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ABSTRACT. The uniform first-order theory of ground tree rewrite grajshthe set of all pairs consisting
of a ground tree rewrite system and a first-order sentent¢dtivds in the graph defined by the ground
tree rewrite system. We prove that the complexity of the armnif first-order theory of ground tree

rewrite graphs is iATIME(22""™, O(n)). Providing a matching lower bound, we show that there

is some fixed ground tree rewrite graph whose first-ordenthischard forATIME (22" poly (n))
with respect to logspace reductions. Finally, we provetiate exists a fixed ground tree rewrite graph
together with a single unary predicate in form of a regulee fanguage such that the resulting structure
has a non-elementary first-order theory.

1. INTRODUCTION

A ground tree rewrite system is a term rewrite system wheesrdo not contain variables (neither
on the left-hand side nor on the right-hand side). So, ridetace subtrees by subtrees. Ground tree
rewrite systems were first studied in the term rewriting camity [7, 12, 13], where they are also
known as ground term rewrite systems.

Recently, ground tree rewrite systems were also studieldeirtontext of verification of infinite
state systems [30]. The main motivation for this is that gobtree rewrite systems can be seen as a
generalization of pushdown systems. These are a natutehetien of sequential recursive programs.
Rules of a ground tree rewrite system can be applied comtlyrat different positions of a tree.
This allows to model recursive progams with the additiormlitst to spawn new subthreads that are
hierarchically structured, which in turn may terminate agigirn some values to their parents.

One of the most important and oldest decidability resultsgimund tree rewrite systems was
shown more than 20 years ago by Dauchet and Tison [13]: Theiti@n graph of a ground tree
rewrite system (called a ground tree rewrite graph in thiefiohg) has a decidable first-order theory.
Actually, Dauchet and Tison even showed that the first-otideory of a ground tree rewrite graph
extended by the transitive closure of the edge relationdfdele (one also says that first-order logic
with reachability is decidable for ground tree rewrite drsp The proof of Dauchet and Tison uses
a tree automata construction, which yields a non-elemgrtigorithm. This leads to the question
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of complexity. While the first-order theory of a ground tresvrite graph extended by the transitive
closure of the edge relation may have non-elementary codityplghis holds already for the infinite
binary tree, which is a pushdown graph [42]), the preciseperity of the first-order theories of
ground tree rewrite graphs remained open. As the main tomitvh of this paper we solve this
problem. We prove the following:

e The first-order theory of every ground tree rewrite graplohgé to the complexity class

ATIME(22°*™  O(n)) (doubly exponential alternating time, where the numberltefraa-
tions is bounded linearly), whereis the length of the input formula.

e There exists a fixed ground tree rewrite graph withAAHME (22"
first-order theory.

The upper bound AATIME(22""™ O(n)) even holds uniformly, which means that the ground tree
rewrite system may be part of the input, i.e.is the sum of the length of the input formula and the
length of the description of the ground tree rewrite systémt. us remark that the complexity class
ATIME(2Z*"™ poly(n)) appears also in other contexts. For instance, Presburggmstic (the

first-order theory ofN, +)) is known to be complete fokTIME(22""™  poly(n)) [2], see [11] for
similar results.

The upper bound ATIME(22""™ O (n)) is shown by the method of Ferrante and Rackoff [16].
Basically, the idea is to show the existence of a winningagraof the duplicator in an Ehrenfeucht-
Fraissé game, where the duplicator chooses “small’t(wta a predefined norm) elements. This
method is one of the main tools for proving upper bounds foitkédries. We divide the upper bound
proof into two steps. In a first step, we will reduce the FOotlgdor a ground tree rewrite graph to the
FO-theory for a very simple word rewrite graph, where all dvogwrite rules replace one symbol by
another symbol. The alphabet will consist of all trees, vetgige is bounded by a singly exponential
function in the input size (hence, the alphabet size is doakponential in the input size; this is the
reason for the doubly exponential time bound). Basicalky,oltain a word over this alphabet from a
treet by cutting off some upward-closed g@tin the tree and taking the resulting sequence of trees.
Intuitively, the setC' consists of all nodes of ¢ such that the subtree rootedqnis “large”. Here,
“large” has to be replaced by a concrete vatwec N such that a sequence ofrewrite steps applied
to atreet cannot touch a node from the upward-closed seClearly,m depends om. In our context,

n will be exponential in the input size and so will. In a second step, we provide an upper bound for
the FO-theory of a word rewrite graph of the above form.

Perhaps it is worth mentioning that for proving our upperrmbuesult one cannot make use of
Gaifman’s locality theorem [18] since the resulting foramilin Gaifman normal form can become
non-elementary in the size of the original first-order folanji4]. An elementary upper bound on
the size of Gaifman normal formulas was shown for structofdsounded degree in [14]. However,
ground tree rewrite graphs have unbounded degree. Thidtaseason why Hanf's theorem [23]
does not seem to be of any use for our problem.

For the lower bound, we prove in a first step hardnes@fiXP (doubly exponential nondeter-
ministic time). This is achieved by an encoding @Ra" x 22") tiling problem. In this tiling problem,
we are given a wora of lengthn over some fixed set of tiles, and it is asked, whether this ward
be completed to a tiling of an array of sigg?" x 22"), where the wordy is an initial part of the first
row. There exists a fixed set of tiles, for which this problerBNEXP-complete. From this fixed set
of tiles, we construct a fixed ground tree rewrite graph sttt the following holds: From a given
word w of lengthn over the tiles, one can construct (in logspace) a first-diatenula that evaluates
to true in our fixed ground tree rewrite graph if and only if therd w is a positive instance of the

, poly(n))-complete
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(22" x 22") tiling problem. Our construction is inspired by [20], whetés shown that the model
checking problem for a fragment of the logic EF (consistifighose EF-formulas, where on every
path of the syntax tree at most one EF-operator occurs) oeeingd tree rewrite graphs is complete
for the classPNEXP . In a second step, we show that @NEXP lower bound can easily be lifted
to ATIME(22*™  poly(n)). For this, we have to consider an alternating version of 88é x 22")
tiling problem.

We conclude the paper with a proof sketch for the followinguie There exists a fixed ground
tree rewrite graph together with a single unary predicaferim of a regular tree language such that the
resulting structure has a non-elementary first-order thebhis result is shown by a reduction from
first-order satisfiability of finite binary words, which ism@&lementary [42]. It should be noted that
the first-order theory of a pushdown graph extended by regulary predicates still has an elementary
first-order theory (it is an automatic structure of boundedrde, hence its first-order theory belongs
to 2EXPSPACE by a result from [27]).

A short version of this paper appeared in [22].

2. RELATED WORK

2.1. Other decidability and complexity results for ground tree rewrite systems. Other important
algorithmic problems that are decidable for ground treeitevgystems are:

e confluence [12, 37], which in fact can be decided in polyndtimae [10, 19],

e reachability [7, 15} recurrent reachability [30, 31], and recurrent reachigbitith multiple
regular fairness constraints [44],

o fair termination [43], and

e model checking certain fragments of LTL [45, 44].

The decidability of first-order logic with reachability fground tree rewrite graphs implies that model
checking of the CTL-fragment EF is decidable for ground texerite graphs; the precise complexity
was recently shown to be non-elementary [20].

2.2. Pushdown graphs. As remarked above, ground tree rewrite systems generaliziedpwn sys-
tems. Muller and Schupp proved that every pushdown grapht(dnsition graph of a pushdown
system) has a decidable monadic second-order (MSO) th86ty SO extends first-order logic by
the ability to quantify over subsets of the universe. Mostgeral logics (e.g. LTL, CTL, modal
p-calculus) can be translated into MSO and are thereforeddblg over pushdown graphs. Precise
complexity results can be found in [5, 36, 49, 50].

Loding proved in [29] that a ground tree rewrite graph hasroled tree width if and only if it is
a pushdown graph.

1Actually, Brainerd [7] showed that a set of trees is reguland only if it is the set of trees that can be reached from a
single tree via a ground tree rewriting system, where bathslations are effective. This generalizes a result ohBfir
strings.



2.3. Algorithmic limitations. Ground tree rewrite graphs do not share all the nice alguittiprop-
erties of pushdown graphs. For instance, the infinite gridaisily seen to be (embeddable into) a
ground tree rewrite graph, which implies that ground treerite graphs with an undecidable MSO-
theory exist. In fact, most linear-time and branching-timeporal logics such as LTL and CTL have
undecidable model checking problems over ground tree tegraphs (cf. [30, 44]).

Concerning the first-order theory, mild generalizationggaund tree rewrite systems lead to
undecidable first-order theories. Undecidability holdsliftear and non-erasing term rewrite systems
[46], right ground Noetherian rewrite systems [33], andakdin canonical rewrite systems [48]. In
all these papers, undecidability is shown for fragmentsrsf-tirder logic with only one quantifier
alternation.

2.4. Formalisms related to ground tree rewrite systems. Several other extensions of pushdown
systems with multithreading capabilities have been camsit in [6, 24, 34, 39]. Among these ex-
tensions, the class of process rewrite systems [34], whicteiglize both Petri nets and pushdown
systems by providing hierarchical structures to threadensto have tight connections with ground
tree rewrite systems. Lugiez and Schnoebelen proved dsliigaf various first-order logics on PA-
processes by using tree-automata techniques [32]. Marteps rewrite systems hierarchy [35] was
recently refined via ground tree rewrite systems [21].

Recently, Lin extended ground-tree rewrite systems witmigeficontrol unit that is acyclic but
with possible self-loops, so called weakly-extended gdotree rewrite systems [28]. It is shown
that reachability, recurrent reachability and (the comq@at of) model checking deterministic LTL is
NP-complete for this extension.

The class of ground tree rewrite graphs is contained in thsscbf tree automatic structures
[3], whose FO-theories are (non-elementarily) decidahte[27], it is shown that (i) for every tree
automatic structure of bounded degree (which means th&aifenan-graph has bounded degree) the
FO-theory belongs toBXPTIME and that there is a fixed tree automatic structure of boundgred
with a 3EXPTIME-complete FO-theory. Note that in general, ground treeitewgraphs araot of
bounded degree.

2.5. Applications of the method of Ferrante and Rackoff. Recall that the method of Ferrante and
Rackoff is the main technical tool in our proof that the fiostler theory of every ground tree rewrite
graph belongs to the complexity cIa&%TIME(22P°'y<”) ,O(n)). Further applications of this technique
in computer science can be found in [40] (for the theory ofugs® and in [25] (for nested pushdown
trees).

3. PRELIMINARIES

By Z we denote théntegersand byN = {0, 1, ...} the set olhon-negative integerd~ori, j € Z we
define the intervali, j] = {i,7 + 1,..., 5} and[j] = [0, j].

For an alphabet! (possibly infinite), we denote witdt = A* \ {e} the set of all non-empty
words overA. The length of the wordy € A* is denoted byw|. For B C A, we denote witHw|g
the number of occurrences of symbols fr@rin the wordw.

