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ABSTRACT. The uniform first-order theory of ground tree rewrite graphs is the set of all pairs consisting
of a ground tree rewrite system and a first-order sentence that holds in the graph defined by the ground
tree rewrite system. We prove that the complexity of the uniform first-order theory of ground tree

rewrite graphs is inATIME(22poly(n)

, O(n)). Providing a matching lower bound, we show that there

is some fixed ground tree rewrite graph whose first-order theory is hard forATIME(22poly(n)

, poly(n))
with respect to logspace reductions. Finally, we prove thatthere exists a fixed ground tree rewrite graph
together with a single unary predicate in form of a regular tree language such that the resulting structure
has a non-elementary first-order theory.

1. INTRODUCTION

A ground tree rewrite system is a term rewrite system where rules do not contain variables (neither
on the left-hand side nor on the right-hand side). So, rules replace subtrees by subtrees. Ground tree
rewrite systems were first studied in the term rewriting community [7, 12, 13], where they are also
known as ground term rewrite systems.

Recently, ground tree rewrite systems were also studied in the context of verification of infinite
state systems [30]. The main motivation for this is that ground tree rewrite systems can be seen as a
generalization of pushdown systems. These are a natural abstraction of sequential recursive programs.
Rules of a ground tree rewrite system can be applied concurrently at different positions of a tree.
This allows to model recursive progams with the additional ability to spawn new subthreads that are
hierarchically structured, which in turn may terminate andreturn some values to their parents.

One of the most important and oldest decidability results for ground tree rewrite systems was
shown more than 20 years ago by Dauchet and Tison [13]: The transition graph of a ground tree
rewrite system (called a ground tree rewrite graph in the following) has a decidable first-order theory.
Actually, Dauchet and Tison even showed that the first-ordertheory of a ground tree rewrite graph
extended by the transitive closure of the edge relation is decidable (one also says that first-order logic
with reachability is decidable for ground tree rewrite graphs). The proof of Dauchet and Tison uses
a tree automata construction, which yields a non-elementary algorithm. This leads to the question
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of complexity. While the first-order theory of a ground tree rewrite graph extended by the transitive
closure of the edge relation may have non-elementary complexity (this holds already for the infinite
binary tree, which is a pushdown graph [42]), the precise complexity of the first-order theories of
ground tree rewrite graphs remained open. As the main contribution of this paper we solve this
problem. We prove the following:

• The first-order theory of every ground tree rewrite graph belongs to the complexity class
ATIME(22poly(n)

, O(n)) (doubly exponential alternating time, where the number of alterna-
tions is bounded linearly), wheren is the length of the input formula.

• There exists a fixed ground tree rewrite graph with anATIME(22poly(n)
, poly(n))-complete

first-order theory.

The upper bound ofATIME(22poly(n)
, O(n)) even holds uniformly, which means that the ground tree

rewrite system may be part of the input, i.e.,n is the sum of the length of the input formula and the
length of the description of the ground tree rewrite system.Let us remark that the complexity class
ATIME(22poly(n)

, poly(n)) appears also in other contexts. For instance, Presburger Arithmetic (the
first-order theory of(N,+)) is known to be complete forATIME(22poly(n)

, poly(n)) [2], see [11] for
similar results.

The upper bound ofATIME(22poly(n)
, O(n)) is shown by the method of Ferrante and Rackoff [16].

Basically, the idea is to show the existence of a winning strategy of the duplicator in an Ehrenfeucht-
Fraı̈ssé game, where the duplicator chooses “small” (w.r.t. to a predefined norm) elements. This
method is one of the main tools for proving upper bounds for FO-theories. We divide the upper bound
proof into two steps. In a first step, we will reduce the FO-theory for a ground tree rewrite graph to the
FO-theory for a very simple word rewrite graph, where all word rewrite rules replace one symbol by
another symbol. The alphabet will consist of all trees, whose size is bounded by a singly exponential
function in the input size (hence, the alphabet size is doubly exponential in the input size; this is the
reason for the doubly exponential time bound). Basically, we obtain a word over this alphabet from a
treet by cutting off some upward-closed setC in the tree and taking the resulting sequence of trees.
Intuitively, the setC consists of all nodesu of t such that the subtree rooted inu is “large”. Here,
“large” has to be replaced by a concrete valuem ∈ N such that a sequence ofn rewrite steps applied
to a treet cannot touch a node from the upward-closed setC. Clearly,m depends onn. In our context,
n will be exponential in the input size and so willm. In a second step, we provide an upper bound for
the FO-theory of a word rewrite graph of the above form.

Perhaps it is worth mentioning that for proving our upper bound result one cannot make use of
Gaifman’s locality theorem [18] since the resulting formulas in Gaifman normal form can become
non-elementary in the size of the original first-order formula [14]. An elementary upper bound on
the size of Gaifman normal formulas was shown for structuresof bounded degree in [14]. However,
ground tree rewrite graphs have unbounded degree. This alsothe reason why Hanf’s theorem [23]
does not seem to be of any use for our problem.

For the lower bound, we prove in a first step hardness for2NEXP (doubly exponential nondeter-
ministic time). This is achieved by an encoding of a(22n

×22n
) tiling problem. In this tiling problem,

we are given a wordw of lengthn over some fixed set of tiles, and it is asked, whether this wordcan
be completed to a tiling of an array of size(22n

× 22n
), where the wordw is an initial part of the first

row. There exists a fixed set of tiles, for which this problem is 2NEXP-complete. From this fixed set
of tiles, we construct a fixed ground tree rewrite graph such that the following holds: From a given
wordw of lengthn over the tiles, one can construct (in logspace) a first-orderformula that evaluates
to true in our fixed ground tree rewrite graph if and only if thewordw is a positive instance of the
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(22n
× 22n

) tiling problem. Our construction is inspired by [20], whereit is shown that the model
checking problem for a fragment of the logic EF (consisting of those EF-formulas, where on every
path of the syntax tree at most one EF-operator occurs) over ground tree rewrite graphs is complete
for the classPNEXP. In a second step, we show that our2NEXP lower bound can easily be lifted
to ATIME(22poly(n)

, poly(n)). For this, we have to consider an alternating version of the(22n

× 22n

)
tiling problem.

