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Abstract for linear orders, trees, undirected graphs, Boolean alge-

bras, Abeliarp-groups, see [3, 6]21-completeness of the

Several new undecidability results on isomorphism prob- isomorphism problem for a class of computable structures
lems for automatic structures are shown: (i) The isomor- implies non-existence of a good classification (in the sense
phism problem for automatic equivalence relationglis of [3]) for that class.
complete. (ii) The isomorphism problem for automatic trees  In [12], it was shown that also for automatic structures
of heightn. > 2is 113, _,-complete. (iii) The isomorphism the isomorphism problem is{-complete. By a direct in-
problem for automatic linear orders is not arithmetical. terpretation, it follows that for the following classes ike-
morphism problem is stilC1-complete [18]: automatic suc-
cessor trees, automatic undirected graphs, automatic com-
mutative monoids, automatic partial orders, automatic lat
tices of height 4, and automatic 1-ary functions. On the
other hand, the isomorphism problem is decidable for au-

The idea of an automatic structure goes back izt tomatic ordinals [13] and automatic Boolean algebras [12].
and Elgot who used finite automata to decide, e.g., Pres-An intermediate class is the class of all locally-finite auto
burger arithmetic [4]. Automaton decidable theories [fJan matic graphs, for which the isomorphism problem is com-
automatic groups [5] are similar concepts. A systematic plete forII{ (third level of the arithmetical hierarchy[19].
study was initiated by Khoussainov and Nerode [10] who  For many interesting classes of automatic structures, the
also coined the namealitomatic structuré In essence, a  exact status of the isomorphism problem is open. In the
structure is automatic if the elements of the universe canrecent papers [11, 20] it was asked for instance, whether
be represented as strings from a regular language and everthe isomorphism problem is decidable for automatic equiv-
relation of the structure can be recognized by a finite statealence relations and automatic linear orders. For therlatte
automaton with several heads that proceed synchronouslyclass, this question was already asked in [13]. In this paper
Automatic structures received increasing interest over th we answer these questions. Our main results are:
last years [1, 2, 12, 13, 14, 20]. One of the main motiva-
tions for investigating automatic structures is that tffiest-
order theories can be decided uniformly (i.e., the inpuhis a

1 Introduction

(i) The isomorphism problem for automatic equivalence
relations islI{-complete.

automatic presentation and a first-order sentence). (i) The isomorphism problem for automatic (successor or

Automatic structures form a subclass of computable order) trees of finite height > 2 (where the height
structures. A structure is computable, if its domain as well of a tree is the maximal number of edges along a path
as all relations are recursive sets of finite words (or natu- from the root to a leaf) i$13,,_;-complete.

rals). A well-studied problem for computable structures is
the isomorphism problem, where it is asked whether two
given computable structures over the same signature (en-
coded by Turing-machines for the domain and all relations) Most hardness proofs for automatic structures, in partic-
are isomorphic. Itis well known that the isomorphism prob- ylar the E%-hardness proof for the isomorphism problem
lem for computable structures is complete for the first level of automatic structures from [12], use transition graphs of
of the analytical hierarchy]. In fact, X{-completeness  Turing-machines (these graphs are easily seen to be au-
holds for many subclasses of computable structures, e.g.tomatic). This technique seems to fail for inherent rea-
sons, when trying to prove our new results. The reason

(iii) The isomorphism problem for automatic linear orders
is hard for every level of the arithmetical hierarchy.

*The second and third author are supported by the DFG respanjelct
GELO. 1For background on the arithmetical hierarchy see, e.g., [21]




is most obvious for equivalence relations and linear orders is the set of accepting states. wn of .4 on a word
These structures are transitive but the transitive clostire w = aqas---a, (a1,a2,...,a, € X) is a word overA
the transition graph of a Turing-machine cannot be auto- of the formr = (qo,a1,¢1)(q1,a2,92) - (¢n-1, Gn, qn),
matic in general since it's first-order theory can be undecid whereqy € I. If moreoverq, € F, thenr is anaccept-
able. Hence, we have to use a new strategy that is basedhg run of A onw. We will only apply these definitions in
on Hilbert's10*" problem. Recall that Matiyasevich proved casen > 0, i.e., we will only speak of (accepting) runs on
that every recursively enumerable set of natural numbers isnon-empty words.

Diophantine [17]. This fact was used by Honkala to show  We usesynchronous-tape automato recognizez-ary
that it is undecidable whether the range of a rational powerrelations. Such automata hawénput tapes, each of which
series isN [8]. Based on a similar technique, we build a contains one of the input words. Thetapes are read in
tree U, of height2 whose set of automatic presentations parallel until all input words are processed. Formally, let
is I1{-hard, and an inductive argument allows to similarly ¥, = ¥ U {¢} whereo ¢ ¥. For wordsw , ws, . .. ,w, €
construct tree#/,, of heightn whose sets of automatic pre- %*, their convolutionis a wordw; ® - -+ ® w,, € (X2)*
sentations ardl), .-hard. Since we can also show that with length max{|w|, ..., |w,|}, and thek* symbol of
the isomorphism problem of automatic trees of height w; ® --- ® w, is (o4, ...,0,) Whereo; is thek!" symbol
belongs toll3,, 5, (i) follows. From the case = 2 we of w; if k < |w;|, ando; = ¢ otherwise. Ann-ary relation
can easily deduce an equivalence relation whose set of autof is FA recognizablef the set of all convolutions of tuples
matic presentations i§{-hard. Together with containment (w,...,w,) € Ris a regular language.