Let f : A — B be a mapping. For’ C A, we denote withf[A’ : A” — B the restriction of
fto A’. For setsA, B,C (where A and B may have a non-empty intersection) and two mappings
f:A— Candg: B — C,we say thatf andg arecompatibleif f[(AN B) = g[(AN B). Finally,



for mappingsf : A — C andg : B — C with AN B = (), we definefwg: AU B — C as the
mapping with(f & g)(a) = f(a) fora € Aand(f W g)(b) = g(b) for b € B.

3.1. Complexity theory. We will deal with alternating complexity classes, see [8, 188 more de-
tails. Analternating Turing-machinés a nondeterministic Turing-machine, where the set oestat
is partitioned into existential and universal states. Afigumation with a universal (resp. existential)
state isacceptingf every (resp. some) successor configuration is accepfinglternationin a com-
putation of an alternating Turing-machine is a transitimnf a universal state to an existential state
or vice versa. For functiongn) anda(n) with a(n) < t(n) for all n > 0 let ATIME(¢(n), a(n))
denote the class of all problems that can be decided on amatiteg Turing-machine in timeé(n)
with at mosta(n) alternations. It is known th&ATIME(¢(n), t(n)) is contained in DSPACE(n)) if
t(n) > n[8].

3.2. Labelled graphs. A (directed)graphis a pair(V, —), whereV is a set ohodesand— C V' xV

is a binary relation. Aabelled graphis a tuple® = (V, %, {%| a € X}), whereV is a set onodes

¥ is a finite set ofactions and—= is a binary relation o’ for all « € ¥. We note that (labelled)
graphs may have infinitely many nodes. kop € V', we definedg(u, v) as the length of a shortest
undirected path betweenandv in the graph(V, J, s, —). Forn € Nandu € V let S, (&, u) =

{v € V | dg(u,v) < n} be thesphereof radiusn aroundu. Moreover, forui,...,u; € V let
Sn(B,ur, ... uk) = Upcjcr Sn(®,u;). We identify S, (&, ui, ..., u;) with the substructure ob
induced by the se$,,(®,u1, ..., ux), where in addition every; (1 < i < k) is added as a constant.
For two labelled graph&; and®- with node set’; andVs, respectively, and nodes, . .., u, € Vi,
v1,...,v; € Vo, we will consider isomorphismg : S, (&1, u1,...,ug) — Sp(Sa,v1,...,vE). Such
an isomorphism has to mag to v;. We write S, (&1, u1, ..., ux) = Sp (B9, v1,. .., v;) if there is an
isomorphismf : S, (&1, u1,...,ux) — Sp(Sa,v1,. .., vk).

Lemma 3.1. Let &1, ®, be labelled graphs with the same set of actions and nodelseand V5,
respectively. Let € Vl’“, S VQ’“, u € Vi, andv € V3 such thatu ¢ So,+1(61,u) and
v & Sgn_i_l(ﬁg,ﬁ). Finally, let f : Sn(ﬁl,ﬂ) — Sn(ﬁg,ﬁ) and fl : Sn((’51,u) — Sn(ﬁg,?}) be
isomorphisms. Thefiw [’ : S, (&1, u,w) — S,(B2,v,7) is an isomorphism as well.

Proof. The lemma is obvious, once one realizes that the conditighSs,,+1(®1,u) implies that the
spheresS,, (61, w) andsS,, (&1, ) are disjoint and that there is no edge between the two splesnds
similarly for the spheres,, (®2,7) andsS,, (62, v)). L]

Later, we have to lift a relation~ on a setA to a larger set. We will denote this new relation

again by—. Two constructions will be needed. Assume thats a binary relation on a set and let

A C B. We lift — to the setB™ of non-empty words oveB as follows: For alk,, v € B*, we have

u — v if and only if there arer,y € B* anda,b € A such thats — b andu = zay, v = xby. Note
that this impliesu| = |v|. The second construction lifts C A x A from AtoN x A as follows: For
a,b € Aandm,n € Nlet (m,a) — (n,b) if and only if m = n anda — b. Note that(N x A, —)
consists oty many disjoint copies ofA, —). Moreover,((A U {$})" \ {$}", —) (where$ & A is

a new symbol) is isomorphic N x A1, —).

Example 3.2. For the relation— = {(a,b), (b,a)} the corresponding relation dm, b} is shown
in Figure 1. The relation- lifted to N x {a, b} is simply the disjoint union of all 2-cycles

(a,n) =(b,n)
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Figure 1: A finite portion of the relatior- from Example 3.2 extended {a, b} .

foralln € N.
For a labelled grapks = (V, %, {%| a € X}), we define the labelled graph
&t = V2 {L]ae D). (3.1)

Note that by the above definitiod is lifted to a relation or//*.

3.3. First-order logic. We will consider first-order logic with equality over labedl graphs. Thus,
for a setX of actions, we have for each € ¥ a binary relation symbok(z,y) in our signature.

The meaning of(z,y) is of coursez —— y. If p(zy,...,x,) is a first-order formula with free
variableszy, ..., z,, ® = (V,,{%| a € £}) is alabelled graph, and,, .. . , v, € V, then we write
& = o(v1,...,v,) if p evaluates to true i®, when variabler; is instantiated by; (1 < i < n). The

first-order theoryof a labelled transition grap® is the set of all first-order sentences (i.e., first-order
formulas without free variables) with & |= ¢. In the final Section 6, we will consider the first-order
theory of a labelled graph with an additional unary predical hequantifier rankof a first-order
formula is the maximal number of nested quantifiersoinWe will need the following well known
lemma, which goes back to work of Fischer and Rabin [17].

Lemma 3.3. Let X be a set of actions. Given a first-order formuléar, y) of quantifier rankqr(6)

and a binary-coded integef (let m be the number of-bits in the binary representation g, one
can compute in logspace a first-order formélgz, y) of quantifier rankO(log(j) + qr(6)) and size
O(m -log(j) + m - |6]) such that for every labelled graph = (V, %, {%| a € £}) and all nodes
u,v € V we have:® = 67 (u,v) if and only if there is a directed path of lenggHfrom u to v in the
graph (V, {(s, 1) | & |= 0(s,1)}).

Proof. Before we defing’ (z, ), let us inductively define for each € N a formulay,(z,y) such
that for allu, v € V we have® = 1 (u, v) if and only if there is a directed path of leng2hi from u
to v in the graph(V, {(s,t) | & = 0(s,t)}). We define

Yo(z,y) = 6O(z,y), and
Yr(x,y) = EIzVu,v(((u =zAv=2)V(u=zAv= y)) — Q,Z)k_l(u,v)> fork > 1.

Note that the size of(z,y) is O(k + |0]) and the quantifier rank & + qr().
Let U C N be the set of all positions of the binary representatior whose bit is set td, i.e.,

j = Y2 Letm = |U| and lethy,...,h, be some enumeration &f. We can now define
07 (z,y) as
¢(x,y) = w1, Tmel <901 =T N\ Tmt1 =Y A /\ Zf)hi(fﬂi,xiﬂ))-

1€[1,m]



From the binary representation pfwe can easily comput#¥ (x, y). Moreover, the size ot/ (x, y) is
bounded byO(m - log(j) + m - |#]) and the quantifier rank is bounded ®&Ylog(j) + qr(f)). Il

One of most successful techniques for proving upper bouodshé complexity of first-order
theories is the method of Ferrante and Rackoff [16]. We wiplg this method in Section 4.2. The
following result is shown in [16f.

Theorem 3.4. Let® be a labelled graph, and |6t be the set of nodes &f. Assume that for every
nodev € V we have a normju| € N (in our application,V will be a set of words and the norm
of a word will be its length). Let,, = {v € V | |[v| < n}. Moreover, fork,¢ > 0, let =5, be
an equivalence relation on the set and letH : N> — N be a function such that the following
properties hold for all, ¢ € N, @,7 € V*:

(a) Ifu =5 v, thenu andv satisfy the same quantifier-free formulas in the structtire

(b) Ifw =, vandl > 0, then for allu € V there exists) € Vi, ) With (7, u) =g11,0-1 (U, v).
Then, for every quantifier-free formula(zo, ..., x,) and all quantifiersQq,...,Q, € {3,V} we
have that® = Qozo - - - Qexy : Y(x0,. .., x,) if and only if

& = Qoro € Vio,0@171 € Vi1,e-1) -+ Qewe € Ve = (20, - -+ T0).
We will use Theorem 3.4 in Section 4.2, where the funciibfk, /) will be exponential ink + ¢.

3.4. Trees. Let < denote the prefix order ox*, i.e.,z < y for x,y € N* if there is some: € N*
such thaty = xz. A setD C N* is calledprefix-closedf for all x,y € N*, x < y € D implies
z € D. Aranked alphabeis a collection of finite and pairwise disjoint alphabets= (A;);c |y for
somek > 0 such thatdy # (). For simplicity we identifyA with Uie[k] A;. A ranked tregover the
ranked alphabetl) is a mapping : D; — A, whereD; C [1, k|* satisfies the following:

e D, is non-empty, finite, and prefix-closed, and

e for eachz € D, with t(x) € A; we haverl, ... xi € D, andxj ¢ D, for eachj > i.
We say thatD, is thedomainof ¢ and call its elementsodes In caset(x) € A, for some noder,
thenz1 is theleft child andx2 theright child of z. A leafof ¢ is a noder with ¢(x) € Ay. Aninternal
nodeof ¢ is a node, which is not a leaf. We also refeeta D, as theroot of t. By Trees 4 we denote
the set of all ranked trees over the ranked alphabdDefinesize(¢) as the number of nodes in a tree
t. Itis easy to show that the number of all trees frdraes 4 of size at most: is bounded by A|".

Example 3.5. AssumeAy = {a,b}, A; = {g}, andAy = {f}. Figure 2 shows a tree € Trees,
with size(s) = 11. The domainD; of this tree is
{e,1,2,11,12,21,22,111,121,1211,221}.

Let ¢t be a ranked tree and letbe a node of. For eachr € [1,k]* we definexD, = {zy €
[1,k]* |y € D;} andz='D; = {y € [1,k]* | zy € D;}. By t'* we denote theubtree of with root
x, i.e., the tree with domaim,,. = ' D; defined ag!®(y) = t(zy). Lets,t € Trees4 and letx be
a node oft. We definet[z/s] to be the tree that is obtained by replactig in ¢ by s, more formally
Dt[x/s} = (D¢ \ 2D,z ) U zDg with
t(y) if y € Dy \ xDyx
s(z) if y =xzwith z € D;.

tle/s](y) = {

2The actual statement in [16] is stronger, but for our purpgbsaveaker statement in Theorem 3.4 is sufficient.
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For two ranked trees andt, let diff(s,¢) = |Ds \ D;|. Thusdiff(s,t) is the number of nodes that
belong to the trea but not to the tree.

Example 3.6. Consider the tree from Figure 2 and the treefrom Figure 3. We have
D, \ Dy = {11,12,22,111,121,1211,221}
and henceliff (s, t) = 7.