We conclude the paper with a proof sketch for the following result: There exists a fixed ground
tree rewrite graph together with a single unary predicate inform of a regular tree language such that the
resulting structure has a non-elementary first-order theory. This result is shown by a reduction from
first-order satisfiability of finite binary words, which is non-elementary [42]. It should be noted that
the first-order theory of a pushdown graph extended by regular unary predicates still has an elementary
first-order theory (it is an automatic structure of bounded degree, hence its first-order theory belongs
to 2EXPSPACE by a result from [27]).

A short version of this paper appeared in [22].

2. RELATED WORK

2.1. Other decidability and complexity results for ground tree rewrite systems. Other important
algorithmic problems that are decidable for ground tree rewrite systems are:

• confluence [12, 37], which in fact can be decided in polynomial time [10, 19],
• reachability [7, 15],1 recurrent reachability [30, 31], and recurrent reachability with multiple

regular fairness constraints [44],
• fair termination [43], and
• model checking certain fragments of LTL [45, 44].

The decidability of first-order logic with reachability forground tree rewrite graphs implies that model
checking of the CTL-fragment EF is decidable for ground treerewrite graphs; the precise complexity
was recently shown to be non-elementary [20].

2.2. Pushdown graphs. As remarked above, ground tree rewrite systems generalize pushdown sys-
tems. Muller and Schupp proved that every pushdown graph (the transition graph of a pushdown
system) has a decidable monadic second-order (MSO) theory [36]. MSO extends first-order logic by
the ability to quantify over subsets of the universe. Most temporal logics (e.g. LTL, CTL, modal
µ-calculus) can be translated into MSO and are therefore decidable over pushdown graphs. Precise
complexity results can be found in [5, 36, 49, 50].

Löding proved in [29] that a ground tree rewrite graph has bounded tree width if and only if it is
a pushdown graph.

1Actually, Brainerd [7] showed that a set of trees is regular if and only if it is the set of trees that can be reached from a
single tree via a ground tree rewriting system, where both translations are effective. This generalizes a result of Büchi for
strings.
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2.3. Algorithmic limitations. Ground tree rewrite graphs do not share all the nice algorithmic prop-
erties of pushdown graphs. For instance, the infinite grid iseasily seen to be (embeddable into) a
ground tree rewrite graph, which implies that ground tree rewrite graphs with an undecidable MSO-
theory exist. In fact, most linear-time and branching-timetemporal logics such as LTL and CTL have
undecidable model checking problems over ground tree rewrite graphs (cf. [30, 44]).

Concerning the first-order theory, mild generalizations ofground tree rewrite systems lead to
undecidable first-order theories. Undecidability holds for linear and non-erasing term rewrite systems
[46], right ground Noetherian rewrite systems [33], and linear canonical rewrite systems [48]. In
all these papers, undecidability is shown for fragments of first-order logic with only one quantifier
alternation.

2.4. Formalisms related to ground tree rewrite systems. Several other extensions of pushdown
systems with multithreading capabilities have been considered in [6, 24, 34, 39]. Among these ex-
tensions, the class of process rewrite systems [34], which generalize both Petri nets and pushdown
systems by providing hierarchical structures to threads, seem to have tight connections with ground
tree rewrite systems. Lugiez and Schnoebelen proved decidability of various first-order logics on PA-
processes by using tree-automata techniques [32]. Mayr’s process rewrite systems hierarchy [35] was
recently refined via ground tree rewrite systems [21].

Recently, Lin extended ground-tree rewrite systems with a finite control unit that is acyclic but
with possible self-loops, so called weakly-extended ground tree rewrite systems [28]. It is shown
that reachability, recurrent reachability and (the complement of) model checking deterministic LTL is
NP-complete for this extension.

The class of ground tree rewrite graphs is contained in the class of tree automatic structures
[3], whose FO-theories are (non-elementarily) decidable.In [27], it is shown that (i) for every tree
automatic structure of bounded degree (which means that theGaifman-graph has bounded degree) the
FO-theory belongs to 3EXPTIME and that there is a fixed tree automatic structure of bounded degree
with a 3EXPTIME-complete FO-theory. Note that in general, ground tree rewrite graphs arenot of
bounded degree.

2.5. Applications of the method of Ferrante and Rackoff. Recall that the method of Ferrante and
Rackoff is the main technical tool in our proof that the first-order theory of every ground tree rewrite
graph belongs to the complexity classATIME(22poly(n)

, O(n)). Further applications of this technique
in computer science can be found in [40] (for the theory of queues) and in [25] (for nested pushdown
trees).

3. PRELIMINARIES

By Z we denote theintegersand byN = {0, 1, . . .} the set ofnon-negative integers. For i, j ∈ Z we
define the interval[i, j] = {i, i + 1, . . . , j} and[j] = [0, j].

For an alphabetA (possibly infinite), we denote withA+ = A∗ \ {ε} the set of all non-empty
words overA. The length of the wordw ∈ A∗ is denoted by|w|. ForB ⊆ A, we denote with|w|B
the number of occurrences of symbols fromB in the wordw.

Let f : A → B be a mapping. ForA′ ⊆ A, we denote withf↾A′ : A′ → B the restriction of
f to A′. For setsA,B,C (whereA andB may have a non-empty intersection) and two mappings
f : A→ C andg : B → C, we say thatf andg arecompatibleif f↾(A ∩B) = g↾(A ∩B). Finally,
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for mappingsf : A → C andg : B → C with A ∩ B = ∅, we definef ⊎ g : A ∪ B → C as the
mapping with(f ⊎ g)(a) = f(a) for a ∈ A and(f ⊎ g)(b) = g(b) for b ∈ B.