in I1Y (as already observed in [20]), (ii) follows. Finally, A relational structureS consists of adomain D and
using a similar but technically more involved reduction, we atomic relations on the sé2. We will only consider struc-
construct linear order&’,, whose set of automatic presen- tures with countable domain. Fora de; | i € I} of re-
tations is hard fox?. Then (iii) follows. In fact, since lational structures over the same signature, we denote with
our proof is uniform on the levels in the arithmetical hierar w{S; | ¢ € I'} the disjoint union of these structures. With
chy, it follows that the isomorphism problem for automatic S; W Sy we denote the disjoint union of two structurgs
linear orders is at least as hard as true arithmetic, i.e., th S;. A structuresS is calledautomaticover X if its domain
first-order theory ofN; 4+, x). At the moment it remains is a regular subset &* and each of its atomic relations is
open whether the isomorphism problem for automatic lin- FA recognizable; any tupl® of automata that accept the

ear orders i€ }-complete. domain and the relations & is called anautomatic pre-
A complete version of this extended abstract can be sentation ofS; in this case, we writ&(P) for S. If an au-
found in [15]. tomatic structures is isomorphic to a structur&’, thenS is
called amautomatic copyf S’ andS’ is automatically pre-
2 Preiminaries sentable In this paper we sometimes abuse the terminology

referring toS’ as simply automatic and calling an automatic
presentation of also automatic presentation8f. We also
simplify our statements by saying “given/compute an auto-
matic structureS” for “given/compute an automatic presen-
{p(©) |c € NI} I p # 0, thenlmg  (p) € No. _ tationP ofastructure‘g(P)". Thepstructure$N; <, +§)and
Detqlls on the'arlthmetlcal hierarchy can be fgund forin- (Q: <) are both automatic. On the other hafi; x) and
stance in [21]. Witi? we denote the" (existential) level (@; ) have no automatic copies (see [9, 20] a;ld [22]).

of the arithmetical hierarchy; it is the class of all C N Let FO + 3% be first-order logic extended by the quan-
. ) ) Atl i
Is4uc_h that there exists a recurSN.e predicate N with tifier 3> (there exist infinitely many). The following the-
= {a € N | 3nVay- - Qun @ (a,21,...,20) € P}, orem (see [20] for references and generalizations) lays out

where() = 3 EQ = V) for n odd (e"%‘”)' The set of com- 4o ain motivation for investigating automatic structure
plements of:) -sets is denoted byl,. By fixing some

effective encoding of strings by natural numbers, we can Theorem 2.1 From an automatic presentatidh and a for-
talk about:! -sets andl1?-sets of strings over an arbitrary mulay(z) € FO 4+ 3 in the signature ofS(P), one can
alphabet. A typical example of a set, which does not be- compute an NFA whose language consists of those taples
long to the arithmetical hierarchy is the first-order theoky  from S(P) that makep true. In particular, theFO+3° the-

(N; +, x), which we denote bfOTh(N; +, x). ory of any automatic structuré is (uniformly) decidable.
We assume basic terminologies and notations from au-

tomata theory. For a fixed alphab¥®t a non-deterministic ~ Let K be a class of automatic structures closed under iso-
finite automator(NFA) is a tupleA = (S, A, I, F) where morphism. Theisomorphism problenfor K is the set of

S is the set of states)A C S x ¥ x S is the transition pairs (P, P2) of automatic presentations with(P;) =
relation, I C S is a set of initial states, and® C S S(P;) € K. The isomorphism problem for the class of

LetN; = N\ {0}. Letp(xy,...,2,) € N[z1,..., 2]
be a polynomial with coefficients iN. Definelmg_ (p) =



all automatic structures is complete 6t — the first level inductively aHgnfzkfg-predicate isp(uy, usz) foruy, us €
of the analytical hierarchy [12] (this holds already foraut V. This predicate expresses tfatu;) = T'(us) provided
matic successor trees). However, if one restricts to speciau; anduy belong to level at least. The result will follow
subclasses of automatic structures, this complexity boundsinceT; = Ty if and only if isqy(r1, r2) holds, where-, is
can be reduced. For example, for the class of automatic orthe root of7,.

dinals and also the class of automatic Boolean algebras, the Fork = n — 2, the treesl"(u;) andT'(us) have height
isomorphism problem is decidable. Another interesting re- at most2. The statement isp »(u1, u2) can be defined as
sult is that the isomorphism problem for locally finite auto- follows: For all k € NU {Xq} and all£ > 1 we have

matic graphs i$I3-complete [19]. All these classes of auto-
matic structures have the nice property that one can decide

whether a given automatic presentation describes a struc321; - -

ture from this class. Thm. 2.1 implies that this propertyals
holds for the classes of equivalence relations, trees ghhei

at mostn, and linear orders, i.e., the classes considered in

this paper.
3 Automatic Trees

A treeis a structurel’ = (V; <), where< is a partial
order with a least element, called tioot, and such that for
everyz € V, the order< restricted to the sefty | y < z}
of ancestors of is a finite linear order. Thievelof a node
z e Vis|{y | y < z}| € N. Theheightof T' is the
supremum of the levels of all nodeslify it may be infinite,
but this paper deals with trees of finite height only. One may
also view a tree as a directed grafifi E), where there is
an edge(u,v) € E if and only if u is the largest element
in {z | = < v}. The edge relatiol® is FO-definable in
(V;<). Inthis paper, we assume the partial order definition
for trees, but will quite often refer to them as graphs for
convenience. We Usg, to denote the class of automatic
trees with height at most. Letn be fixed. Then the tree
order < is uniformly FO-definable from the edge relation
on the class of all trees of height at mastMoreover, it is
decidable whether a given automatic graph belondgg,to
since the class of trees of heightcan be axiomatized in
first-order logic.