Let C be a prefix-closed subset Bf,. We define the string of subtree§C as follows: IfC = ),
thent \ C = t. If C # (), thent \ C = tlv1 ... ¢tlvm wherevy, ..., v, is a list of all nodes from
((C -N) n Dy) \ C in lexicographic order. Intuitively, we remove from thedrethe prefix-closed
subsetC and list all remaining maximal subtrees. Foe N and a treg we define the prefix-closed
subseup(t,n) C D, as

up(t,n) = {v € Dy | size(t'V) > n}.
Note thatt \ up(t,n) is a list of all maximal subtrees of size at mastn ¢, listed in lexicographic
order.

Example 3.7. Consider the tree from Figure 2. Then
C ={e1,2,12} C D,
is prefix-closed. We have
$ \ C= g(a),g(b), a, g(a)
(here, we denote trees by their corresponding term expressand we separate the trees in the se-
quences \ C with the symbol “,”). Moreover, we hav€ = up(s, 2).



Atreet € Trees, is achainif D, # {¢} and for every internal node € Dy, there is at most
one childui of u such thatu: is internal. Hence, a chainhas a unique maximal (with respect to the
prefix relation) internal nodmax(t) € N*. Note that a chain consists of at least two nodes.

Example 3.8. The treet in Figure 3 is a chain witlnax(¢) = 2111.

Lemma3.9. Let A be a ranked alphabet and leinks = {m € N | m > 1, A,, # (}. Then, for all
n > 1, the following are equivalent:

(a) There is a chairt € Trees 4 with exactlyn leaves.
(b) There is a tree € Trees 4 with exactlyn leaves.
(c) There exist numbers,, € N (for eachm € ranks) such thatn = 1+ > dp, - (m—1).

méEranks M

Proof. Implication (a) = (b) is trivial. Now, assume (b) and lete Trees4 has exactlyn leaves.
We show (c) by induction on the size of We distinguish two cases. The case= 1 is clear; set
d,, = 0 for all m € ranks. Now, assume thdathasn > 2 leaves. Then, there must exist an internal
nodeu € D, such that all children ofi are leaves. Let < a < n be the rank of the symbo(u). By
replacingu by a leaf (labelled with an arbitrary constant frotg), we get a strictly smaller tree with
n — (a — 1) many leaves (note that= 1 is possible). Since < n we haven — (a — 1) > 1. By
induction, there exist,,, € N (m € ranks) suchthath — (a — 1) =143 3 dy - (m —1). Thus,
we haven =1+ (dq +1) - (@ = 1) + 3, cranks\ {a} @m (M — 1).

Finally, for the implication(c) = (a), assumethat =1+ .. d,, - (m—1). Take a chain
t that consists O, ...« @m internal nodesq,,, of which are labelled with a symbol of ramk. Al
other nodes are leaves. It is a simple observationtthas exactly: leaves. O

The following lemma follows directly from Lemma 3.9.

Lemma 3.10. Let A be a ranked alphabet and letnks = {m € N | m > 1, A4,, # 0}. Then,
for every treet € Treess and every prefix-closed subs@tof D, the following holds, where is
the length of the string \ C: There exist numberg,, € N (for eachm € ranks) such thatn =

1+ Zmeranks dm (m - 1)

3.5. Ground tree rewrite graphs. A ground tree rewrite system (GTRS)tupleR = (A4, %, R),
whereA is a ranked alphabey, is finite set of actions, an® C Trees4 x X x Trees4 is a finite set
of rewrite rules. A rulg(s, a, s') is also written as —— s’. Theground tree rewrite grapldefined by
Ris

B(R) = (Treesy, ¥, {-%| a € B}),
where for each: € X, we havet - ¢ if and only if there exist a rul¢s —— s') € R andz € D,
such that'* = s andt’ = t[z/s'].

Example 3.11. We define a GTRR = (4, %, R) as follows. Let4y = {a,b}, A1 = {g}, and
Az ={f}, X ={a,b}, and letR consist of the following two rules:

ar% gla), b2 g(b).

Take a tre€(ay, as,...,a,), Whereaq, ..., a, € {a,b}, that does not contain a subtree of the form
g(a) or g(b). Then, the (weakly) connected componentigfR) that containg(ay, as, ..., ay) con-
sists of all trees of the form(g* (a1), g*2 (az), . .., g™ (an)) for iy, ... i, > 0. These trees form an
n-dimensional grid, where edges in dimensibr< j < k are labelled witha;. Figure 4 shows the
connected component &f(R) that containsf (a, b).
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F(9(g(a)).b) —Lv F(g(g(a)),9(6) —L> F(a(9(a)),a(a(®)))

flab) b+ f(a,g(6) —L—+ F(ag(gv)))

Figure 4: A finite part of the grap#(R)

The next two lemmas are obvious:

Lemma3.12. LetR = (4,3, R) be a GTRS and let be the maximal size of a tree that appears in
R. Lets andt be ranked trees such thdg ) (s, t) < n. Thensize(t) < size(s) + 7 - n.

Lemma3.13. LetR = (4,3, R) be a GTRS and let be the maximal size of a tree that appears in
R. Lets andt be ranked trees such thaiff(s,z) > r - n. Thendg g (s, t) > n.

Recall the definition of the grap#™ from (3.1).

Lemma3.14. LetR = (4,3, R) be a GTRS and let be the maximal size of a tree that appears in

R. Lett be aranked treep € N, and letC' C up(¢,r - n) be prefix-closed. Then we have
Su(B(R),1) = Su(&(R) ", 1\ C).

Proof. Lett \ C = t;---t,,. Hence, there is a treewith m leaves such that results froms by

replacing the™ leaf of s by ¢; (1 < i < m), let us writet = s[ty, to,...,t,,] for this. Recall that the

subtree rooted in a node froi C up(t,r - n) has size strictly larger than- n. Therefore, a node

from C cannot be accessed by doing at moséwrite steps. Hence, every tréec S, (&(R),t) can

be written (uniquely) ag’' = s[t|,t,,...,t,,]. Moreover, the mapping — t|t,---t defines an

isomorphism fromS,,(&(R),t) to S, (B(R)*,t\ C). ]

Remark 3.15. Note that if the wordw € Trees*Aj results from the string\ C' by permuting the trees
in the string, then we still havg,, (&(R),t) = S, (&(R) ", w).

The main goal of this paper is to study the complexity of tHlfaing set that we call theniform
first-order theory of ground tree rewrite graphs

{(R,¢) | R =(A,%,R) isa GTRSy is an FO-sentence over the signatur&oR ), (R) = ¢}.

4. AN ATIME(2Z™™, O(n)) UPPER BOUND

In this section we will prove the following result:
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Theorem 4.1. The uniform first-order theory of ground tree rewrite gragiedongs to the complexity
classATIME(22"™  O(n)).

It suffices to prove Theorem 4.1 for the case that the undaeylyanked alphabet contains a
symbol of rank at least two. A ground tree rewrite graph, whalt symbols have rank at most 1
is in fact a suffix rewrite graph on words. Such a graph is frser interpretable in a fulll'|-ary
treeI™ (with I" finite), where the defining first-order formulas can be easilyputed from the suffix
rewrite system. Finally, the first-order theory of a fullgde* (with [T"| > 2) is complete for the class
ATIME(2°(™) O(n)) (under log-lin reductions) [11, 47].

The proof of Theorem 4.1 will be divided into two steps. In atfstep, we will reduce the FO-
theory for a given ground tree rewrite graph to the FO-thdéonga very simple word rewrite graph of
the form® ™, where® is a finite labelled graph. Note thatlif is the set of nodes a$, thenV* is
the set of nodes ab™. Moreover, every edge i replaces a single symbol in a word by another
symbol. In our reduction, the size of the 3étwill be doubly exponential in the input size (which
is the size of the input formula plus the size of the input GT.R%a second step, we will solve the
FO-theory of a simple word structugt on an alternating Turing machine. More precisely, we will
show the following result:

Theorem 4.2. There exists an alternating Turing-machifié¢, which accepts precisely those pairs
(&,¢), where® is a finite labelled graph ang is an FO-sentence over the signature ®fwith
&+t = . Moreover,M runs in timeO(n‘*! - |¢|), wheren is the number of nodes ¢f and/ is the
quantifier rank ofp. Finally, the number of alternations is bounded®y’).

We prove Theorem 4.2 in Section 4.2. Together with our firduc&ion, Theorem 4.2 yields
Theorem 4.1.

4.1. Proof of Theorem 4.1. In this section, we will prove Theorem 4.1. L& = (A,X, R) be a
GTRS over the ranked alphabdtand letr be the maximal size of a tree that appearsiin Let
® = B(R) and lety be an FO-sentence of quantifier rafi 1 over the signature ab. We want to
check, whethe® |= . Define the sets

ranks = {meN|m>1 A4, #0},
M = {1+ Z dp, - (m —1) | dp, € Nform € ranks}.
meéranks

Note that by Lemma 3.9, we hawec M if and only if there exists a tree (or chaih} Trees 4 with
exactlyn leaves. Also note that/ = N \ {0} in caseA; # 0. Let

p = max(ranks) > 2
denote the maximal rank of a symbol framn We define a function

int: M — NU {oo}

as follows: Letm € M. If A; # 0 (i.e., there exists a unary symbol), then we isetm) = oo.
If Ay = 0, then letint(m) be the maximal number of internal nodes in a ttee Trees4 with
exactlym leaves (this maximum exists #; = 0; in factint(m) < m — 1). The intuition behind
settingint(m) = oo in caseA; # () is that there exist arbitrarily large trees withleaves. Note that
int(1) = 0.

—

Lemma4.3. For everym € M we haveint(m) > 7.
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Proof. It suffices to show the lemma for the cade = (. In this case, the lemma can be shown by
induction onm. The casen = 1is clear. Letm € M \ {1} and lett € Trees4 be a tree withm
leaves andnt(m) many internal nodes. Let € D, be an internal node such that all childrerucdire
leaves. Let(u) € A, with ¢ > 2. If we replaceu by a leaf, we obtain a tree witlt(m) — 1 many
internal nodes angh — ¢+ 1 € M many leaves. We must haue(m — g+ 1) = int(m) — 1 (if there
would be a tree witn — g + 1 leaves and more thant(m) — 1 many internal nodes, then we would
obtain a tree withn leaves and more thant(m) many internal nodes by replacing an arbitrary leaf
by a node with; children). Moreover, by induction (note that> 2), we havent(m —g+1) > %.
Hence, we geint(m) > 2= 4 1 = ==L > m (sincep > g). O

Lemma4.4. Assume thatl; = (). For everym € M there exists a chain with: leaves andnt(m)
many internal nodes.