3.1. Complexity theory. We will deal with alternating complexity classes, see [8, 38] for more de-
tails. An alternating Turing-machineis a nondeterministic Turing-machine, where the set of states
is partitioned into existential and universal states. A configuration with a universal (resp. existential)
state isacceptingif every (resp. some) successor configuration is accepting.An alternationin a com-
putation of an alternating Turing-machine is a transition from a universal state to an existential state
or vice versa. For functionst(n) anda(n) with a(n) ≤ t(n) for all n ≥ 0 let ATIME(t(n), a(n))
denote the class of all problems that can be decided on an alternating Turing-machine in timet(n)
with at mosta(n) alternations. It is known thatATIME(t(n), t(n)) is contained in DSPACE(t(n)) if
t(n) ≥ n [8].

3.2. Labelled graphs. A (directed)graphis a pair(V,→), whereV is a set ofnodesand→ ⊆ V ×V

is a binary relation. Alabelled graphis a tupleG = (V,Σ, {
a
−→| a ∈ Σ}), whereV is a set ofnodes,

Σ is a finite set ofactions, and
a
−→ is a binary relation onV for all a ∈ Σ. We note that (labelled)

graphs may have infinitely many nodes. Foru, v ∈ V , we definedG(u, v) as the length of a shortest
undirected path betweenu andv in the graph(V,

⋃

a∈Σ
a
−→). Forn ∈ N andu ∈ V let Sn(G, u) =

{v ∈ V | dG(u, v) ≤ n} be thesphereof radiusn aroundu. Moreover, foru1, . . . , uk ∈ V let
Sn(G, u1, . . . , uk) =

⋃

1≤i≤k Sn(G, ui). We identifySn(G, u1, . . . , uk) with the substructure ofG
induced by the setSn(G, u1, . . . , uk), where in addition everyui (1 ≤ i ≤ k) is added as a constant.
For two labelled graphsG1 andG2 with node setV1 andV2, respectively, and nodesu1, . . . , uk ∈ V1,
v1, . . . , vk ∈ V2, we will consider isomorphismsf : Sn(G1, u1, . . . , uk) → Sn(G2, v1, . . . , vk). Such
an isomorphism has to mapui to vi. We writeSn(G1, u1, . . . , uk) ∼= Sn(G2, v1, . . . , vk) if there is an
isomorphismf : Sn(G1, u1, . . . , uk) → Sn(G2, v1, . . . , vk).

Lemma 3.1. Let G1,G2 be labelled graphs with the same set of actions and node setsV1 andV2,
respectively. Letu ∈ V k

1 , v ∈ V k
2 , u ∈ V1, and v ∈ V2 such thatu 6∈ S2n+1(G1, u) and

v 6∈ S2n+1(G2, v). Finally, let f : Sn(G1, u) → Sn(G2, v) and f ′ : Sn(G1, u) → Sn(G2, v) be
isomorphisms. Thenf ⊎ f ′ : Sn(G1, u, u) → Sn(G2, v, v) is an isomorphism as well.

Proof. The lemma is obvious, once one realizes that the conditionu 6∈ S2n+1(G1, u) implies that the
spheresSn(G1, u) andSn(G1, u) are disjoint and that there is no edge between the two spheres(and
similarly for the spheresSn(G2, v) andSn(G2, v)).

Later, we have to lift a relation→ on a setA to a larger set. We will denote this new relation
again by→. Two constructions will be needed. Assume that→ is a binary relation on a setA and let
A ⊆ B. We lift → to the setB+ of non-empty words overB as follows: For allu, v ∈ B+, we have
u → v if and only if there arex, y ∈ B∗ anda, b ∈ A such thata → b andu = xay, v = xby. Note
that this implies|u| = |v|. The second construction lifts→ ⊆ A×A fromA toN×A as follows: For
a, b ∈ A andm,n ∈ N let (m,a) → (n, b) if and only ifm = n anda → b. Note that(N × A,→)
consists ofℵ0 many disjoint copies of(A,→). Moreover,((A ∪ {$})+ \ {$}+,→) (where$ 6∈ A is
a new symbol) is isomorphic to(N×A+,→).

Example 3.2. For the relation→ = {(a, b), (b, a)} the corresponding relation on{a, b}+ is shown
in Figure 1. The relation→ lifted toN× {a, b} is simply the disjoint union of all 2-cycles

(a, n) (b, n)
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a

b

aa

ab bb

ba aaa

aab abb

aba

baa

bab bbb

bba

. . .

Figure 1: A finite portion of the relation→ from Example 3.2 extended to{a, b}+.

for all n ∈ N.

For a labelled graphG = (V,Σ, {
a
−→| a ∈ Σ}), we define the labelled graph

G
+ = (V +,Σ, {

a
−→| a ∈ Σ}). (3.1)

Note that by the above definition,
a
−→ is lifted to a relation onV +.

3.3. First-order logic. We will consider first-order logic with equality over labelled graphs. Thus,
for a setΣ of actions, we have for eacha ∈ Σ a binary relation symbola(x, y) in our signature.
The meaning ofa(x, y) is of coursex

a
−→ y. If ϕ(x1, . . . , xn) is a first-order formula with free

variablesx1, . . . , xn, G = (V,Σ, {
a
−→| a ∈ Σ}) is a labelled graph, andv1, . . . , vn ∈ V , then we write

G |= ϕ(v1, . . . , vn) if ϕ evaluates to true inG, when variablexi is instantiated byvi (1 ≤ i ≤ n). The
first-order theoryof a labelled transition graphG is the set of all first-order sentences (i.e., first-order
formulas without free variables)ϕ with G |= ϕ. In the final Section 6, we will consider the first-order
theory of a labelled graph with an additional unary predicate. Thequantifier rankof a first-order
formula is the maximal number of nested quantifiers inϕ. We will need the following well known
lemma, which goes back to work of Fischer and Rabin [17].