In this section, we prove that the isomorphism problem
for 7,, is119,,_;-complete. We start with the upper bound:

Proposition 3.1 The isomorphism problem for the clags
of automatic trees of height at mostis (i) decidable for
n = 1and (i) inT19,,_5 forall n > 2.

Proof. We first show thafl; = T3 is decidable for auto-
matic treesl’y, 7o € 7; of height at most: It suffices to
compute the cardinality df; (i € {1,2}) which is possible
since the universes @f; andT, are regular languages.
Now letn > 2 and considefl},7> € 7,,. LetT; =
(Vi, E;), wlog. V1NV, = 0,andV = Vi U Vs, E =
E, U Es. For any node: in V, let T'(u) denote the subtree
(of eitherT} or T3) rooted atu and letE(u) be the set of
children ofu. Fork =n —2,n — 3,...,0, we will define

¢
La€Buw): N\ mi#ain \|E@) =k
1<i<j<e i=1

if and only if

L

A i A N IE@)] = k.

1<i<j<e i=1

Hylw"?yé GE(UQ):

In other words: for everys € NU {X¢}, u; andus have
the same number of children with exactlchildren. Since
FO + 3° is uniformly decidable for automatic structures,
this is indeed d1Y-sentence (note that — 2k — 3 = 1 for
k=mn-—2). ForO0 < k < n — 2, we define isg(u1, u2)
inductively as follows:For all v € E(u;) U E(uz) and all

¢ > 1 we have

1

Jz1,...,20 € E(uq) : /\ T #x]—/\/\isokﬂ(v,:ci)
1<i<j<t i=1
if and only if
¢
Hyla"wyé S E(UQ) : /\ Yi #yj/\/\isok+1(vayi)~
1<i<j<e i=1

By quantifying over allv € E(u1) U E(us), we gquantify
over all isomorphism types of trees that occur as a subtree
rooted at a child ofi; or u,. For each of these isomorphism
typest, we express that; andus, have the same num-
ber of childrenz: with T'(x) of typer. Since by induction,
iS0x11(v,z;) and isq1(v,y;) arelly . .-statements,
iSOy (u1,ug) is ally, ,, ;-statement. O

The rest of this section is devoted to proving that the iso-
morphism problem for the clasg, of automatic trees of
height at most» > 2 is alsoll3,,_,-hard (and therefore
complete). For this, we provide a generic reduction from
an arbitraryIl9,, _,-predicateP,(x() to the isomorphism
problem for7,,. In the following lemma and its proof, all
guantifiers with unspecified range run owér.

Lemma 3.2 For any I3, ,-predicate P, (), there exist
119, _s-predicatesP; (zo, 1, Y1, 22, Y2, - - - Tn—is Yn—i) fOF
2 <1 < m such that



(@) forall2 <i<n-—1, P(v) is logically equivalent
to anﬂ‘aynﬂ' : Pi(ﬁ» Tn—i, yn—i), and

(b) if Yy,_; =P;(V,xn—i,yn—;) holds, then also
V:c;hi > Tn—i vyn—i : _‘Pi(@a m;lfmyn—i)a
wherev = (2o, 1, Y15+ - Tni—1,Yn—i—1)-
Proof. The predicates?; are constructed by induction,
starting withi = n — 1 down toi = 2 where the con-
struction of P; does not assume that (a) or (b) hold true
for P,y;. Solet2 < i < n such thatP,,(7) is a
I19,,,,)_s-predicate. Then there existsIE,_;-predicate
P(U, xn—s,yn—;) Such thatP, () is logically equivalent
to Vo, —iyn—i : P(U,2n—4,yn—s). But this is logically
equivalent to

Vi, Vx;_i STy IWn—i P(i7 x/n—i?yn—i) .

)
Let ©(v,z,—;) be the formulavz), , < x,_; Jyn—; :

P(v,z,_;,yn—i). Then foranyr,_; € N,
(T, X)) => V& > Ty : (T, ) .

2
Sincevz! . < z,_; is a bounded quantifier, the formula
o(v, z,—;) belongs tax9, , (see for example [21, p. 61]).

Thus there is 19, _;-predicateP; (v, z,,—;, yn—;) Such that
()

Therefore (1) (and therefor®;, (7)) is logically equiv-
alent toVz,,—; Jy,—; : Pi(0,zn—i,Yn—i), Which shows
statement (a). For (b) note théy,,_; : —P;(V, Tp—i, Yn—:)

if and only if (by (3)) =¢(7, z,—;), which by (2) implies
Vo > x,—; : (T, x). By (3) again, this is equivalent to
YV > Tp_i Yyn—i : " P;(T, 2, yn—i). m|

00, xn—i) <= Fyn—i: Pi(V, Zn—i, Yn—i) -

Let us fix the predicate®; for the rest of Sec. 3. By
induction on2 < ¢ < n, we construct the following trees:

e testtreeq? € 7, forz € N7~ (which depend on
Pl) and

e treesU! € 7, for k € Ny U {w}.

The crucial properties of these trees are the following,
wherez € N}

(P1) P;(c)ifandonly if TE = U?.

(P2) —P;(c)ifand only if 72 = U! for somem € N,.

For3 < i < n, the idea is thatl} Ut if and
only if inf({w} U {xn—i—&-l ‘ VYn—iv1 € Ni :
=P;_1(¢,Zp—i+1,Yn—it+1)}. Property (P1) is certainly suf-
ficient for proving I19,,_;-hardness of the isomorphism
problem of automatic trees of height property (P2) and
therefore the tree§, for m < w are used in the inductive
step. We also need the following property for the construc-
tion.