Proof. Letm € M. By definition, there exists a trgec Trees4 with m leaves andnt(m) internal
nodes. It is easy to restructuténto a chain so that the number of leaves and the number ohaite
nodes is not changed. More precisely, take atreef(t4,...,t,) (in term notation) withn leaves
andint(m) internal nodes, which is not a chain. By induction, we canassthat every; (1 < i < n)
is either a chain or the constamte A (for some arbitrarily chosea € Ag). Sincet is not a chain
there existl < ¢ < j < n such thatt; andt; are chains. Choose an arbitrary chilcf the the
maximal internal nodenax(¢;) of the chaint;; hencez is a leaf oft;. Take the tree
t/ = f(tl, e ,tifl,ti[ﬁﬂ/tj],tprl, e ,tj,l,a,t]qu, e ,tn).
This tree has the same number of leaves and internal node€astinuing this way, we finally obtain
a chain. []
For numberd < i < jlet
Tli,j] = {t € Trees, | i <size(t) < j}.

ForOo <: < /let

o@)=L-r-T-4 - ((p—1)-r -4+ 1) +p-r-4 <r2.p. 200, (4.1)
Note that we have A A

o(i+1)>o(i)+p-r-3-4>0(i)+r-3-4 (4.2)
forall0 <7 < /. Let
U=T[,00)+7r-p-4°.

Moreover, for every) < i < / let

U, = T[l,0(i)] CU,

Vi = T[,r-41CU, (4.3)

W = {au,...,uq) |g>1,a€Ag,u,...,u, € V;}\V; CU. (4.4)
Note thatsize(t) < r-p-4' + 1 forallt € W; andV; N W; = (). We consider the séf as a finite
alphabet and the set§, V;, andW; as subalphabets. Note that

U| < |A]7@O+r P4 (4.5)
Define the language
Z={weU"||w € M} (4.6)

over the alphabdl/. Note that” = U™ in caseA; # (). On the sef{N x Z) U U we define a labelled
graph&; with label set as follows: Take an actiom € Y. By our general lifting constructions from
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Section 3.2, the binary relatiof> on Trees 4 is implicitly lifted to a binary relation OnTreesjg and
N x Trees?. Since(N x Z) NU = ), < can be viewed as a binary relation @ x Z) U U; simply
take the disjoint union of the relations 6N x Z) andU. Finally, we define th&-labelled graph

G =((INx2)uU, 3, {L]oex}). 4.7)
Forawordw = ujug - --u, € U* with uq, ..., u, € U we define

n
Jwl = size(u;).
=1

We define the sets

Zi = {weVW,VinZ||w|+int(Jw|) > o(i)}, (4.8)

L; = (D\I X Zz’) uuU;.
Note thatZ; = V*W;V;*NZ in caseA; # () (clearly, we seti+oco = oo for every numbern.). Assume
that the first-order sentengeis of the formQz, -+ Q121 Qoxo : ¥, whereQy, ..., Q, € {Vv,3}
andq is quantifier-free. Fod < i < ¢ —1 and elements;1,...,s, € (N x Z)UU let us define the
set

Li(six1,---,80) = Li U S3.4i(61,5i41,...,50).
We define a first-order sentenge (with quantifiers relativized to the seis(s; 1, ..., s¢)) over the
signature of5; as
01 = Qury € Ly Qp1we—1 € Ly_1(x¢) - Qoxo € Lo(w1,...,7¢) 1 9. (4.9)

We want to show tha®s |= ¢ if and only if §; = ;. For this, we need the following lemma, which
is the main technical contribution in this section. The eradight skip the proof at first reading.

Lemma4.5. Assume that

o 0<i <Y,

e 5 = (Si+1,...,84) S ((D\l X Z) U U)é_i with S5 € Lj U S3,4j(61,3j+1,...,84) for all
Jjeli+1,4,

ot = (tit1,...,tp) € Treesg_i, and

o f:54i+1(61,5) — Sy+1(®,1) is an isomorphism such thet] S,i+1(S1, s;) is the identity
forall j € [i +1,¢] witht; € Ui or 55 € Ujp1.

Then, the following holds:

(a) Forallt; € Treesy there exists; € L; U S5.4:(61,35) and an isomorphismg : S, (&1, s;,35) —
S,i(®,t;,1) such thatf and g are compatiblé and g[S, (S, s;) is the identity for allj € [z, ]
with tj e U, or S5 € Ui.

(b) Forall s; € L; U S5.4i(61,3) there existg; € Trees4 and an isomorphismg : S, (&1, s;,35) —
S,4i(8,t;,t) such thatf and g are compatible ang/[S,: (51, s;) is the identity for allj € [i, (]
with tj ey, or 85 € Ui.

Before we prove the lemma, let us provide some intuition. dase (a) we will basically distin-
guish two cases: In casgis “close” to some tree in the tuplg then the simulating; can safely be
chosen ag; itself. In caset; is “far” to all trees int, we distinguish two cases: Either the sizetpf

exceedsr (i) from (4.1) or not. If|t;| > o (i), thens; will be chosen as a pair frofn} x Z; for some
fresh numben that does not appear as a first component of any eleméntand where the second

SRecall the definition of compatible functions from the beudiy of Section 3.
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component of; consists basically of; \ C for some prefix-closed subsétof ¢;'s nodes. Intuitively,
this means that; does not have to be “too big” in order to simulate only “small” subtrees of;
have to be accounted for. Lemma 3.14 will be crucial. In dg$e< o (i), we can prove that we can
sets; = t; € U;. For case (b) we can proceed similarly, but the main cruxas filw each element
s; € N x Z; we can build a tre¢; € Trees4 such that the spheres of radidfsarounds; andt; are
isomorphic. For building the latter trees, we have to dggiish the case wheA; # () and the case
whenA; = 0.

Proof. Let f : S;i+1(61,5) — Sui+1(8,1) be an isomorphism such th#fS,+1(S1,s;) is the
identity for alli + 1 < j < Zwith t; € U;1 ors; € U;q;. Let us first prove statement (a). Let
t; € Trees 4. We distinguish two cases:

Case 1.t; € S3.4:(®,1). Note that this implies that belongs to the range of the isomorphighand
that

542'(@,1‘/1‘75 - S4i+1(®,f).
Then, weset; = f~1(t;) € S5.4:(61,5). We defingy as the restriction of to the setS,: (&1, s;,5) C
Syi+1(61,5). Now, assume that € U, i.e.,size(t;) < o(i). We have to show that[S,i (&1, s;) is
the identity. Lett; (i + 1 < j < ¢) such thatlg(t;,t;) < 3 - 4'. With Lemma 3.12 it follows

. . (4.2)
size(tj) <size(t;) +r-3-4"<o(i)+r-3-4" < o(i+1).

Hence,t; € Uiy1 and f1S,+1(S1, s;) is the identity. Sincelg, (s;, s;) = de(ti t;) < 3 - 4% we
havesS,i(&1,s;) C Syi+1(61,s;). It follows that f5,: (61, s;) is the identity. Ifs; € U;, then we
can argue analogously.

Case 2t; & S3.4i(®,1). We will find s; € L; and an isomorphisnf’ : S,: (&1, s;) — S, (&,¢;) such
thats; &€ S5.4:(S1,3). Then, Lemma 3.1 implies that= (f[5,:(S1,3))w f" is an isomorphism from
S4i (61, 54,35) 10 S, (8, t;, t), which is compatible withf. Moreover, we will show that it; € U; or
s; € U;, thenf’ is the identity.

In order to finds;, lett; \up(t;,r-4%) = u; - - - u,,. Recall that the latter string is the lexicographic
order of all maximal subtrees of whose size is at most- 4°. Hencesize(u;) < r - 4' for eachy,
i.e.,u; €V (see (4.3)).

Case 2.1size(t;) > o(i). We must have; # u, because otherwisgze(t;) < r - 4' < o(i), which
is a contradiction. Therefore, there must eXisK j < m, a symbola € A of rankg > 1, and a
prefix-closed subse&t' C up(t;,r - 4°) such thaiv(u;j, ..., ujq—1) € W; (see (4.4)) and

tl' \ C = Uuy - -+ uj,loz(uj, e ,UJJrq,l)UjJrq st Uy -
Letw = ¢; \ C. By Lemma 3.10, we haviu| € M. By the definition of the mappingt, we have
w| + int(Jw]) > size(t;) and hencdw]| + int(Jw|) > o (i) by assumption. Thus, we getc Z; by
definition of Z; in (4.8). Choose a number € N such that» does not appear as a first component of
apair from{s;+1,...,s¢} N (N x Z). Finally, we set

si = (n,w) e Nx Z; C L.

Due to the choice of,, we haves; ¢ S,(61,5) for all p. Moreover, with Lemma 3.14 we get
S4i (61, 8;) =S4 (&, t;). Finally, size(t;) > o (i), i.e.,t; € U;, ands; ¢ U.
Case 2.2.size(t;) < o(i), i.e.,t; € U;. We sets; = t; € U;. Note thatS,:(&,t;) C U, which
implies Sy (61, s;) = Su(®,t;). Assume thak; € S54:(S1,5). We will deduce a contradiction.
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Leti + 1 < j < ¢such thatls, (si, sj) < 3- 4. Sinces; € U, we must have; € U as well (there is
no path inG, between the sefs andN x 7). Moreover, with Lemma 3.12 we get

4 (4.2)
size(s;) <size(s;) +r-3-4"<o(i)+r-3-4" < o(i+1),
i.e.,s; € Uiyq. This implies thatf[Si+1(S1, s;) is the identity. Hencet; € S3.4:(®,t;), a con-
tradiction. We can finally choose fgt the identity isomorphism 08,: (&1, s;) = S4:(®,t;). This
proves (a).
Let us now prove (b). Let; € L; U S5.4:(S1,5). Again, we distinguish two cases.
Case l.s; € S54i(61,5). This implies
S4i (61, 84,5) C Syit+1(61,3).
We sett; = f(s;) € S3.4:(®,t). We can conclude as in Case 1 for the proof of point (a) above.
Case 2.s; € S5,4i(61,5). Hence,s; € L;. We will find t; € Trees4 and an isomorphisnf”’ :
S4i(S1,5i) — S4i(6,t;) such thatt; & S5.4:(8,t). Then, Lemma 3.1 implies that the mapping
g = (f154(61,3)) W f is an isomorphism frons,: (&1, s;,3) to S4i (&, ¢;,t), which is compatible
with f. Moreover, we will show that if; € U; or s; € U;, thenf’ is the identity.
Case 2.1.s; € U; C Treesy. We sett; = s; € U;, which impliesSy:(&,t;) € U. Thus,
Syi(61,8:) = Su(®,t;). Assume that; € S;.4(8,%). We will deduce a contradiction. Let
i+1 < j </{suchthatlg(t;,t;) <3-4'. Lemma 3.12 implies

. . (4.2)
size(tj) <size(t;) +r-3-4"<o(i)+r-3-4" < o(i+1).

This implies thatf [.S,i+1 (&1, s;) is the identity. Hences; € S3.4:(S1, s5), a contradiction. We can
finally choose forf’ the identity isomorphism 08,4 (&1, s;) = S4i (8, t;).

Case2.2s; € Nx Z;. Lets; = (n,uy - up) Withug, ..., uy, € VUW;,m € M, and|uy - - - up, ||+

int(m) > o(i). There is exactly oné < j < m with u; € W;. Letu; = a(vq,...,vy) With g > 1,
a € Ay, andvy,. .., v, € V;. Define the string
W= UL Uj_1V] -+ - Vg1 - - Uy (4.10)

of lengthm + ¢ — 1. Sincem € M, we also haven + ¢ — 1 € M.