Lemma 3.3. Let Σ be a set of actions. Given a first-order formulaθ(x, y) of quantifier rankqr(θ)
and a binary-coded integerj (let m be the number of1-bits in the binary representation ofj), one
can compute in logspace a first-order formulaθj(x, y) of quantifier rankO(log(j) + qr(θ)) and size
O(m · log(j) + m · |θ|) such that for every labelled graphG = (V,Σ, {

a
−→| a ∈ Σ}) and all nodes

u, v ∈ V we have:G |= θj(u, v) if and only if there is a directed path of lengthj from u to v in the
graph(V, {(s, t) | G |= θ(s, t)}).

Proof. Before we defineθj(x, y), let us inductively define for eachk ∈ N a formulaψk(x, y) such
that for allu, v ∈ V we haveG |= ψk(u, v) if and only if there is a directed path of length2k from u
to v in the graph(V, {(s, t) | G |= θ(s, t)}). We define

ψ0(x, y) = θ(x, y), and

ψk(x, y) = ∃z∀u, v

(

(

(u = x ∧ v = z) ∨ (u = z ∧ v = y)
)

→ ψk−1(u, v)

)

for k ≥ 1.

Note that the size ofψk(x, y) isO(k + |θ|) and the quantifier rank is3k + qr(θ).
Let U ⊆ N be the set of all positions of the binary representation ofj whose bit is set to1, i.e.,

j =
∑

i∈U 2i. Let m = |U | and leth1, . . . , hm be some enumeration ofU . We can now define
θj(x, y) as

θj(x, y) = ∃x1, . . . , xm+1

(

x1 = x ∧ xm+1 = y ∧
∧

i∈[1,m]

ψhi
(xi, xi+1)

)

.
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From the binary representation ofj, we can easily computeθj(x, y). Moreover, the size ofθj(x, y) is
bounded byO(m · log(j) +m · |θ|) and the quantifier rank is bounded byO(log(j) + qr(θ)).

One of most successful techniques for proving upper bounds for the complexity of first-order
theories is the method of Ferrante and Rackoff [16]. We will apply this method in Section 4.2. The
following result is shown in [16].2

Theorem 3.4. Let G be a labelled graph, and letV be the set of nodes ofG. Assume that for every
nodev ∈ V we have a norm|v| ∈ N (in our application,V will be a set of words and the norm
of a word will be its length). LetVn = {v ∈ V | |v| ≤ n}. Moreover, fork, ℓ ≥ 0, let ≡k,ℓ be
an equivalence relation on the setV k and letH : N2 → N be a function such that the following
properties hold for allk, ℓ ∈ N, u, v ∈ V k:

(a) If u ≡k,0 v, thenu andv satisfy the same quantifier-free formulas in the structureG.
(b) If u ≡k,ℓ v andℓ > 0, then for allu ∈ V there existsv ∈ VH(k,ℓ) with (u, u) ≡k+1,ℓ−1 (v, v).

Then, for every quantifier-free formulaψ(x0, . . . , xℓ) and all quantifiersQ0, . . . , Qℓ ∈ {∃,∀} we
have thatG |= Q0x0 · · ·Qℓxℓ : ψ(x0, . . . , xℓ) if and only if

G |= Q0x0 ∈ VH(0,ℓ)Q1x1 ∈ VH(1,ℓ−1) · · ·Qℓxℓ ∈ VH(ℓ,0) : ψ(x0, . . . , xℓ).

We will use Theorem 3.4 in Section 4.2, where the functionH(k, ℓ) will be exponential ink+ ℓ.

3.4. Trees. Let � denote the prefix order onN∗, i.e.,x � y for x, y ∈ N∗ if there is somez ∈ N∗

such thaty = xz. A setD ⊆ N∗ is calledprefix-closedif for all x, y ∈ N∗, x � y ∈ D implies
x ∈ D. A ranked alphabetis a collection of finite and pairwise disjoint alphabetsA = (Ai)i∈[k] for
somek ≥ 0 such thatA0 6= ∅. For simplicity we identifyA with

⋃

i∈[k]Ai. A ranked tree(over the
ranked alphabetA) is a mappingt : Dt → A, whereDt ⊆ [1, k]∗ satisfies the following:

• Dt is non-empty, finite, and prefix-closed, and
• for eachx ∈ Dt with t(x) ∈ Ai we havex1, . . . , xi ∈ Dt andxj 6∈ Dt for eachj > i.

We say thatDt is thedomainof t and call its elementsnodes. In caset(x) ∈ A2 for some nodex,
thenx1 is theleft childandx2 theright child of x. A leafof t is a nodex with t(x) ∈ A0. An internal
nodeof t is a node, which is not a leaf. We also refer toε ∈ Dt as theroot of t. By TreesA we denote
the set of all ranked trees over the ranked alphabetA. Definesize(t) as the number of nodes in a tree
t. It is easy to show that the number of all trees fromTreesA of size at mostn is bounded by|A|n.

Example 3.5. AssumeA0 = {a, b}, A1 = {g}, andA2 = {f}. Figure 2 shows a trees ∈ TreesA

with size(s) = 11. The domainDs of this tree is

{ε, 1, 2, 11, 12, 21, 22, 111, 121, 1211, 221}.

Let t be a ranked tree and letx be a node oft. For eachx ∈ [1, k]∗ we definexDt = {xy ∈
[1, k]∗ | y ∈ Dt} andx−1Dt = {y ∈ [1, k]∗ | xy ∈ Dt}. By t↓x we denote thesubtree oft with root
x, i.e., the tree with domainDt↓x = x−1Dt defined ast↓x(y) = t(xy). Let s, t ∈ TreesA and letx be
a node oft. We definet[x/s] to be the tree that is obtained by replacingt↓x in t by s, more formally
Dt[x/s] = (Dt \ xDt↓x) ∪ xDs with

t[x/s](y) =

{

t(y) if y ∈ Dt \ xDt↓x

s(z) if y = xz with z ∈ Ds.

2The actual statement in [16] is stronger, but for our purposethe weaker statement in Theorem 3.4 is sufficient.
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Figure 3: A chaint

For two ranked treess andt, let diff(s, t) = |Ds \ Dt|. Thusdiff(s, t) is the number of nodes that
belong to the trees but not to the treet.