(a3

(P3) No leaf of any of the treeg’ or U} is a child of the
root.

In Section 3.1, we will describe the tred% and U} of

height at most and prove (P1) and (P2). Condition (P3)
will be obvious from the construction. Section 3.2 is then
devoted to proving the effective automaticity of thesedree

3.1 Construction of trees

We start with a few definitions: A forest is a disjoint
union of trees. LetHd andJ be two forests. The forest
H* is the disjoint union of countably many copies &f.
Formally, if H = (V,E), thenH¥ = (V x N, E’) with
((vy4), (w,7)) € E" ifand only if (v,w) € E andi = j.
We write H ~ J for H¥ = J¥. ThenH ~ J if they are
formed, up to isomorphism, by the same set of trees (i.e.,
any tree is isomorphic to some connected compone#i of
if and only if it is isomorphic to some connected component
of J). If r does not belong to the domain &f, then we
denote withr o H the tree that results from addingo H
as new least element.

3.1.1 Induction base: construction of 722 and U?

For notational simplicity, we writés for 1 4+ 2(n — 2).
Hence, P, is a k-ary predicate. By Matiyasevich’s the-
orem, we find two non-zero polynomiajs (z1, ..., xp),
pa(®1,...,2¢) € N[@], £ > k, such that for any € N :

P2(E) — Vxe Nﬁ—ik ipl(@f) 7é pZ(Eaf) .
It is well known that the functiol® : N x N — N with
Cla,y) = (x+y)> + 3z +y 4)

is injective (C(z,y)/2 defines a pairing function, see e.g.
[8]). For two numbersn,n € N, let T'[m, n] denote the
tree of heightl with exactlyC(m, n) leaves. Then define
the following forests, where € N, U {w}:

H? = [H{T[m,n] | m,n € Ny,m #n}

HZ=HY L‘H{T[Pl(af) + Te41,p2(CT) + Teq] |
S Nﬁik,l‘eﬁ_l S N+}
J? = H? &JL—{j{T[m,x} |z € Ny, z > K}
Note that/? = H2. Moreover, the forestd? (x € N, U
{w}) are pairwise non-isomorphic, sin€eis injective.

The treeTZ (resp. U?) is obtained fromH2 (resp. J?2)
by taking countably many copies and adding a root:

T2 =ro(H2)* and U?=ro(J*)*, (5)

see Fig. 1 and 2. The following lemma states (P1) for the
I19-predicateP; , i.e., fori = 2.

Lemma3.3 Forallc e Nk: Py(c) «— T2~ U2



Tlp1(e,Z) + ze41, T[m,n]

p2(S,T) + T4

Figure 1. The tree 72

r

Ve > K Ym, n
m#mn
Tz, x] T[m,n]

Figure 2. The tree U?

Proof. By (5), it suffices to show thaP»(¢) holds if and
only if H2 ~ J2. So first assumé(c) holds. We have to
prove that the forest&2 and.J2 = H? contain the same
trees (up to isomorphism). Clearly, every tree fréf is
contained inH2. For the other direction, let € N'~* and
2941 € Ny. Then the tred’[p, (¢, T) + x¢41,p2(C,T) +
Ty41] OCCUrs inHZ. SincePs () holds, we havey (¢, T) #
p2(¢,T) and therefore, (¢,7) + z¢41 # p2(C,T) + Toya.
Hence this tree also occurs I?.

Conversely supposH2 ~ H? and letz € N*. Then
the tre€l’[p (¢, T) + 1, p2(¢, T) + 1] occurs inH2 and there-
fore in H2. Hencep, (¢, ) # p2(¢, ). Sincez was chosen
arbitrarily, this impliesP;(¢). O

Now consider the forest/2 once more. If it contains a
tree of the formI’[m, m] for somem (necessarilyn > 2),
then it contains all tree® |z, z] for > m. Hence,HZ ~
J?2 for somex € N, U {w}, which implies7Z = U? for
somex € Ny U {w}. Thus, with Lemma 3.3 we get:

~Py(e) = T22U2
<~ dmeN, :T2=U2

Thus, we proved (P2) for tHd?-predicateP,. This finishes
the construction of the treds? andU? for k € N4 U {w},
and the verification of properties (P1) and (P2). Clearly,
also (P3) holds fof72 and U? (all maximal paths have
length 2).

3.1.2 Induction step: construction of 72! and Ui+

Again, we writek for 1 + 2(n — ¢ — 1). Thus, P4 is a
k-ary predicate and; a (k + 2)-ary one. We now apply
the induction hypothesis. For anye N%, 2,y € Ny,

Figure 4. The tree Ui t!

€ Ny U{w} letT;,, andU; be trees of height at most

such that:
— T

~ 7
cry — Uw

ImeNy T, =U .