Case 2.2.1A; # (. Then, we can choose foy a tree with the following properties:

e t; \ up(t;,7 - 4°) = w. For this, we connect all trees, ..., u,, to one tree using a chain
of symbols of rank at least 2, starting from) € W;. Sincem € M, this is possible by
Lemma 4.4 (applied to the ranked alphaldet A;).

o t; & S5, (®,1) andsize(t;) > o(i). This can be enforced by adding a long enough chain of
unary symbols to the root.

With Lemma 3.14, the first point implieS,: (&1, s;) = S, (8, t;). Moreover, sincaize(t;) > o (i),
we havet; ¢ Ui.
Case 2.2.2A; = () and thusnt(m) < co. Note thatjw| = |uy - - - un| — 1, i.€.,
lw| + int(m) = |uy -+ - up| + int(m) — 1 > o(4).
Every tree in the stringy has size at most- 4°. Hence, we havgw| < (m + ¢ — 1) - r - 4°. We get

(m4q—1)-r-4" +int(m) > o(3).
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Moreover, sincent(m) > ’;}T*f by Lemma 4.3, we haver + ¢ — 1 < int(m) - (p — 1)+ ¢q <
int(m) - (p — 1) + p. We get

(int(m) - (p — 1) +p) -7 - 4" +int(m) > o (i).
Solving this inequality foint(m) yields

_ o(i) —p-r-4

> : .
|nt(m)—(p_1),r,4l_|_1
Plugging in the definition of (i) from (4.1) yields

int(m) > £-r-7-4% (4.11)
We now define + 1 different trees’, . . . , t; , as follows.
We first fix a sequencay, . . . , Qint () Of Symbols fromA \ Ay such that that every chain, where

the j" internal node is labelled with; has exactlyn leaves. By Lemma 4.4 such a sequence exists.
In the following, we consider chains witit(m) 4+ 1 many internal nodes such that the following
hold:
e The ;" internal node [ < j < int(m)) is labelled witha; and the maximal internal node is
labelled witha € A, (thus, such a chain has + g — 1 leaves).
e Every internal node belongs td,2}* (thus, every internal node, which is not the root, is
either the first or the second child of its parent node).
e Allleaves in the chain are labelled with some fixed constamt Aj.
This means that such a chain is uniquely determined by itdm@xnternal nodeu = max(t) €
{1,2}nt(m)  We writet = chain(u).
Letu,v € {1,2}"(™ such thatu = zay andv = xbz with z,y,z € {1,2}*, a,b € {1,2},
a # b. Definediff(u,v) = |y| +1 (= |z| + 1). Recall also the definition of thdiff-value for two trees
from Section 3.4. Then, we have

diff(chain(u), chain(v)) > diff (u, v). (4.12)
In fact, diff (chain(u), chain(v)) > 2 - diff (u, v) holds.
Sinceint(m) > £-r-7- 4 by (4.11), we can find + 1 stringswy, . . ., w4 € {1,2}"0™ such
that for allk # £’ we have _
We may for instance set
wy, = 1int(m)f£-r-7-4il(kfl)-r-7-4i2(67k+1)-r-7-4i.

Let us define the chaiy, = chain(wy) forall 1 < k < ¢+ 1. Hence, (4.12) and (4.13) imply
diff(cp, cpr) > 174 (4.14)

for all k # k’. Moreover, every chainy, has exactlyn + ¢ — 1 leaves. Finally, the tred, is obtained
from the chain;, as follows: We replace thechildren of the maximal internal nodeax(cy) (which

is labelled witha € A,) by v, ..., v, (in this order). All otherm — 1 leaves are replaced by the trees
U, ...y Ujo1, Ujt1, - - -, U (the order does not matter). It follows that the strifig, up(t, r - 4°) is

a permutation of the string from (4.10). With Lemma 3.14 and Remark 3.15 this ensurds tha

S4i(61,5) =2 S5 (S,11,)

forall 1 <k < /¢4 1. Moreover, since each of the trees ..., uj_1,v1,...,Vg, Ujg1,. .-, Um € V;
has size at most- 4/, the number of nodes in the subtreetpfooted at a leaf of; may grow by at
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mostr - 4, when we replace the leaf by one of the tregs. . . JUF—1, V1, - 3 Vg, Ujg 1y - - - Uy THIS
implies
YT, . ; 4.14) i
diff (¢}, ty,) > diff (e, cpr) — 74" > "r-6-4",
providedk # k’. Hence, Lemma 3.13 implies
de(t),th) > 64! (4.15)
for all £ # k’. We claim that there is at least ofie< k£ < ¢ + 1 such that), & S5.4:(®,¢). In order
to obtain a contradiction, assume that for edch & < £ + 1 there exists somg, (i +1 < h < ¥)
such thatdg (¢}, t,) < 3 - 4". Since there are onl§ — ¢ < ¢ such trees;,, the pigeon hole principle
implies that there exist # &’ and h with de(t,,t,) < 3 -4' andde(t),,t,) < 3 -4°. Hence,
de(t),t.) < 6- 4%, which contradicts (4.15). We finally set = ¢}, wherek is chosen such that
t), & S3.4:(®,t). Finally, note thasize(t;) = |u1 - - - wm| + int(m) > o (i) (i.e.,t; € U;) ands; € U.
This concludes the proof of the lemma. L]

Lemma 4.5 allows us to prove the following lemma:

Lemma4.6. Assume that

o —1 <</,

® 5= (5i+1,--,80) € (NxZ)UU)* " withs; € LjUS3.45(sj41,...,8¢) forall j € [i+1,4],
o = (tit1,...,ts) € Trees’, ", and

o [ :84+1(61,5) — Su+1(®,t) is an isomorphism such thatSyi+1(S1, s;) is the identity

forall j € [i +1,¢] witht; € Ui or 55 € Ujp1.
Then, for every quantifier-free first-order formujaover the signature o$ and all Qq,...,Q; €
{V,3} we have

GHl ’: QZSCZ € Li(g) ce Q():CQ S Lo(xl,. .. ,xi,E) : 1/)(:60, ... ,SUZ',E)

=
B | Qixi- - Qoxo : Y(xo, ..., T, 1)
Proof. The lemma can be shown by induction grstarting withi = —1. For the induction base

(: = —1), note that the existence of the isomorphigmnsures that andt satisfy the same quantifier-
free formulas. The induction step uses Lemma 4.5 and thsictddack-and-forth argument from the
proof of the Ehrenfeucht-Fraissé-Theorem. L]

Settingi = ¢ in Lemma 4.6, it follows® = ¢ if and only if §; = ¢1, whereyp; is from (4.9).

For the remainder of the poof of Theorem 4.1, we proceed &sifs! We simplify the sentence
1 (which is not an ordinary first-order sentence due to thetifdil constraints for the variables
xo, - .., xp) and the structur&s; further, so that we can finally apply Theorem 4.2. In a firspste
(Step 1 below), we eliminate in the formula the relativation of the variables; to the spheres
S3.4i (61, Tit1,. -, 2¢) € Li(xi41,...,2¢). Then, the structur&; will be freplaced by an isomor-
phic structureS3 (using an intermediate isomorphic co@s). These is done in Step 2 and Step 3
below. The structur&s will be almost of the forniT™ for a finite labelled graplt (these are the
structures appearing in Theorem 4.2). The only differead@at the universe abs is a regular lan-
guage of the formA*©A* (for finite alphabetsA and ©) instead of the set of all non-empty finite
words (as it is the case f&&+). Also the constraint sets; C L;(z;.1,...,z,) from &7 will be
mapped to simple regular languagesdip. We finally transformSs into a structureS, = T+ by
enlarging the finite alphabet over which words fr@g are defined (Step 4).
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Step 1.Recall that quantifiers iy, are relativized to the sets
Li(wiy1,. .. 20) = Li U S3.4i(61,%i11,...,T0).

Note thatr; € S3.4i (61, xiy1,...,T¢) Means tha\/f:i+1 ds, (i, x;) < 3-4% holds. By Lemma 3.3
we can find an equivalent first-order formula of s@é&(¢ — i) - i + (£ — i) - |Z]) < O(2 + ¢ - |%))

and quantifier ranlO(i) < O(¢) (we take the formuld(z,y) = (z =y V V ex 0(2,y) V o(y, x))

in Lemma 3.3; note that the binary representatiors oft’ has only 2 1-bits). After replacing the
constraintse; € S5.4i(61,zit1,-..,x¢) for 1 < ¢ < ¢, the resulting equivalent sentence has size
lo| + O£ + £2 - ||) and quantifier rank ().

Step 2.It remains to eliminate constraints of the forme L; = (N x Z;) U U;. In order to do this,
we will change the labelled graph; to a labelled graph of the form™ for a finite labelled grapft.
The basic idea will be to change the alphbeby taking words over of/ of some bounded length as
the new symbols; the resulting alphabet will be thelget) U” below.
In the following, we assume that; = () (and hencént(m) < oo for all m); the cased; # ) is
the simpler one.
In order to cope with the length constrajnt| € M in the definition of the se¥; from (4.8), we
define for0 < 7 < ¢ the sets
U = {weU"||w|+1 € ranks},
Vi = {weV;"||w|+1€ranks} CU".

We have ws) w
U] < (U +1)P71 < (JA] 4 1)@ D e@Otprat) 27 42000702, (4.16)

Moreover, for0 < i < ¢ let us definel¥’/ as the set of all minimal words (with respect to the factor
relation on wordsy € V;*W;V;* with |w| € M (and hencev € Z by (4.6)) andw|+int(|w|) > o (i)
(and hencev € Z; by (4.8)). It follows that for such a word we have

[wl +int(jw]) — (p—1) -7 4"~ 1 < o (i).

Since|w| < |w]| andint(|w|) > =L by Lemma 4.3, we have
p

-1 .
wl+ =L -y g -1 <00
or equivalently
_ —1)2 )
w < 222 oy + LT i)
p
Hence, for alw € W/ we have A
lw| < o(@) +p-r-4"+1. (4.17)
Let us set
(4.1)
y=ocl)+p-r-4-4+1 < p-r2.200 Ly gl 41 =p.p2. 200 (4.18)

which is an upper bound for the right-hand side of (4.17).eNbaty is exponential in our input size.
Let

U'={weZ||w <7},
which contains all alphabei¥ (0 < : < /) as well ad/. We have

(

(4.5) )\ (4.1) .
U] < (U] +1)7 < (JA] + 1)@ T g po 0t (4.19)
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which is doubly exponential in our input size.