Example 3.6. Consider the trees from Figure 2 and the treet from Figure 3. We have

Ds \Dt = {11, 12, 22, 111, 121, 1211, 221}

and hencediff(s, t) = 7.

LetC be a prefix-closed subset ofDt. We define the string of subtreest\C as follows: IfC = ∅,
thent \ C = t. If C 6= ∅, thent \ C = t↓v1 · · · t↓vm , wherev1, . . . , vm is a list of all nodes from
((C · N) ∩ Dt) \ C in lexicographic order. Intuitively, we remove from the tree t the prefix-closed
subsetC and list all remaining maximal subtrees. Forn ∈ N and a treet we define the prefix-closed
subsetup(t, n) ⊆ Dt as

up(t, n) = {v ∈ Dt | size(t↓v) > n}.

Note thatt \ up(t, n) is a list of all maximal subtrees of size at mostn in t, listed in lexicographic
order.

Example 3.7. Consider the trees from Figure 2. Then

C = {ε, 1, 2, 12} ⊆ Ds

is prefix-closed. We have
s \ C = g(a), g(b), a, g(a)

(here, we denote trees by their corresponding term expressions, and we separate the trees in the se-
quences \ C with the symbol “,”). Moreover, we haveC = up(s, 2).
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A tree t ∈ TreesA is achain if Dt 6= {ε} and for every internal nodeu ∈ Dt, there is at most
one childui of u such thatui is internal. Hence, a chaint has a unique maximal (with respect to the
prefix relation) internal nodemax(t) ∈ N∗. Note that a chain consists of at least two nodes.

Example 3.8. The treet in Figure 3 is a chain withmax(t) = 2111.

Lemma 3.9. LetA be a ranked alphabet and letranks = {m ∈ N | m ≥ 1, Am 6= ∅}. Then, for all
n ≥ 1, the following are equivalent:

(a) There is a chaint ∈ TreesA with exactlyn leaves.
(b) There is a treet ∈ TreesA with exactlyn leaves.
(c) There exist numbersdm ∈ N (for eachm ∈ ranks) such thatn = 1 +

∑

m∈ranks dm · (m− 1).

Proof. Implication (a) ⇒ (b) is trivial. Now, assume (b) and lett ∈ TreesA has exactlyn leaves.
We show (c) by induction on the size oft. We distinguish two cases. The casen = 1 is clear; set
dm = 0 for all m ∈ ranks. Now, assume thatt hasn ≥ 2 leaves. Then, there must exist an internal
nodeu ∈ Dt such that all children ofu are leaves. Let1 ≤ a ≤ n be the rank of the symbolt(u). By
replacingu by a leaf (labelled with an arbitrary constant fromA0), we get a strictly smaller tree with
n − (a − 1) many leaves (note thata = 1 is possible). Sincea ≤ n we haven − (a − 1) ≥ 1. By
induction, there existdm ∈ N (m ∈ ranks) such thatn− (a− 1) = 1 +

∑

m∈M dm · (m− 1). Thus,
we haven = 1 + (da + 1) · (a− 1) +

∑

m∈ranks\{a} dm · (m− 1).
Finally, for the implication(c) ⇒ (a), assume thatn = 1+

∑

m∈ranks dm · (m−1). Take a chain
t that consists of

∑

m∈ranks dm internal nodes,dm of which are labelled with a symbol of rankm. All
other nodes are leaves. It is a simple observation thatt has exactlyn leaves.

The following lemma follows directly from Lemma 3.9.

Lemma 3.10. Let A be a ranked alphabet and letranks = {m ∈ N | m ≥ 1, Am 6= ∅}. Then,
for every treet ∈ TreesA and every prefix-closed subsetC of Dt the following holds, wheren is
the length of the stringt \ C: There exist numbersdm ∈ N (for eachm ∈ ranks) such thatn =
1 +

∑

m∈ranks dm · (m− 1).

3.5. Ground tree rewrite graphs. A ground tree rewrite system (GTRS)is tupleR = (A,Σ, R),
whereA is a ranked alphabet,Σ is finite set of actions, andR ⊆ TreesA × Σ × TreesA is a finite set
of rewrite rules. A rule(s, a, s′) is also written ass

a
7−→ s′. Theground tree rewrite graphdefined by

R is
G(R) = (TreesA,Σ, {

a
−→| a ∈ Σ}),

where for eacha ∈ Σ, we havet
a

−→ t′ if and only if there exist a rule(s
a

7−→ s′) ∈ R andx ∈ Dt

such thatt↓x = s andt′ = t[x/s′].

Example 3.11. We define a GTRSR = (A,Σ, R) as follows. LetA0 = {a, b}, A1 = {g}, and
A2 = {f}, Σ = {a, b}, and letR consist of the following two rules:

a
a

7−→ g(a), b
b

7−→ g(b).

Take a treet(a1, a2, . . . , an), wherea1, . . . , an ∈ {a, b}, that does not contain a subtree of the form
g(a) or g(b). Then, the (weakly) connected component ofG(R) that containst(a1, a2, . . . , an) con-
sists of all trees of the formt(gi1(a1), g

i2(a2), . . . , g
in(an)) for i1, . . . , in ≥ 0. These trees form an

n-dimensional grid, where edges in dimension1 ≤ j ≤ k are labelled withaj . Figure 4 shows the
connected component ofG(R) that containsf(a, b).
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f(a,b) f(a,g(b)) f(a,g(g(b)))

f(g(a),b) f(g(a),g(b)) f(g(a),g(g(b)))

f(g(g(a)),b) f(g(g(a)),g(b)) f(g(g(a)),g(g(b)))

b

b

b

b

b

b

a a a

a a a

Figure 4: A finite part of the graphG(R)

The next two lemmas are obvious:

Lemma 3.12. LetR = (A,Σ, R) be a GTRS and letr be the maximal size of a tree that appears in
R. Lets andt be ranked trees such thatdG(R)(s, t) ≤ n. Thensize(t) ≤ size(s) + r · n.