Pi(65$7y)

_‘Pi(éax,y) —

In a first step, we build trees;,, andU,, , (» € N) from
T, andU}, resp., by adding: leaves as children of the
root. This ensures:

— ! -]
r=x N1z, =

Tiwy 22U, . U., (6)
since, by property (P3), no leaf of any of the trdeggy or
U is a child of the root. Next, we collect these trees into

forests as follows:

it — L—ﬂ{U;nw | z,m e N, },

I = gitty L‘ﬂ{TE/:w | z,y € N, }, and

JH = B WU, |1 <@ <k} for ke Ny U{w)

The treel’: ™! (resp.Uit) is obtained from the foregf: ™!
(resp.Ji+1) by taking countably many copies and adding a
root:

T =ro(HMY)Y and U =ro (JiH)«, (7)
see Fig. 3 and 4. Note that the height of any of these
trees is one more than the height of the forests defining them
and therefore at mogt+ 1. Since none of the connected
components of the forestd: ™' and Ji+! is a singleton,
none of the trees in (7) has a leaf that is a child of the root
and therefore (P3) holds. The next lemma states (P1) for
1+ 1

Lemma3.4 Forallec e Nk: Py q(e) <= ToM = UGt



Proof. By (7), it suffices to show thaP; . (¢) if and only define the treenfold(D, v) as follows: First we restricD
if Hit' ~ JiFl. First assumedit' ~ Jit! and let  to those nodes that are reachable froamd then we unfold
x > 1 be arbitrary. We have to find some > 1 with the resulting dag. We need the following lemma.
P;(¢,z,y). Note thatU/, , belongs toJ/t! and therefore
to . SinceU,, , % U}, ., foranym, =, 2" € Ny, this
implies the existence of ,y’ > 1 with 77,,,, = U, ,. By
(6), this is equivalent ta: = =’ andT%,,, = U/. Now the
induction hypothesis implies tha; (¢, «,y’) holds. Since
x > 1 was chosen arbitrarily, we g&t_ 1 (¢).

Conversely supposB;, ; (). Let T belong toH:*'. By
the induction hypothesis, itis one of the tré€s, for some
r € Ny, k € N U{w}. Inany case, it also belongs fg+!.
Hence it remains to show that any tree of the fdrfn, be-
longs to !, So letz € N,. Then, byP;(¢), there
existsy € N with P,;(¢, z,y). By the induction hypothe-
sis, we havel?, = U/ and thereford?, = U/, , (which

belongs toH. ™ by the very definition). i For2 < i < n, let F be the forest

HETE e NP0 w [ g{Ul [ v e Ny U fw))

Lemma 3.7 From givenk € N and an automatic da@ =
(V, E) of height at mosk, one can construct effectively an
automatic presentatio® with S(P) = unfold(D).

Proof. The universe for our automatic copywifold(D)
is the setP of all convolutionsy; @ v9 ® - - - ® v,,,, Wherev;
isarootandv;,v; 1) € Eforalll <i < m. SinceD has
height at most;, we haven < k+1. Since the edge relation
of D is automatic and since the set of all rootdris first-
order definable and hence regulBris indeed a regular set.
Moreover, the edge relation ahfold(D) becomes clearly
FA recognizable orP. O

Lemma35 Forall ¢ € N* there exists: € N, U{w} such
that 72+ =~ Uitt, By induction over, we will prove:
C

, Proposition 3.8 There is an an automatic cop¥® of F*?
Proof. It suffices to prove thati:*' ~ Ji*! for some  and anisomorphisnf’ : Fi — F' that maps (i) the root of
k € NpU{w}. Letk be the smallest value W U{w} with the treeT? to a° (for all ¢ € N1++2(n*i)), (ii) the root of the
Va > kVy: ~P;(¢ z,y). By property (b) from Lemma 3.2 yee i to ¢, and (jii) the root of the tred/?, to 6™ (for all
for P;, we getVl < = < k3y : P;(¢,z,y). By the in- m e N,).
duction hypothesis, we getv > xVy : 17, % U, , and
Vi<z<k3Iy:Ts, =2U.,, Thus,H.*' contains, apart

from the trees i**! = Y{U}, , | z,m € N, }, exactly
the trees from{U,, , | 1 <z < K}, i.e, Hit' ~ JitL. O

This will give the desired result sin@&" is then isomorphic
to the connected component®f that contains the word’
(and similarly forU;?). Note that this connected component
is again (effectively) automatic by Thm. 2.1, since the $bre
F™ has bounded height.

By Lemma 3.7, it suffices to construct an automatic dag
D' such that there is an isomorphigm unfold(D?) — F*

Proposition 3.6 For the 19, _,-predicate P, () we have  thatis the identity on the set of roots Df.
forall c € Ny P,(c) ifand only if T* = U™.

Lemma 3.4 and 3.5 immediately imply also (P2) fer1.
Finally, (P1) fori = n gives:

3.21 Induction base: the automatic dag D?

It remains to show that the tre@¥ andU} are effectively ) i

automatic — this is the topic of the next section. Recall that, fori = 2, we used two polynomials, andp,
from Matiyasevich’'s theorem and constructed the trBes

andU; that then formed the foregt?. To show automatic-
ity of this forest (more precisely: of a suitable dBg), we
therefore have to represent polynomials by automata. The
basis for this representation, that is inspired by Honkala’
work [8], is provided by the following construction.

For a symbola, let ¢ denote the alphabef{ =
{a,o}*\ {(¢,...,¢)} and lets; denote thé** component
of o € X¢. Fore = (ey,...,ex) € NE, define

3.2 Automaticity

For constructing automatic presentations for the trees
from Section 3.1, it is actually easier to work willags(di-
rected acyclic graphs Theheightof a dagD is the length
(number of edges) of a longest directed pattbinwWe only
consider dags of finite height. oot of a dag is a node
without incoming edges. A da@ = (V, E) can be un-
folded into a foresunfold(D) in the usual way: Nodes of
unfold(D) are directed paths i that cannot be extended
to the left (i.e., the initial node of the path is a root) and For a languagé., we write®y,(L) for the language
there is an edge between two pathg’ if and only if p’
extendsp by one more node. For a nodec V of D, we v @uo @ - ®@ug | w, ..., up € L}

a°=a"®a?®- - ®a* € (XP)*.