For the further discussion, it is important that element§’of) U” are viewed as single symbols.
For a wordw € (U’ U U”)* we can define an expanded wasth(w) € U* in the natural way (e.g.
exp((a)(abba)(b)(ba)) = aabbabba). Note that for every wordy € U*U"U’* we havelexp(w)| €
M (i.e., exp(w) € Z). Vice versa, for every wordv € Z there exists at least one word €
U™ U"U" with exp(w') = w. Moreover, for every wordv € V;/*W/V!* we havelexp(w)| € M and
lexp(w)| + int(|exp(w)|) > o(i). Vice versa, ifw € V*W;V;* N Z with |w]| + int(jw]) > (i) (i.e.,
w € Z;), then there exists at least one wart € V;/“W/V/" with exp(w') = w. This allows us to
replace the constraint séf = {w € V*W,V:* N Z | |w| + int(Jw|) > o(i)} by the setV/* W/V/".
Note that for a wordv € Z; there may exist several words € V/*W/!V/* with exp(w’) = w. This
is not a problem: by taking the sietx Z; in the structureés,, we basically takely many copies ofv.

By our lifting construction from Section 3.2, every binasiation = (¢ € %) on Trees, is
defined onU’ U U” C Trees}; and hence orfiN x U’*U”U’*) U U. Using this, it follows that our

labelled graprs; = (N x Z2) U U, %, {Z| o € ©}) is isomorphic to the labelled graph
Gy = ((INx U™U"U™)UU, B, {L| 0 e X}).
The isomorphism maps the constraint Bet= (N x Z;) UU; to (N x V" W/V/*) U U;.
Step 3.In order to get rid of the direct product witk in N x V/*W/V/* we add a new symbdi to
the alphabet/’ U U”. We lift the relations” (¢ € ¥) from U"* to (U” U {$})* in the standard way

($ does not occur in the left-hand and right-hand sides of ttatioes =). Then, the labelled graph
& (and hencés,) is isomorphic to the graph

Gy =((Uu{$HU"(U'u{sH*uU, B, {Z|oex}).

The isomorphism map¥ identically toU and the setN x {w} (for w € U"U"U’") is mapped
bijectively onto the set of those words froft/’ U {$})*U” (U’ U {$})* \ U, whose projection onto
the subalphabdt” is w. Hence, the constraint sktx V;*W/V/" is mapped to the set

(Viu{sh wi(Viu{sh \U. (4.20)

Step 4.In order to express in first-order logic that a word belonghéoabove constaint set (4.20), we
introduce another symbgt. Hence, our final alphabet is

C=U0"uU"U{$,#}.
With (4.16) and (4.19), the size dfcan be estimated as
D=2+ |U|+|U" <|A (4.21)

Next, we define a finite labelled gragh= (T, ¥, {%| a € ¥'}) with node sel as follows. The set
of actions is

‘20“)172-7"4

¥ =XuUrl.
The set of transitions is defined as follows. By our liftingistruction from Section 3.2, every binary
relation = (o € X) on Trees 4 is defined ol ($ and# do not occur in the left-hand and right-hand
sides of the reIationé’—»). Moreover, fora € I" we define the relation
= = {(a.#)}
Finally, using the construction from Section 3.2, we deftreelabelled graph
Gys=3".
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We will construct a sentencg, over the signature a4 such thatS; = ¢4 if and only if 54 = 4.
Using the edge relation$: (a € T), we can express € QT (for Q C T') as

/\ -3y : a(z,y).
ael\Q

Moreover, a constraint:|o > k (saying that there are at ledsbccurrences of symbols frofain the
word z) can be expressed as

3y1,~.>yk< Nvizvin NV a(w,yz')).

J#5 JE[Lk] a€Q
This allows us to express e.:|qo = k orz € Q. Hence, a constraint € L; = (N x Z;) UU; in ¢y
can be replaced by the formula
(ze (VVUW/U{SHT A |zlwr =1 A2 gU) vV zel,

of sizeO(|T']). (for the correctness of this formula it is important thgdh W/ = () which follows from
V; N W; = ()). The size of the resulting sentengg can be bounded by| + O(¢3 4 ¢2 - ||+ ¢ - |T))
and its quantifier rank is stitD(¢).

We can now conclude the proof of Theorem 4.1. Recall that earadl goal is to check, whether
& = ¢ holds. By the above constructions, this is equivaler®to= 4. By Theorem 4.2, this can
be decided on an alternating Turing machine in time

O(IT|°® - Jipu]) < poly (T + [g] + %))
usingO(¢) < O(|¢]) many alternations. Recall from (4.21) tHaf < |A] *. Hence, we can

bound the running time byoly(|A[2°’?*"" 4 || 4 |5|), which is doubly exponential in the input
size. This concludes the proof of Theorem 4.1.

QO(Z)pZ o

4.2. Proof of Theorem 4.2. Let us fix a finite labelled grapts = (V,%,{%| o0 € £}) and let
n = |V|. We want to decide the first-order theory®f . For this we can w.l.0.g. assume that- 2.
Moreover, we can assume that= V' x V and that the edge from € V tob € V is labelled
with (a, b) (the original edge relations are definable by disjunctienthis new graph). Our decision
procedure for the first-order theory 6f" uses the method of Ferrante and Rackoff from Section 3.3
for the function H (k,¢) = n**2 4 k. For this, we define a suitable equivalence relatiay,
on k-tuples overV*. The definition of this equivalence relation uses a simpigrivalence relation
=4 defined on words, which corresponds to counting and comgpaymbols up to the threshold
d. The main combinatorial lemma for the equivaleneg, is Lemma 4.8. It rougly says that if
u =, v andu € V*, then one can always find a “short” wordsuch that(uz, v) = ¢ (v,v). This
corresponds to point (b) in Theorem 3.4. To apply the metHdeeaante and Rackoff, we also have
to show thai = o v implies thatu andv satisfy the same quantifer-free formulaséi (point (a)
in Theorem 3.4). This is stated in Lemma 4.9.

Recall that for a word, € A* over a finite alphabett anda € A, |u|, denotes the number of
occurrences of in u. Ford > 1 andu,v € A*, we writeu =4 v if for all a € A the following holds:

e |uly = |v[q OF

e (lulg > dandlv|, > d)
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Note that=, is an equivalence relation and that=;,, v impliesu = v.
Let A and B be finite alphabets. For two words= aias---a € A* andv = b1bsy - - - b, € B*
of the same lengtk we define the convolution ® v = (a1, b1)(ag,bs) - - - (ax, by) € (A x B)*.

Lemmad4.7. Leta € N, u,v € T'* (whereT is a finite alphabet)y’ € V* with |u| = |v/|, u =4.n v,
and|v| > « - n - |T'|. Then there exists’ € V* with [v| = [o'| andu ® v’ =, v @ V.

Proof. Leta € T"andb € V. Consider the valuesi,, = |u ® u’'|(, ) andn, = |v[,. Finding a word
v' € V* such thatv'| = |v| andu ® v/ =, v ® v’ is equivalent to finding numbers, ;, (which will
be v ® v'|(4,4)) such that

® > ey Nap =ngforalle €' and

® Mgy ="Ngp OF (Mg > aandng, > a)forallac ', be V.
Note thatu =,.,, v implies

meb =n, Or (meb >a-nandng > a-n)
beV beV
forall a € I'. Also recall that V| = n. We choose the numbers ; as follows, wherex € I':
o If D> ey Mayp = ng, then we seh,, = my, forallb e V.
o If > oy Map > a-nandn, > « - n, then (sincgV'| = n) there must be at least ohes V
with mg, > a. We first sety, j, = mq, forall b € V- with m,, < a. For all remaining € V'
(which satisfym,;, > «) we setn,; to some value> « such that the total suh_, i 14
becomes:,. Sincen, > « - n this is possible.

L]
For all k, ¢ € N we define an equivalence relatier, , on the sefV*)* of k-tuples of words
overV as follows: Let(u, ..., ux), (vi,...,v) € (VF. Then(uy,...,ug) =gs (v1,...,vx) if

and only if the following conditions hold:

(@) Foralll <i,j <k, |u| = |u;| if and only if |v;| = |v;].

(b) Foralll <i <k, u; =v; or Ju;| > n*++1 and|v;| > nkFH+1

(c) Foralll < i < k the following holds: Letl < i7 < is--- < i, < k be exactly those indices
such that|u;| = |u;| = -+ = |u,,|. Hence,|lv;| = |v;,| = --+ = |v;, | due to (a). Then
Uiy @ Uiy @ -+ @ Uy, = Viy D Uiy @ - @5, , Wherea = nft1,

Lemmad4s8. Letk > 0,¢ >0, (u1,...,ur) =g¢ (v1,...,0), and letu,; € V*. Then there exists
Vg1 € V* such thatvy, | < 4 + kand (w1, . .., ug, ugs1) Spg1,0-1 (U1, - -0y Ve, V1)
Proof. Assume thatu;, ... ,u;) =g (v1,...,vx) and letug € V*. We distinguish several cases:

Case 1|ugi1| # |ug| forall 1 <i < k.

Case 1.1Jup 1| < n* 1 Then, we must haviy,, 1| # |v;| forall 1 < i < k (if |v;| = Jugpi1] <
nF++1 then we must have; = v; by (b) and hencéu 1| = |u;]). We setug1 = up1.

Case 1.2 uj, 1| > nFT+1. Choose a numbex with n* 4+t < X\ < nF++1 4k and|v;| # A for

all 1 < i < k. We will find a wordvy; such thatvy,| = X andug,, = vie41 for a = n’. Since
lupy1| > nFH1 there exists a symbal € V such thatuy 1], > ¢ > nf = a. If A > |up1],

then we simply increase the number of occurrencesiofu; until a word of length\ is reached.
If X < |upy1|, then|ugq| > n’*l. Hence, there even existsc V with |ug 1], > n’. We remove
one of the occurrences afin u;, 1. We can repeat this step until a word of lengtis reached.
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Case 2.|ug+1| = |u;| forsomel < i < k. Letl < i3 <iy--- < i < k be exactly those indices
such thatug 1| = |ui, | = -+ = |u;,, |- Letu = u;;, Q@ui, @ -+ Q@uy,, andv = v, Qui, @ -+ - R o;, .
Point (c) impliesu =,,¢+1 v.

Case 2.1|uj; 1| < nFT1. Hence, we havéy;| < n*++1. This implies|u;| = |v;| < n*+¢! by
(b). We setuy1 = vgy1. Note thatv;, = u;,,...,v;,, = u;,, by (b). This implies

Uiy @ Uiy @+ D Uj,, @ Ukl = Vig @Viy @+ QU; & Vg1
for all a.

Case 2.2 uj41| > n*+*1. Hence, we haveu| = |u;| > n*+*1. This implies|v| = |v;| > nFH+1
by (b). We have to choose a worgl, ; with vy, 1| = |v;| andu®ug 1 =4 v@vp 1 for a = n’. This
is possible by Lemma 4.7: Note that- n = n‘*! and thusu =,.,, v. In order to apply Lemma 4.7
we set in addition:’ = ug1, v = vg41, andl’ = V™. This implies

| >t =ptn.nF>nf n.nm=a-n. ||

Hence, Lemma 4.7 can be applied indeed. L]
Recall the definition of the infinite graph™ from (3.1).

Lemma4.9. If (uy,...,u;) =ko (v1,...,v;), then the tupleguy, ..., u) and(vq,. .., v;) satisfy
the same quantifier-free formulas in the grapH.