Lemma 3.13. LetR = (A,Σ, R) be a GTRS and letr be the maximal size of a tree that appears in
R. Lets andt be ranked trees such thatdiff(s, t) > r · n. ThendG(R)(s, t) > n.

Recall the definition of the graphG+ from (3.1).

Lemma 3.14. LetR = (A,Σ, R) be a GTRS and letr be the maximal size of a tree that appears in
R. Let t be a ranked tree,n ∈ N, and letC ⊆ up(t, r · n) be prefix-closed. Then we have

Sn(G(R), t) ∼= Sn(G(R)+, t \ C).

Proof. Let t \ C = t1 · · · tm. Hence, there is a trees with m leaves such thatt results froms by
replacing theith leaf of s by ti (1 ≤ i ≤ m), let us writet = s[t1, t2, . . . , tm] for this. Recall that the
subtree rooted in a node fromC ⊆ up(t, r · n) has size strictly larger thanr · n. Therefore, a node
fromC cannot be accessed by doing at mostn rewrite steps. Hence, every treet′ ∈ Sn(G(R), t) can
be written (uniquely) ast′ = s[t′1, t

′
2, . . . , t

′
m]. Moreover, the mappingt′ 7→ t′1t

′
2 · · · t

′
m defines an

isomorphism fromSn(G(R), t) to Sn(G(R)+, t \ C).

Remark 3.15. Note that if the wordw ∈ Trees+A results from the stringt \ C by permuting the trees
in the string, then we still haveSn(G(R), t) ∼= Sn(G(R)+, w).

The main goal of this paper is to study the complexity of the following set that we call theuniform
first-order theory of ground tree rewrite graphs:

{(R, ϕ) | R = (A,Σ, R) is a GTRS,ϕ is an FO-sentence over the signature ofG(R),G(R) |= ϕ}.

4. AN ATIME(22poly(n)
, O(n)) UPPER BOUND

In this section we will prove the following result:
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Theorem 4.1. The uniform first-order theory of ground tree rewrite graphsbelongs to the complexity
classATIME(22poly(n)

, O(n)).

It suffices to prove Theorem 4.1 for the case that the underlying ranked alphabetA contains a
symbol of rank at least two. A ground tree rewrite graph, where all symbols have rank at most 1
is in fact a suffix rewrite graph on words. Such a graph is first-order interpretable in a full|Γ|-ary
treeΓ∗ (with Γ finite), where the defining first-order formulas can be easilycomputed from the suffix
rewrite system. Finally, the first-order theory of a full tree Γ∗ (with |Γ| ≥ 2) is complete for the class
ATIME(2O(n), O(n)) (under log-lin reductions) [11, 47].

The proof of Theorem 4.1 will be divided into two steps. In a first step, we will reduce the FO-
theory for a given ground tree rewrite graph to the FO-theoryfor a very simple word rewrite graph of
the formG+, whereG is a finite labelled graph. Note that ifV is the set of nodes ofG, thenV + is
the set of nodes ofG+. Moreover, every edge inG+ replaces a single symbol in a word by another
symbol. In our reduction, the size of the setV will be doubly exponential in the input size (which
is the size of the input formula plus the size of the input GTRS). In a second step, we will solve the
FO-theory of a simple word structureG+ on an alternating Turing machine. More precisely, we will
show the following result:

Theorem 4.2. There exists an alternating Turing-machineM , which accepts precisely those pairs
(G, ϕ), whereG is a finite labelled graph andϕ is an FO-sentence over the signature ofG with
G+ |= ϕ. Moreover,M runs in timeO(nℓ+1 · |ϕ|), wheren is the number of nodes ofG andℓ is the
quantifier rank ofϕ. Finally, the number of alternations is bounded byO(ℓ).

We prove Theorem 4.2 in Section 4.2. Together with our first reduction, Theorem 4.2 yields
Theorem 4.1.

4.1. Proof of Theorem 4.1. In this section, we will prove Theorem 4.1. LetR = (A,Σ, R) be a
GTRS over the ranked alphabetA and letr be the maximal size of a tree that appears inR. Let
G = G(R) and letϕ be an FO-sentence of quantifier rankℓ+ 1 over the signature ofG. We want to
check, whetherG |= ϕ. Define the sets

ranks = {m ∈ N | m ≥ 1, Am 6= ∅},

M = {1 +
∑

m∈ranks

dm · (m− 1) | dm ∈ N for m ∈ ranks}.

Note that by Lemma 3.9, we haven ∈ M if and only if there exists a tree (or chain)t ∈ TreesA with
exactlyn leaves. Also note thatM = N \ {0} in caseA2 6= ∅. Let

p = max(ranks) ≥ 2

denote the maximal rank of a symbol fromA. We define a function

int : M → N ∪ {∞}

as follows: Letm ∈ M . If A1 6= ∅ (i.e., there exists a unary symbol), then we setint(m) = ∞.
If A1 = ∅, then let int(m) be the maximal number of internal nodes in a treet ∈ TreesA with
exactlym leaves (this maximum exists ifA1 = ∅; in fact int(m) ≤ m − 1). The intuition behind
settingint(m) = ∞ in caseA1 6= ∅ is that there exist arbitrarily large trees withm leaves. Note that
int(1) = 0.

Lemma 4.3. For everym ∈M we haveint(m) ≥ m−1
p−1 .
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Proof. It suffices to show the lemma for the caseA1 = ∅. In this case, the lemma can be shown by
induction onm. The casem = 1 is clear. Letm ∈ M \ {1} and lett ∈ TreesA be a tree withm
leaves andint(m) many internal nodes. Letu ∈ Dt be an internal node such that all children ofu are
leaves. Lett(u) ∈ Aq with q ≥ 2. If we replaceu by a leaf, we obtain a tree withint(m) − 1 many
internal nodes andm− q+1 ∈M many leaves. We must haveint(m− q+1) = int(m)− 1 (if there
would be a tree withm− q+ 1 leaves and more thanint(m)− 1 many internal nodes, then we would
obtain a tree withm leaves and more thanint(m) many internal nodes by replacing an arbitrary leaf
by a node withq children). Moreover, by induction (note thatq ≥ 2), we haveint(m− q+1) ≥ m−q

p−1 .