Lemma 3.9 There exists an algorithm that, given a non-
zero polynomialp(z) € N[z] in k variables, constructs
an NFA A[p(z)] on the alphabet{ with L(A[p(z)]) =
®(a™) such that for alle € NX: A[p(z)] has exactly(c)
accepting runs on input®.

Proof. The NFAA[p(Z)] is build by induction on the con-
struction of the polynomiab, the base case is provided by
the polynomialsl andzx;.

Let A[1] be a deterministic automaton with(A[1]) =
®k(a™). Next, suppose(zi,...,zx) = z; for some
1<i<k LetA=({q,e}{n}, A {g}) with A =
{(Q1,0',(Jj) | J€ {1’2}50 € Ezvai = a} U {(QQvav qg) ‘
o € X¢}. When the NFAA runs on an input word*, it
has exactly:;; many times the chance to move from state
to the final statej,. Therefore there are exactly = p(c)
many accepting runs arf. ThenA[p(z)] is the direct prod-
uct of 4 and a deterministic automaton accepting(a™).

Let p1(Z) and p(z) be polynomials inN[z]. Assume
as inductive hypothesis that there are two NBf; (7)] =
(Si, A;, I;, F;) such that the number of accepting runs of
Alp;()] ona® equalsp; (c) fori € {1,2}

Forp(Z) = p1(Z) + p2(T), let A[p(Z)] denote the dis-
joint union of A[p;(7)] and A[p2(7)]. For any worda®,
the number of accepting runs gfp(z)] on a° is equal to
the sum of the numbers of accepting runs4dp; (z)] and
Alp2(Z)] ona®, which isp().

Forp(z) = p1(Z)-p2(T), let A[p(T)] = (S1xS2, A, I x
I,,Fi x Fy), where A {((p1,p2),0,(q1,q2)) |
(p1,0,q1) € Ay1,(p2,0,92) € Asz}. Then the number of
accepting runs ofl[p(z)] on a worda® is the product of the
numbers of accepting runs &fp, (z)] and.A[p2(Z)] onaC,
which isp(c). O

Lemma3.10 Letq, g2 € N[zy,..., 2] and leta be some
symbol. There is an automatic forest of heightver an
alphabetX¢ W T such that: (i) the set of roots ig,(a™),

(i) the leaves are words frofi™, and (iii) the tree rooted
at a® is isomorphic tdl'[q; (€), g2(€)]-

Proof. Setp(Z) = C(q:1(Z),q2(T)) (C is defined in (4))
and letAlp] = (S,1,A, F) be the NFA over the alphabet
¢ from Lemma 3.9. Define the NFR[p] = (S, I, A’ F)
with alphabetA and A" = {(p, (p,0,49),q9) | (p,0,q) €
A}; it accepts the set of accepting runs.éfp]. Letn :
A* — (29)* be the projection morphism with(p, o, ¢) =
o. Then, for alle € N, the size ofr~'(a®) N L(B[p])
equals the number of accepting runs4jp] ona®, which is
p(e). Let

L=®(a®)U(r H@¢(a™)) N L(B[p])) and
E = {(u,v) |u € @la™),ven (u) N L(B[p)}.

Then L is regular andE is FA recognizable, i.e.(L; E)

is an automatic graph. It is actually a forest of height
the words fromz,(a™) form the roots, and the tree rooted
at a® has preciselyp(e) leaves, i.e., it is isomorphic to
T(01(2), g2()]. O

From now on, we use the notations from Sec. 3.1.1. By
Lemma 3.10, we can compute automatic forestand
over alphabet&{, | wI'y andX$ W I'y, resp., such that

(@) the roots ofF; (resp.F») are the words fron®,, 1 (a™)
(resp.®2 (b)),

(b) the leaves ofF; are words fronT';" (i € {1,2}),

(c) the tree rooted at®®+' is isomorphic to the tree
Tlp1(€) + epy1,p2(€) + eor1] fore € NG, epp1 € Ny,

(d) the tree rooted di“*°2 is isomorphic toT'[e;, eq] for
e1,€2 € N+.

We can assume that the alphabiétsT’;, ©¢ ,, andX$ are
mutually disjoint. LetF = (Vz, Ex) be the disjoint union
of 7, and F3; it is effectively automatic. The universe of
the automatic dag? is the regular language

Qr(a™) Ub* U ($* @ VE),
where$ is a new symbol. We have the following edges:

e Foru,v € Vg, $™ ® u is connected t¢™ ® v if and
only if m = n and(u,v) € Ex. This produce®t,
many copies ofF.

e ° is connected to all words frof* @ ({a“" | T €
N U {bee2 | ey # ep}). By point (c) and
(d) above, this means that the treefold(D?,a)
has X, many subtrees isomorphic @'[p;(cz) +
Te1,2(CT) + weqr) for T € NOTF 20y € Ny
and T'lej,eqo] for e;,ea € Ny, e; # es. Hence,
unfold(D?, a®) = T2,

e cisconnected to all words froft ®{b°1°2 | ey # es}.
By (d) above, this means that the treefold(D?, )
has Xy many subtrees isomorphic t@[e;,eq] for
e1,e2 € Ny, e; # ez. Henceunfold(D?,e) = U2.

e V™ (m € N,) is connected to all words froré* ®
{be1e2 | e; # eg Ore; = ea > m}. By (d), this means
that the treamfold(D?, ™) hask, many subtrees iso-
morphic toT[ey, es] for all 1, e5 € N1 with e # ey
ore; = ez > m. Thus,unfold(D?,b™) = UZ,.

