valG(C)]. Hence, using Theorem 2, we can check in
polynomial time, whether the treeui−1[y/valG(C)] equals somevalG(Aj). Using this
information, we can compute in polynomial time the set of statesPi from Qi−1.

In order to computeQi from Pi, one has to note that when walking down from
the root ofui(y) to the unique occurrence ofy for |val(Gi)| steps, then the current
subtree is never equal to one of its sibling nodes. Hence, forevery terminal symbol
a = [A1, . . . , Aj−1, y, Aj+1, . . . , An, f] that occurs in the grammarGi we can compute
a transition mappingδa : Q → 2Q as follows, whereq ∈ Q (recall that the sets
∆̃(valG(Ak)) for k ∈ {1, . . . , n} \ {j} are already computed):

δa(q) ={q′ ∈ Q | ∃(E,D, q1, . . . , qj−1, q, qj+1, . . . , qn, f, q′) ∈ ∆ :

∀k ∈ {1, . . . , n} \ {j} : qk ∈ ∆̃(valG(Ak)),

∀(k,m) ∈ E : k = m ∨ (k 6= j 6= m ∧ valG(Ak) = valG(Am)),

∀(k,m) ∈ D : k = j ∨ m = j ∨ (k 6= j 6= m ∧ valG(Ak) 6= valG(Am))}.

Using the mappingsδa and the SLCF string grammarGi, we can computeQi from Pi

easily in polynomial time. ⊓⊔

7 Adding Nondeterminism or Non-Linearity

If we relax condition (i) of the definition of SLCF tree grammars to (i’) P contains
for everyA ∈ N at least oneproduction with left-hand sideA (but keep the acyclic-
ity condition (ii)) then we obtainnondeterministicSLCF tree grammars (NSLCF tree

grammars). Such grammars generate finite sets of trees, which by the following exam-
ple may contain double-exponentially many trees.

Example 12.For n ≥ 1, let the linear, productive, and monadic NSLCF tree grammar
Gn consist of the productionsS → A0(a), Ai(y1) → Ai+1(Ai+1(y1)) for 0 ≤ i < n,
An(y1) → f(y1), andAn(y1) → g(y1). ThenL(Gn) consists of all monadic trees with
2n many internal nodes, each of which is labeledf or g. Thus|L(Gn)| = 22n

.

We now want to show that given a linear and productive NSLCF tree grammarG, we
can, in general,not obtain an equivalentmonadicgrammar of size|G|O(1). In fact,
there is a familyGn (n ≥ 1) of linear and productive NSLCF tree grammars such that
any monadic, linear, and productive NSLCF tree grammar thatgeneratesL(Gn) is of
size2O(|Gn|1/2). Thus, for nondeterministic grammars an exponential blow-up cannot
be avoided when going to monadic grammars. Later we show thatthis is the worst
case blow-up and that in fact any linear and non-deleting NSLCF tree grammar can be
transformed into an equivalent monadic one which is at most exponentially larger.

Example 13.For n ≥ 1, let the symbolfn be of rankn and define the linear and
productive NSLCF tree grammarGn (of sizeO(n2)) with the following productions:

S → A0(a, . . . , a)

Ai(y1, . . . , yn) → Ai+1(f(y1), . . . , f(yn)) for 0 ≤ i < n

Ai(y1, . . . , yn) → Ai+1(g(y1), . . . , g(yn)) for 0 ≤ i < n

An(y1, . . . , yn) → fn(y1, . . . , yn)

ThenLn = L(Gn) consists of all treesfn(t, t, . . . , t) wheret is a monadic tree withn
many internal nodes, each of which is labeledf or g.

Lemma 14. Let n ≥ 1, k < n, and letG be a linear, non-deleting, andk-bounded
NSLCF grammar such thatL(G) = Ln is the set from Example 13. Then|G| ≥ 2n.