Hence, we getint(m) ≥ m−q
p−1 + 1 = m−q+p−1

p−1 ≥ m−1
p−1 (sincep ≥ q).

Lemma 4.4. Assume thatA1 = ∅. For everym ∈ M there exists a chain withm leaves andint(m)
many internal nodes.

Proof. Letm ∈ M . By definition, there exists a treet ∈ TreesA with m leaves andint(m) internal
nodes. It is easy to restructuret into a chain so that the number of leaves and the number of internal
nodes is not changed. More precisely, take a treet = f(t1, . . . , tn) (in term notation) withm leaves
andint(m) internal nodes, which is not a chain. By induction, we can assume that everyti (1 ≤ i ≤ n)
is either a chain or the constanta ∈ A0 (for some arbitrarily chosena ∈ A0). Sincet is not a chain
there exist1 ≤ i < j ≤ n such thatti and tj are chains. Choose an arbitrary childx of the the
maximal internal nodemax(ti) of the chainti; hencex is a leaf ofti. Take the tree

t′ = f(t1, . . . , ti−1, ti[x/tj ], ti+1, . . . , tj−1, a, tj+1, . . . , tn).

This tree has the same number of leaves and internal nodes ast. Continuing this way, we finally obtain
a chain.

For numbers1 ≤ i ≤ j let

T [i, j] = {t ∈ TreesA | i ≤ size(t) ≤ j}.

For0 ≤ i ≤ ℓ let

σ(i) = ℓ · r · 7 · 4i ·
(

(p− 1) · r · 4i + 1
)

+ p · r · 4i ≤ r2 · p · 2O(ℓ). (4.1)

Note that we have
σ(i+ 1) ≥ σ(i) + p · r · 3 · 4i ≥ σ(i) + r · 3 · 4i (4.2)

for all 0 ≤ i ≤ ℓ. Let
U = T [1, σ(ℓ) + r · p · 4ℓ].

Moreover, for every0 ≤ i ≤ ℓ let

Ui = T [1, σ(i)] ⊆ U,

Vi = T [1, r · 4i] ⊆ U, (4.3)

Wi = {α(u1, . . . , uq) | q ≥ 1, α ∈ Aq, u1, . . . , uq ∈ Vi} \ Vi ⊆ U. (4.4)

Note thatsize(t) ≤ r · p · 4i + 1 for all t ∈ Wi andVi ∩Wi = ∅. We consider the setU as a finite
alphabet and the setsUi, Vi, andWi as subalphabets. Note that

|U | ≤ |A|σ(ℓ)+r·p·4ℓ

. (4.5)

Define the language
Z = {w ∈ U+ | |w| ∈M} (4.6)

over the alphabetU . Note thatZ = U+ in caseA2 6= ∅. On the set(N×Z)∪U we define a labelled
graphS1 with label setΣ as follows: Take an actionσ ∈ Σ. By our general lifting constructions from
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Section 3.2, the binary relation
σ
−→ on TreesA is implicitly lifted to a binary relation onTrees+A andN× Trees+A. Since(N× Z) ∩U = ∅,

σ
−→ can be viewed as a binary relation on(N× Z) ∪ U ; simply

take the disjoint union of the relations on(N× Z) andU . Finally, we define theΣ-labelled graph

S1 = ((N× Z) ∪ U, Σ, {
σ
−→| σ ∈ Σ}). (4.7)

For a wordw = u1u2 · · · un ∈ U∗ with u1, . . . , un ∈ U we define

||w|| =

n
∑

i=1

size(ui).

We define the sets

Zi = {w ∈ V ∗
i WiV

∗
i ∩ Z | ||w|| + int(|w|) > σ(i)}, (4.8)

Li = (N× Zi) ∪ Ui.

Note thatZi = V ∗
i WiV

∗
i ∩Z in caseA1 6= ∅ (clearly, we setn+∞ = ∞ for every numbern). Assume

that the first-order sentenceϕ is of the formQℓxℓ · · · Q1x1 Q0x0 : ψ, whereQ0, . . . , Qℓ ∈ {∀,∃}
andψ is quantifier-free. For0 ≤ i ≤ ℓ− 1 and elementssi+1, . . . , sℓ ∈ (N×Z)∪U let us define the
set

Li(si+1, . . . , sℓ) = Li ∪ S3·4i(S1, si+1, . . . , sℓ).

We define a first-order sentenceϕ1 (with quantifiers relativized to the setsLi(si+1, . . . , sℓ)) over the
signature ofS1 as

ϕ1 = Qℓxℓ ∈ Lℓ Qℓ−1xℓ−1 ∈ Lℓ−1(xℓ) · · · Q0x0 ∈ L0(x1, . . . , xℓ) : ψ. (4.9)

We want to show thatG |= ϕ if and only if S1 |= ϕ1. For this, we need the following lemma, which
is the main technical contribution in this section. The reader might skip the proof at first reading.

Lemma 4.5. Assume that

• 0 ≤ i ≤ ℓ,
• s = (si+1, . . . , sℓ) ∈ ((N × Z) ∪ U)ℓ−i with sj ∈ Lj ∪ S3·4j (S1, sj+1, . . . , sℓ) for all
j ∈ [i+ 1, ℓ],

• t = (ti+1, . . . , tℓ) ∈ Treesℓ−i
A , and

• f : S4i+1(S1, s) → S4i+1(G, t) is an isomorphism such thatf↾S4i+1(S1, sj) is the identity
for all j ∈ [i+ 1, ℓ] with tj ∈ Ui+1 or sj ∈ Ui+1.