Hence,unfold(Dy) = F? and the roots are as required in
Prop. 3.8. Moreover, it is clear tha&, is automatic.



3.2.2 Induction step: the automatic dag D!

SupposeD = (V, E) is such thatF = unfold(D?) is as

described in Prop. 3.8. We use the notations from Sec. 3.1.2.

We first build another automatic ddgf, whose unfolding
contains (copies of) all treeS) , (v € Ny U {w}, = €
Ny)and7%,, (c € N%, 2,y € Ny). Recall that the set of
roots of D! is ®x42(a™) Ub* C V. The universe oD’
consists of the following regular set, whegtg,, andg, are
new symbols:

(VD) U (T ®0") Ut 5.
We have the following edges iB’:

¢ All edges fromE except those with an initial node in
b* are present irD’.

e ¢°®¥ ¢ V is additionally connected to all words of the
form 143 " fore € N z,y € N, andl < i <
x. This ensures that the subtree rooted@t getsz
new leaves, which are children of the redtY. Thus
unfold(D’, a®¥) = Ty, .

o ¥ ® 0™ for x € N andm € N is connected to (i)
all nodes to whicth™ is connected irD* and to (ii) all
nodes fromti 42" for 1 < i < x. This ensures that
unfold(D’, §* ® b™) = U,, , in casem € N, and
unfold(D', f* @) = U/, .

In summary,D’ is a dag, whose unfolding consists of
(copies of)U/, , rooted ati” @ ¢, U, . (m € N, ) rooted at
4* ® b™, andTy,, rooted atu .

From the automatic dafy’, we now build in a final step
the automatic da@?*'. This is very similar to the con-
structions ofD? andD’ above. LetV’ be the universe of

D’'. The universe oD*! is the regular language
r(a)Ub* U R V).
The edges are as follows:

e Foru,v € V', $™®u is connected t8" @wv if and only
if m = n and(u,v) is an edge of’. This generates
N, many copies of’.

e a° is connected to every word fro* @ ({a“*¥ |
z,y € Ni} U (#™ ® b%)). Hence, the tree
unfold(D**!, a®) hask, many subtrees isomorphic to
1,, forz,y € Ny andUy, , for z,m € N;. Thus,
unfold(D+!, o) = TiH,

e cis connected to all words froft @ (47 ®b*). Hence,
the treeunfold (DT}, ) hask, many subtrees isomor-
phictoU, , forallz € Ny andx € N, U {w}. Thus,
unfold(Di*, e) = UL,

e b™ (m € N,) is connected to all words fro* ®
(T @b U{t* @e | 1 <z < m}). This means
that the treeanfold(D**!,5™) hasX, many subtrees
isomorphic toaU;, , for all m,z € N, andU, ,, for all
1 < x < m. Henceunfold(D**1 p™) = Ui+l

This finishes the proof of Prop. 3.8.

Theorem 3.11 For n > 2, the set of automatic presenta-
tions of U” is hard forI19, 5. Hence, the isomorphism
problem for automatic trees of height at mests I19,,_ -
complete. The isomorphism problem for automatic trees of
finite height is recursively equivalent E© Th(N; 4, x).

Proof. For the first statement, I€8,(zo) be anyIl3, -
predicate and let € N,. Above, we constructed the au-
tomatic forestF™ of heightn. The treel is isomorphic
to the tree rooted at® and therefore effectively automatic.
By Prop. 3.6, it is isomorphic t&’ if and only if P,(c)
holds. It follows thatU”} is automatic, hence the isomor-
phism problem for automatic trees of heightn is hard
(and therefore complete by Prop. 3.1) fd,, .

We now come to the third statement. Since the proof of
Prop. 3.1 is uniform in the level, we can compute from
two automatic treeq?, T, of finite height an arithmetical
formula, which is true if and only i’y = T5. The other di-
rection follows from the first statement because of the uni-
formity in constructing the treeg” andU}. O

From Thm. 3.11 we can easily deduce a corollary on au-
tomatic equivalence structures. An equivalence strudggure
of the form& = (D; E) whereF is an equivalence relation
onD.

Corollary 3.12 There exists an equivalence relation whose
set of automatic presentationsIig-hard. Hence, the iso-
morphism problem for automatic equivalence structures is
I19-complete.

Proof. By Thm. 3.11 it suffices to show that the isomor-
phism problem forZ; is recursively equivalent to the iso-
morphism problem for automatic equivalence structures.
First, let€ = (V; =) be an automatic equivalence structure
and let<,., be the length-lexicographic order &1 Now
build the treeT'(£) of height at most 2 as follows: Let
be a new letter that serves as root. Its children arethe
minimal elements of the equivalence classessf and the
children ofu are the remaining elements of the equivalence
class[u]. Itis clear thatl'(£) is a tree of height at most
such that; = & ifand only if (&) = T'(€;). Moreover,
from an automatic presentation f6r one can compute an
automatic presentation far(&).