Proof. By symmetry, it suffices to prove the following two points:

(@) If u; = u; then alsow; = v;.

(b) If u; L), u; for some(a,b) € V' x V then alsov; 0, vj.

Let us first prove (a). W.l.o.g. assume thiat 1 andj = 2. Let2 < i1 < is < --- < i, be those
indices such thau, | = |uz| = |u;, | = -+ = |w;,|. Since(u, ..., ux) =k (v1,...,v;), We get
lv1] = |v2| = |vgy | = - = |, | @anduy @ ug @ Uy @ -+ @ Uy, = V1 D V2 QU @ -+ @ vy, for

a =n > 2. Sinceu; = ug, all symbols that occur i) ® us ® u;, ® --- @ u,,, are of the form
(a,a,---)forsomea € V. Hence, the same has to hold fgre v, @ v;, ® - - - @ v;,, . But this means
thatm = V9.

For point (b), assume first that= b. Thus,u; = u; and|u;|, > 0. By point (a), we already
know thatv; = v;. If i = j, then we can w.l.0.g. assume that j = 1. Let]l < i) <ip < -+ <y,
be those indices such that; | = |u;, | = -+ = |u,,,|. Since(ur,...,u;) =ko (vi,...,v;), We get
o] = |viy | = -+ = v, | @andug @ uj, @ -+ @, =q V1 QUi ® -+ @ v;,, for a =n > 2. Since
luile > 0, the wordu; ® u;, ® --- ® u;,, contains at least one occurrence of a symbol of the form

(a,...). Hence, the same holds for ® v;, ® --- ® v;,,. But this means that; {oa), vy. If i # 4,

then we can argue similarly.
Finally, let us assume that# b. We must have # j. W.l.o.g. assume that= 1 andj = 2. Let

us choose the indices< i; < iy < --- < iy, as for the proof of point (a) above. Singg D), o,

the following holds for the word = u; @ us @ u;, ® - - - @ u;,,: u contains exactly one occurrence of
a symbol of the fornia, b, . . .) and all other symbols in are of the form(c, c, . ..) for c € V. Again,
the same has to be true for ® v2 @ v;, ® - - - ® v;,, (only here it is important that > 2 and not just

n > 1). Henceu; (b, vy, []
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We can now prove Theorem 4.2. Let= Qoxq - - - Qpzy : Y (xo, . . ., x¢) be a first-order formula
of quantifier rank/ + 1 over the signature ab™*, whereQ,, ..., Q, € {V,3} and is quantifier-free.
For0 <i</lletL; = {w € VT | Jw| < n*? +4}. Theorem 3.4 (withH (k,£) = nFT+2 + k),
Lemma 4.8, and 4.9 imply tha™ |= ¢ if and only if

&* | Qo € Lo~ Quae € Ly = (w0, - .., ).
This can be decided on an alternating Turing machine in tine‘*?2 - |p|) with ¢ alternations by

guessing words; € L; either existentially (ifQ); = 3) or universally (ifQ); = V) and then verifying
the statemen (zo, ..., z¢).

5. AN ATIME(22*™  poly(n)) LOWER BOUND

In this section, we will prove that there exists a fixed GTR8hsthat the corresponding ground
tree rewrite graph has aTIME(22"""™ , poly(n))-complete first-order theory. This will be achieved
using a suitable tiling problem. Tiling problems turned tmibe an important tool for proving hardness
and undecidability results in logic, see e.g. [4]. In a fitspswe will prove hardness f@NEXP
(doubly exponential non-deterministic time) in Sectio.5ln Section 5.3, we will finally push the
lower bound toATIME(22°"™ | poly(n)).

5.1. Tiling systems. A tiling systemis a tupleS = (0,H, V), where© is a finite set ofiile types
H C © x © is ahorizontal matching relationandV C © x O is avertical matching relation A
mappingo : [0,k — 1] x [0,k — 1] — © (wherek > 0) is ak-solution for S if for all (z,y) €
[0,k — 1] x [0, k — 1] the following holds:

o ife<k—10(z,y) =0, ando(x + 1,y) = ¢, then(d,0") € H, and

e ify<k—1,0(z,y) =0,ando(z,y + 1) =6, then(6,0") € V.
Let Sol,(S) denote the set of alt-solutions forS. Letw = wg---w,—1 € ©" be a word and
let £ > n. With Sol,(S,w) we denote the set of att € Sol;(S) such thato(z,0) = w, for all
x € [0,n — 1]. For atiling systent we define itg22" x 22") tiling problemas follows:

/

(22" x 22") TILING PROBLEM FOR TILING SYSTEMS = (6, H,V)

INPUT: Awordw € O™,
QUESTION: DoesSoly (S, w) # 0 hold?

The following proposition is folklore, see also [4, 9].

Proposition 5.1. [4, 9] There is some fixed tiling systefig whose(22" x 22") tiling problem is
2NEXP-hard under logspace reductions.
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5.2. Hardnessfor 2NEXP. Let us fix the tiling systent, = (0q, Ho, Y¢) of Proposition 5.1 whose
tiling problem is hard fo2NEXP. We now define a fixed GTRR, = (A, X, R) and prove that the
first-order theory of5(R) is 2NEXP-hard under logspace reductions. We define

Ay = {@,]l,]l]t,]li,@,@Jr,@i},
Ay = O,
Ao = {e}, and
by = {€,7, hyu,ms,my, } U B U Ay.

The set of rewrite rule® is given as follows:

1 X X, X for eachX ¢ Ap,
2 X A, X; for eachX € {1, 0} (this will correspond tanarkinga leaf),
(3) X; NER X; for eachX € {1, 0} (this will correspond teelectinga leaf),
(4) X; s O for eachX € {1,0},
(5) o(V, V) % Q,
(6) 6(X;) — 0(X;) forall 6 € ©9, X € {1,0},
(7) o(V, Xy) — X; for eachX € {1, 0}, and
(8) o(X;,0) N X; for eachX € {1, 0}.
For the rest of this section we figg = &(Ry). Let us fix an inputw = 0y --- 0,1 € ©" of the
(22" x 2%") tiling problem for.S,. Our goal is to compute in logspace frama first-order sentence
over such that
SO|22n (So, w) #* h <~ By lz ©.
For each subsdt C 3, we define—— = User .. The following lemma follows immediately from
Lemma 3.3 (take the formuti(z, y) = /. cr v(7, y)).

Lemma 5.2. Given a subset of actions C ¥ andj € [0,27F1] (in binary) one can compute in
logspace a first-order formul&’ (z, y) such that for allt, ¢’ € Trees4 we have® = I'V(¢,¢) if and

. T \i, -
only ift (—)? ¢’ in &,.

In casel’ = {7} is a singleton, we also write’ (z, y) for the fqrmulal_‘j(x,y) of Lemma 5.2.
Moreover, for subsets;, ..., T, C X andjy, ..., jr € N, we write[l'}* - - - I'/*](x, y) for the formula

k
dxg, ..., 2k : (mo =rAxp=yYyA /\ ng(xi,l,xi)).
=1
Atreet € Trees, is atile treeif t = 0(t’) for somet’ € Trees 4 such that the following holds:
e (€ 0Oy,
e The label of every leaf of is from {0, 1}.
e The distance of every leaf ofto the root oft’ isn + 1.
e Every internal node of is labeled withe.
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Example5.3. Thisis atile tree incase + 1 = 3:

|
o/ \o
< O\ <N
VA NN

Let us fix a tile treet. Note thatt has preciselp”t! = 2.2 leaves. Hence, there is a one-to-one
correspondence betwefh 2"+ — 1] and leaves of by means of their lexicographic ordersnFor
each leaf\ letlex(\) € [0,2""! 1] be the position of among all leaves w.r.t. the lexicographic order
(starting with0). The intention is that represents the-labeled grid elemer(tM, N) < [0,2%" — 1],
where each leak that is a left (resp. right) child represents qHé‘z(l)jth least significant bit of the
2"-bit binary presentation af/ (resp. of N): In case)\ is a left child, thert(\) = O (resp.t(\) = 1)
if and only if the L@Jth least significant bit of\/ equals) (resp.1) and analogously iA is a right
child this corresponds t&. For the tile tree from Example 5.3 we hav®/ =1+ 4+ 8 = 13 and
N =8.

We say a leah of a treet is markedif ¢(\) = X; forsomeX € {O,1}. We say a leah of a tree
tis selectedf t(\) = X; for someX € {O,1}. A marked tile treds a tree that can be obtained from
atile treet by markingeveryleaf of . For the rest of this section, & = 2"+ — (n + 2).

Lemma 5.4. One can compute in logspace a first-order formuoiarked (=) such that for every tree
t € Trees\(0,,1,,0} With precisely2"t! marked leaves we havéd, = marked(t) if and only if the
marked leaves afare the leaves of some (unique) marked tile subtree of

Proof. The idea is to express the following: Whenever we select &tlye2" ! marked leaves, we
can execute from the resulting tree some sequence fromrtgaeige’ﬂ"“*luD{E, r}"*1@,. Let us
explain the intuition behind this. Assume we have seleckadtty one of the2”t! marked leaves of
t, and lett’ be the resulting tree. First, note that after executing dalnmencdﬂ"“*l fromt’, we have
replaced each of the marked leaves/ofvith the symbol®, reaching some tre#’. Second, when
executingu” from ¢’ we have reached, in caseontained a marked tile subtree, some tféehat
has a chain of the following form as a subtree, wh&re {0, 1} andf € ©:

T
/N
A

A

Finally, from¢”" we can now “shrink” this subtree to the tréeX;) by executing some sequence from
{¢,r}"*! followed by executing. Formally, we definenarked(z) as follows:

vy (mye,y) = 322 127 {0} 00y, 2) )
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Note that in this formulay runs over all trees that can be obtained by selecting a mddeddf
x. Basically, in this way we quantify over all marked leavescofNote that the formulanarked(x)
ensures that the marked leavescddre all at the same depth in L]

A grid treeis a treet for which every leaf is inside a subtreeathat is a tile tree.

Lemma 5.5. One can compute in logspace a first-order formgital (z) such that for allt € Trees 4
we have® = grid(t) if and only ift is a grid tree.

Proof. The formulagrid will be a conjunction of the following two statements: (i)egy leaf is either
labeled withO or 1, (ii) for each leaf oft that we can mark via the action;, we can marke™ ! — 1
further leaves reaching some tréavith &, = marked(¢'). Formally,grid(z) is the conjunction of

/\ —a(z, ),
a€Ap\{0,1}
which realizes (i), and the formula

Yy (mT(x,y) — Hz(m?nﬂ_l(y, z) A marked(z))> ,
which realizes (ii). L]

A marked grid treds a tree that can be obtained from a grid ttd®y replacing exactly one tile
subtree oft by some marked tile tree. Aelected grid treés a tree that can be obtained from some
marked grid tree by selectingprecisely onanarked leaf\ of . In that caselex(\) € [0,27+! — 1]
is the lexicographical position of within the marked tile tree.