Proof. Assume thatG is a linear, non-deleting, andk-bounded NSLCF tree grammar
such thatk < n andL(G) = Ln. W.l.o.g. we can assume that every nonterminal of
G appears in a successful derivation ofG. Let P (fn) be the set of all productions of
the formA → t, wheret contains a subtree of the formfn(t1, . . . , tn). Clearly, since
G is non-deleting, every right-hand side of a production fromP (fn) contains a unique
such subtree. Moreover, in every successful derivation ofG, a production fromP (fn)
has to be applied exactly once. We claim that|P (fn)| ≥ 2n. Consider a production
(A → t) ∈ P (fn) and consider the unique subtree int of the formfn(t1, . . . , tn). Since
rank(A) ≤ k < n andG is linear, there exists ani ∈ {1, . . . , n} such thatti does not
contain a parameter, i.e.,ti ∈ T (F ∪ N). Assume that two different terminal trees can
be derived fromti. Then we can derive withG a tree, where the root has two different
subtrees, a contradiction. Hence, fromti we can generate exactly one tree. We denote
this tree byτ [A → t], since it can be associated with the production(A → t) ∈ P (fn).
Hence, for every successful derivationS ⇒∗

G s, where the production(A → t) ∈
P (fn) is applied (exactly once), we must haves = fn(τ [A → t], . . . , τ [A → t]).
Since we can generate2n many terminal trees fromS and in each derivation exactly
one production fromP (fn) is applied, it follows that|P (fn)| ≥ 2n. ⊓⊔

For arbitrary linear context-free tree grammars (thus, with recursion and nondetermin-
ism), the number of parameters gives rise to a hierarchy of languages which is strict at
each level. In fact, the family of languages that can be used to prove the strictness of
this hierarchy is similar to the one of Example 13.

Example 15.For n ≥ 1, let fn be a symbol of rankn and A be a nonterminal of
rankn. Define the linear and productive context-free tree grammarGn with the produc-
tionsS → A(a, . . . , a), A(y1, . . . , yn) → A(f(y1), . . . , f(yn)), andA(y1, . . . , yn) →
fn(y1, . . . , yn). ThenL′

n = L(Gn) consists of all treesfn(t, t, . . . , t) where t is a
monadic tree of the formfm(a) for somem ≥ 0.

The proof of the following lemma is similar to the one of Lemma14.

Lemma 16. Let n ≥ 1 andk < n. The setL′
n from Example 15 cannot be generated

by a linear, non-deleting, andk-bounded context-free tree grammar.

By the following theorem, the lower bound from Lemma 14 can bematched by an upper
bound. The proof of this result is similar to the proof of Theorem 7.

Theorem 17. For a given linear NSLCF tree grammarG = (N,P, S) we can construct
in time 2O(|G|) a linear and monadic NSLCF tree grammarG′ = (N ′, P ′, S) of size
2O(|G|) such thatL(G′) = L(G).

One might also think about extending Theorem 7 tonon-linearSLCF tree grammars.
But results from [11] make such an extension quite unlikely:it is PSPACE-complete to
check whether a deterministic bottom-up tree automaton acceptsval(G), whereG is a
given (non-linear) SLCF tree grammar. If we restrict this problem by requiringG to be
k-bounded for a fixed constantk, then it becomes P-complete. Here is an explicit ex-
ample showing that Theorem 7 cannot be extended to non-linear SLCF tree grammars.

Example 18.Forn ≥ 1, let the symbolfn be of rankn, let g have rank2, and let0 and
1 have rank0. Define the productive (but non-linear) SLCF tree grammarGn with the
following productions, whereAi is a nonterminal of ranki (1 ≤ i ≤ n):

S → g(A1(0), A1(1))

Ai(y1, . . . , yi) → g(Ai+1(y1, . . . , yi, 0), Ai+1(y1, . . . , yi, 1)) for 1 ≤ i < n

An(y1, . . . , yn) → fn(y1, . . . , yn)

Thenval(Gn) results from a complete binaryg-tree of heightn by replacing thek-th
leaf (0 ≤ k ≤ 2n − 1) by the treefn(b1, . . . , bn), whereb1b2 · · · bn is the binary
representation ofk. The size ofGn is O(n2).

Lemma 19. Let n ≥ 1, k < n, and letG be ak-bounded SLCF tree grammar such
that val(G) = val(Gn), whereGn is the SLCF tree grammar of Example 18. Then
|G| ≥ 2n−k.