For the reverse reduction, létbe a tree of height 2. We
construct an equivalence structdi@") as follows: W.l.0.g.



assume thdf’ is not a single node. Then we first add to each rationalsz < y and allL € L there existss < z < y such
child of the root ofI" a further child such that every maximal thatz is colored with the order typ&. The shuffle sum of
path inT has length 2. LeT” be the resulting tree. Then isthe linear order that results froffd, <) by replacing each
the elements of (T') are the leaves df” and two leaves L-colored rational [, € £) with the orderL. Assuming that
andv are equivalent if and only if they have the same parent every order type irC starts with some ordina} - i (i € N)
node. Again it is easy to see that (i) from an automatic pre- and does not contain-i as an interval elsewhere, the shuffle
sentation fofl’, one can compute an automatic presentation sum of £ encodes the sef as a linear order. In our proof
for £(T) and (i)7; = Tz ifandonly if £(T7) = £(T2). O of Thm. 4.1 we use iterated shuffle sums. In order to stay
within automatic linear orders, we have to realize shuffle
Let us close this section, with a brief discussion on the sums in an automatic way, details can be found in the full
isomorphism problem for computable trees of finite height. version [15] of this paper.
In [13], it is shown that every automatic linear order has
Theorem 3.13 For everyn > 1, the isomorphism problem  finite FC-rank (for a definition, see e.g. [13]). A linear or-

for computable trees of height at mests 119, -complete. der L has FC-rank 1, if after identifying alt,y € L such
that the intervalz, y] is finite, one obtains a dense ordering
Proof. Forthe upper bound, let us first assume that 1. or the singleton linear order. The result of [13] mentioned

Two computable tree; andT} of heightl are isomorphic ~ @bove suggests that the isomorphism problem might be sim-
if and only if: for everyk > 0, there exist at leagt nodes ~ Pler for linear orders of low FC-rank.
in T7 if and only if there exist at leadt nodes inT;. This
is ally-statement. For the inductive step, we can reuse the
arguments from the proof of Prop. 3.1.

For the lower bound, we first deal with the case- 1. It

is known that the problem whether a given recursively enu- ) _ ) )
merable set is infinite iEJ-complete [21]. For a given de-  Proof. We provide a reduction from the isomorphism

terministic Turing-machiné/, we construct a computable Problem for automatic linear orders of arbitrary rankLlis

Coroallary 4.2 The isomorphism problem for automatic
linear orders of FC-rank 1 is at least as hard as
FOTh(N; 4+, x).

tree T); of height1 as follows: the set of leaves df,, ~ @nautomatic linear order, then salis= ((—1,0] +[1,2))-
is the set of all accepting computations f. We add a L. _Th|s_ linear order is obt_alned froth by replacing each
root to T, and connect it to all leaves. F(M) is infinite, ~ Peintwith a copy of the rational numbers(n 1,0 U1, 2).

thenT), is isomorphic to the height-tree with®, leaves. ~ ThenL has FC-rank 1: Only the copies 6fand1 will be
If L(M) is finite, then there exists: € N such thatT,, identified, and the resulting order is isomorphiq(@, <).
is isomorphic to the height-tree withm leaves. We can  Moreover,L is isomorphic to the set of all € L satisfying
use this construction as the base case for our construationi 3z >  Vy : (z <y < z — y = z). HenceL; = L, if and

Sec. 3.1.2. This yields the lower bound foral> 1. O only if L; = L,, which completes the reduction. 0
4 Automatic Linear Orders 5 Arithmetical isomorphisms
Our main result for automatic linear orders is: We conclude this paper with an application of

Thms. 3.11 and 4.1. The following corollary shows that
Theorem 4.1 For anyn € N, there exists a linear order  although automatic structures look simple (especially for

K,, whose set of automatic presentations is hard ¥r. automatic trees), there may be no “simple” isomorphism
The isomorphism problem for the class of automatic linear between two automatic copies of the same structure. An
orders is at least as hard @0 Th(N; +, x). isomorphismf between two automatic structures with do-

mains L; and Lo, resp., is azg—isomorphism, if the set
The proof of this result follows our arguments for trees of {(z, f(x)) | x € L1} belongs ta=?.
finite height but is technically more involved. Looking back
to the proof of Thm. 3.11, we see that trees are used in ordefCorollary 5.1 For any k € N, there exist two isomorphic
to encode sets of sets of. sets of natural numbers. For automatic trees of finite height (and two automatic linear
linear orders, we replace the basic tree operation of gluing®rders) without any:j-isomorphism.
together a set of trees into a single tree by adding a new
root by theshuffle sum The shuffle sum of a countable Proof. Assume that between any two isomorphic auto-
set of linear order type£ is constructed as follows: First, matic trees of finite height, there always exists:g-
we densely colofQ with the order types irC, i.e., for all isomorphism. Then the isomorphism problem for automatic



trees of finite height would belong 1X32+2 (which contra-
dicts Thm. 3.11): two automatic tre€% = (D;; Eq) and
T> = (Da; E») of finite height are isomorphic there exists
a X0-predicateP(z, y) such that for allz1, x5 € D; there
existy;,y2 € Dy (and vice versa) such thatP(x1,y1),

P(xo,y2), (x1 = T2 < y1 = o), and ((z1,m2) €

Ei < (y1,y2) € Ey). SinceP is aE%—predicate, this is

[8]

[9]

J. Honkala. On the problem whether the image of
an N-rational series equal¥. Fund. Inform, 73(1-
2):127-132, 2006.

B. Khoussainov and M. Minnes. Model theoretic com-
plexity of automatic structures. IMAMC 08 LNCS
4978, pp 514-525, Springer, 2008.

a X ,-statement, which expresses the existence of a
isomorphism fronil}; to T». For linear orders we can argue
in the same way. O

6 Open problemsand outlook

The main open problem, which remains, is the precise
complexity of the isomorphism problem for automatic lin-
ear orders as well as the isomorphism problem for automatic
scattered linear orders where our technique seems not to
work. To our knowledge, it is also open whether the iso-
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2007.

morphism problem for automatic groups (in the sense of

[10] or [5]) is decidable. In [16], we prove that the isomor- [13]
phism problem fotu-automatic trees of finite height is not
analytical. This proof uses techniques similar to those in
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