Lemma5.6. One can compute in logspace for each [1,n + 1] a first-order formula bit(x) such
that for every selected grid treewith selected leak we have that thé" least significant bit ofex(\)
is 1 if and only if & = bit;(¢).

Proof. We define bit(z) = 3y : [2"" ~1ul{l, 7} 1r](x, ). O

Lemma5.7. One can compute for eache {<,=} in logspace a first-order formule,(x, y) such
that for every two selected grid treesandt, with selected leaves; and )\, we haveB = o (1, t2)
if and only iflex(A1) o lex(A2).

Proof. We only treat the case whenequals<; its definition should be self-explanatory:

je[l,n41] 1<i<j
L]

Recall that the uniqgue marked tile subtree of a marked geditrepresents &-labeled grid
element(M, N) € [0,22" — 1] for somef € ©. Therefore, let us defing/(t) = M, N(t) = N,
andOy(t) = 0.

Lemmab5.8. One can compute in logspace first-order formulgs$z), ¢; v (x, 2'), i v (2, 2"), where
6 € ©¢ andi € {0, 1} such that for all marked grid treeisand¢’ the following holds:

(1) &g = pp(t) ifand only ifO¢(t) = 6,

(2) &g = @i m(t,t')ifand only if M (t) + i = M(¢'), and

(3) B = pin(t,t) ifand only if N (t) + i = N(t').

26



Proof. For point (1) we definey(x) as follows:
3y : [mgh™ " Py ) (2, )
For the remaining points (2) and (3), we only give the formplay(x,z’), i.e., we wish to express
that for any two marked grid tre¢sandt’ we have® = 1 1 (¢,¢') ifand only if M (¢)+1 = M(¢').
Let us fix two marked grid treesandt’. Assume we have selected among #i&' marked leaves
of t some leaf\. Recall that\ represents one of tH&" bit positions ofM (¢) if and only if X is aleft
child, otherwise it would represent a bit position/gf¢). Hence we will only be interested in leaves
of t andt’ which are left children. For this sake, let us express thestiected leaf of a selected grid
treez is a left child via the formuldeft(z):
left(z) = 32, 2" (h(z,2') ANU(Z,2"))
Our formulay; y(z, y) is defined as follows:
3o,y (me(@,2") Ame(y, y') A p=(2',y") A Os(2, &) N1 (y', o) Aleft(z’) Adhy Ada) .
Thus, we select a positigne [0, 2™ — 1] that is set td) (resp.1) in the binary representation of (¢)
(resp.M(t")). The formulayy (z,y,2’,y) is defined as

Vz((mi(x, 2) A p<(z,2") Nleft(z)) — 14(z, z)> A

Vz((mi(y, 2) A p<(2,y) Aleft(z)) — O4(z, z)>

It expresses that each bit at some position that is smalierihis set tol (resp. 0) in the binary
representation o/ (¢) (resp. M(t')). The formulay, expresses that the binary representations of
M (t) and M (t') agree on each position that is bigger thafrormally, s (x,y, ', ') is defined as

Vu,v( (my (@, u) Ami(y,v) A o=(u,v) A pe(a’,u) Aleft(u)) — (13 (u, u) < ]li(v,v))> .
L]

We define the formulsol(x) as the conjunction of the following formulas, whenerk(z1, z2) is
an abbreviation fom?""' (21, 23) A marked (z):
e ris agrid tree:
grid(x)
e Whenever we mark two tile subtreesothat represent the same grid element, tieiabels
agree:

oz (mark(z, ) A mark(,2) A o) A o) = A\ (n(0) = () )
[ISCH)

e Whenever we mark a tile subtreeothat corresponds to the grid elemént, N) and M <
22" — 1 there exists some tile subtreeothat corresponds to the grid elemént + 1, N)
and the horizontal matching relation is satisfied:

Vy<(mark(x, y) A Jz(my(y, z) A Os(z, 2) Aleft(z2))) —

Sy (mark(e, ') A () A vV A\ (alo) Apr))
(6,0")eHo
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e Analogously to the previous formula, we can express thateter we mark a tile subtree of
x that corresponds to the grid elemént, N) and N < 22" — 1 there exists some tile subtree
of = that corresponds to the grid elemént/, N + 1) and the vertical matching relation is
satisfied.

Finally we can construct a formula,, (x) that guarantees that grid elemerit0) is labeled by,
(recall thatw = 6y - - - 6,,_1) for eachj € [0,n — 1]:

ﬂyo,---,yn_1< N (mark(z, ;) Ao, (7)) A Vz(mi(yo, 2) — 04(2,2)) A
j€[0,n—1]

N ooy ) A SOO,N(yj—hyj)))
j€[l,n—1]

Our final formulay is defined ag = 3z (sol(x) A ., (x)). It follows by construction that
Solyon (Sp,w) #0 <= &g = .

With Proposition 5.1 we get:

Theorem 5.9. The first-order theory o® is 2NEXP-hard under logspace reductions.

5.3. Pushing hardnessto ATIME(22°*™ | poly(n)). Let us fix a tiling systen = (6, H, V). Given
0,0’ € Soli(S) we sayos’ extendsr vertically if o'(z,0) = o(z,k — 1) for eachz € [0,k — 1]. Let
Soly(S, o) be the set of alb’ € Sol,(S) such that’ extendss vertically. The standard encoding of
Turing machine computations into tilings shows that there fixed tiling systent; = (01, H;,V;)

such that the following problem is hard faTIME(22"*"™ | poly(n)) under logspace reductions.

LINEARLY ALTERNATING (22" x 22") TILING PROBLEM (FOR 1)

INPUT: Awordw = 6y6; --- 0,,_1 € OF, wheren is odd.
QUESTION: Does3o; € Solyon (S1, w)Voy € Solyan (S1,01) - -+ 3oy, € Solgen (S1,0,-1) : true
hold?

The idea is that the quantified solutiosasrepresent subcomputations of an alternating Turing-ma-
chine, where all states in the subcomputation are eithestesdial (if 7 is odd) or universal (ifi
is even). Our definition of vertical extension of solutionsseres that these subcomputations can
be combined into on single computation of the alternatingrijimachine. A similar encoding of
alternating Turing machines by tiling systems can be four{@].

Let &; be the fixed GTRS graph that is obtained fra@ip of Section 5.2 when we replace the
tiling systemS; by S;.

Corollary 5.10. The first-order theory o5, is hard for ATIME(22"""™  poly(n)) under logspace
reductions.

Proof. We recycle the proof presented in Section 5.2. We adapt tineulas constructed in Section
5.2 to the fixed tiling systen$; (instead ofSy). Recall that we can compute in logspace a formula
sol(x) such that for every treewe have thats; = sol(t) if and only if ¢ corresponds to 22" -solution

for Sp. Itis an easy exercise to construct in logspace a forrxtlauch that for any two treesand

t" each satisfyingol we have®; = ext(t,t’) if and only if the solution corresponding tbextends
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that of¢ vertically. We obtain that a word (with » = |w| odd) is a positive instance of the linearly
alternating(2%" x 22") tiling problem if and only if; is a model of the sentence

x4 (sol(x) A o) N Vxo ((sol(wQ) Aext(zy,x2)) — -+ Jxy, (sol(zy) A ext(xn_l,mn))> > .

[

We should remark that hardness faTIME(22*"™ poly(n)) can be also proved using the
method of Compton and Henson [11] (monadic interpretatibadaition on large numbers). The
use of tilings has the advantage of giving an almost geneduagation. On the other hand, the method
of [11] yields completeness under the slightly strongerlingeductions.

6. THE FIRSFORDER THEORY WITH REGULAR UNARY PREDICATES

Fora GTRSR = (A, %, R) and a set of trees C Trees4, we denote with & (RR), L) the structure
that results from the labelled gragi(R) by adding the sef as an additional unary predicate. Note
that if L is aregular set of trees, thé& (R ), L) is a tree automatic structure, and hence has a decidable
first-order theory.

By the following result, ourATIME(22""™  O(n)) upper bound for the first-order theory of a
ground tree rewrite graph does not carry over to ground weeite graphs expanded by a regular
unary predicate.

Theorem 6.1. There exists a fixed GTR®, = (A, X, R) and a fixed regular tree language C
Trees 4 such that the first-order theory ¢&(R2), L) is non-elementary.

Proof sketch The proof idea is an adaption of the proof of Theorem 2 in f@] is hence only shortly
sketched. We reduce from the satisfiability problem for fingter logic over binary words. Binary
words are considered as structures over the signattyte’; , <), whereP, and P; are unary relations
(representing those positions, where the letter @1d 1, respectively), and wher€ is the natural
order relation on positions. The idea is that a ttee Trees4 (WhereAs; = {o} and 4y = {0,1})
corresponds to the unique word oV, 1} that one obtains by simply reading the yield string (the
sequence of node labels when traversing the leaves in gr@pbic order) of. Letyield(¢) denote
the yield string oft.

We translate a given first-order sentegoever the signaturépy, P, <) into a first-order formula
¥ (x) over the signature of(R2), L) such that for every tree € Trees4 we have:yield(t) = ¢ if
and only if(&(Rz2), L) = v(t). Assume that, ..., z, are the variables that occur ¢n Bounding
a variablex; (1 < ¢ < n) of ¢ to a certain position in the worgeld(t) is simulated by labelling the
corresponding leaf of the treeby a chain of unary symbols of length In order to keep the GTRS
R fixed, this chain has to be built up inrewrite steps that are controlled by the formulér). In
order to verify an atomic predicate < z; in the treet one has to check, whether tivabelled node
of ¢ is lexicographically smaller than thelabelled node. To do this using a fixed GTRS, one first
replaces the chain of lengil{resp.,j) that identifies the position to whicky (resp.,z;) is bound by a
special constant (resp.b). Again, this process has to be controlled by the formu(la). Finally, we
can checkr; < x; using the regular set of trees that contain a unigi&belled leaf and a unique
labelled leaf, and the-labelled leaf is lexicographically smaller than th&abelled leaf. This regular
set will be the sef. in the theorem. ]
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7. OPEN PROBLEMS

We proved that the uniform first-order theory of ground trewrite graphs belongs to the com-
plexity classATIME (2™ O(n)) and that there exists a fixed ground tree rewritie graph with a

ATIME(22""™  O(n))-complete first-order theory.

A complexity gap in this context exists for the first-ordeedhy of the one-step rewrite graph of
a semi-Thue system (word rewrite system): It is known t@BX¥PSPACE-hard and decidable but it
is not known to be elementary [26]. One may try to tackle thbfem using techniques similar to
those used in this paper.

An important open problem concerning ground tree rewritgplgrconcerns bisimulation equiv-
alence. It is not known whether the following problem is dedile: Given a ground tree rewrite
systemR and two trees andt, ares andt are bisimilar in the grapi®(R)? For pushdown graphs
this problem is decidable [41] but not elementary, as wasnie shown in [1]. A further question
is the complexity of deciding bisimilarity between a grounge rewrite system and a finite system,
lying betweenPSPACE andcoNEXP [20].
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