Proof. Let Tn be the set of all occurrences of subterms of the formfn(t1, . . . , tn)
that occur in right-hand sides ofG. We claim that|Tn| ≥ 2n−k. Consider a term
fn(t1, . . . , tn) ∈ Tn. SinceG is k-bounded, at mostk parameters can occur among
the termst1, . . . , tn. During the derivation, each of these parameters may be either
substituted by the constant0 or 1. Hence, from eachfn(t1, . . . , tn) ∈ Tn, we can
obtain during the derivation at most2k different trees of the formf(b1, . . . , bn) with
b1, . . . , bn ∈ {0, 1}. Sinceval(Gn) contains2n such subtrees, we get|Tn| ≥ 2n−k. ⊓⊔

Clearly, Lemma 19 implies that without an exponential blow-up, we cannot reduce
the number of parameters in any non-linear SLCF tree grammarto a constant. But
we cannot even reduce the number of parameters fromn to ε · n (whereε < 1 is a
constant) without an exponential blowup. For arbitrary context-free tree grammars with
OI derivation order it is proved in Theorem 6.5 of [6] that thenumber of parameters
gives rise to a hierarchy that is proper at each step (even forthe string yield languages).

Acknowledgments The first author is supported by the DFG research projectAlgo-
rithms on compressed data(ALKODA). We would like thank Christian Mathissen for
pointing out a mistake in a previous version of the contract-2 operation.

References

1. B. Bogaert and S. Tison. Equality and disequality constraints on directsubterms in tree
automata. InSTACS’92, LNCS 577, pages 161–171. Springer, 1992.

2. P. Buneman, M. Grohe, and C. Koch. Path queries on compressedXML. In VLDB 2003,
pages 141–152. Morgan Kaufmann, 2003.

3. G. Busatto, M. Lohrey, and S. Maneth. Efficient memory representation of XML document
trees.Information Systems, 33(4–5):456–474, 2008.

4. H. Comon-Lundh, M. Dauchet, R. Gilleron, F. Jacquemard, C. Löding, D. Lugiez, S. Ti-
son, and M. Tommasi. Tree automata techniques and applications. Available on:
http://www.grappa.univ-lille3.fr/tata, 2007.

5. H. Comon-Lundh, F. Jacquemard, and N. Perrin. Tree automata with memory, visibility and
structural constraints. InFoSSaCS 2007, LNCS 4423, pages 168–182, 2007.

6. J. Engelfriet, G. Rozenberg, and G. Slutzki. Tree transducers, L systems, and two-way ma-
chines.J. Comp. Syst. Sci., 20:150–202, 1980.

7. M. Fischer.Grammars with macro-like productions. PhD thesis, Harvard University, Mas-
sachusetts, May 1968.

8. A. Fujiyoshi and T. Kasai. Spinal-formed context-free tree grammars. Theory Comput. Syst.,
33(1):59–83, 2000.

9. A. Gasćon, G. Godoy, and M. Schmidt-Schauß. Context matching for compressed terms. In
LICS 2008, pages 93–102. IEEE Computer Society Press, 2008.

10. J. Levy, M. Schmidt-Schauß, and M. Villaret. Bounded second-order unification is NP-
complete. InRTA 2006, LNCS 4098, pages 400–414, 2006.

11. M. Lohrey and S. Maneth. The complexity of tree automata and XPath on grammar-
compressed trees.Theor. Comput. Sci., 363(2):196–210, 2006.

12. W. Plandowski. Testing equivalence of morphisms on context-freelanguages. InESA’94,
LNCS 855, pages 460–470. Springer, 1994.

13. W. Rytter. Grammar compression, LZ-encodings, and string algorithms with implicit input.
In ICALP 2004, LNCS 3142, pages 15–27. Springer, 2004.

14. M. Schmidt-Schauß. Polynomial equality testing for terms with shared substructures. Tech-
nical Report 21, Institut f̈ur Informatik, J. W. Goethe-Universität Frankfurt am Main, 2005.