Then, the following holds:

(a) For all ti ∈ TreesA there existssi ∈ Li ∪ S3·4i(S1, s) and an isomorphismg : S4i(S1, si, s) →
S4i(G, ti, t) such thatf andg are compatible3 andg↾S4i(S1, sj) is the identity for allj ∈ [i, ℓ]
with tj ∈ Ui or sj ∈ Ui.

(b) For all si ∈ Li ∪ S3·4i(S1, s) there existsti ∈ TreesA and an isomorphismg : S4i(S1, si, s) →
S4i(G, ti, t) such thatf andg are compatible andg↾S4i(S1, sj) is the identity for allj ∈ [i, ℓ]
with tj ∈ Ui or sj ∈ Ui.

Before we prove the lemma, let us provide some intuition. Forcase (a) we will basically distin-
guish two cases: In caseti is “close” to some tree in the tuplet, then the simulatingsi can safely be
chosen asti itself. In caseti is “far” to all trees int, we distinguish two cases: Either the size ofti
exceedsσ(i) from (4.1) or not. If|ti| > σ(i), thensi will be chosen as a pair from{n}×Zi for some
fresh numbern that does not appear as a first component of any element ins, and where the second

3Recall the definition of compatible functions from the beginning of Section 3.
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component ofsi consists basically ofti \C for some prefix-closed subsetC of ti’s nodes. Intuitively,
this means thatsi does not have to be “too big” in order to simulateti: only “small” subtrees ofti
have to be accounted for. Lemma 3.14 will be crucial. In case|ti| ≤ σ(i), we can prove that we can
setsi = ti ∈ Ui. For case (b) we can proceed similarly, but the main crux is that for each element
si ∈ N × Zi we can build a treeti ∈ TreesA such that the spheres of radius4i aroundsi andti are
isomorphic. For building the latter trees, we have to distinguish the case whenA1 6= ∅ and the case
whenA1 = ∅.

Proof. Let f : S4i+1(S1, s) → S4i+1(G, t) be an isomorphism such thatf↾S4i+1(S1, sj) is the
identity for all i + 1 ≤ j ≤ ℓ with tj ∈ Ui+1 or sj ∈ Ui+1. Let us first prove statement (a). Let
ti ∈ TreesA. We distinguish two cases:

Case 1.ti ∈ S3·4i(G, t). Note that this implies thatti belongs to the range of the isomorphismf and
that

S4i(G, ti, t) ⊆ S4i+1(G, t).

Then, we setsi = f−1(ti) ∈ S3·4i(S1, s). We defineg as the restriction off to the setS4i(S1, si, s) ⊆
S4i+1(S1, s). Now, assume thatti ∈ Ui, i.e.,size(ti) ≤ σ(i). We have to show thatf↾S4i(S1, si) is
the identity. Lettj (i+ 1 ≤ j ≤ ℓ) such thatdG(ti, tj) ≤ 3 · 4i. With Lemma 3.12 it follows

size(tj) ≤ size(ti) + r · 3 · 4i ≤ σ(i) + r · 3 · 4i
(4.2)
≤ σ(i+ 1).

Hence,tj ∈ Ui+1 andf↾S4i+1(S1, sj) is the identity. SincedS1(si, sj) = dG(ti, tj) ≤ 3 · 4i, we
haveS4i(S1, si) ⊆ S4i+1(S1, sj). It follows thatf↾S4i(S1, si) is the identity. Ifsi ∈ Ui, then we
can argue analogously.

Case 2.ti 6∈ S3·4i(G, t). We will find si ∈ Li and an isomorphismf ′ : S4i(S1, si) → S4i(G, ti) such
thatsi 6∈ S3·4i(S1, s). Then, Lemma 3.1 implies thatg = (f↾S4i(S1, s))⊎f

′ is an isomorphism from
S4i(S1, si, s) to S4i(G, ti, t), which is compatible withf . Moreover, we will show that ifti ∈ Ui or
si ∈ Ui, thenf ′ is the identity.

In order to findsi, let ti\up(ti, r ·4
i) = u1 · · · um. Recall that the latter string is the lexicographic

order of all maximal subtrees ofti whose size is at mostr · 4i. Hence,size(uj) ≤ r · 4i for eachj,
i.e.,uj ∈ Vi (see (4.3)).

Case 2.1.size(ti) > σ(i). We must haveti 6= u1, because otherwisesize(ti) ≤ r · 4i ≤ σ(i), which
is a contradiction. Therefore, there must exist1 ≤ j ≤ m, a symbolα ∈ A of rank q ≥ 1, and a
prefix-closed subsetC ⊆ up(ti, r · 4

i) such thatα(uj , . . . , uj+q−1) ∈Wi (see (4.4)) and

ti \ C = u1 · · · uj−1α(uj , . . . , uj+q−1)uj+q · · · um.

Let w = ti \ C. By Lemma 3.10, we have|w| ∈ M . By the definition of the mappingint, we have
||w|| + int(|w|) ≥ size(ti) and hence||w|| + int(|w|) > σ(i) by assumption. Thus, we getw ∈ Zi by
definition ofZi in (4.8). Choose a numbern ∈ N such thatn does not appear as a first component of
a pair from{si+1, . . . , sℓ} ∩ (N× Z). Finally, we set

si = (n,w) ∈ N× Zi ⊆ Li.

Due to the choice ofn, we havesi 6∈ Sρ(S1, s) for all ρ. Moreover, with Lemma 3.14 we get
S4i(S1, si) ∼= S4i(G, ti). Finally, size(ti) > σ(i), i.e.,ti 6∈ Ui, andsi 6∈ U .

Case 2.2.size(ti) ≤ σ(i), i.e., ti ∈ Ui. We setsi = ti ∈ Ui. Note thatS4i(G, ti) ⊆ U , which
impliesS4i(S1, si) = S4i(G, ti). Assume thatsi ∈ S3·4i(S1, s). We will deduce a contradiction.
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Let i+ 1 ≤ j ≤ ℓ such thatdS1(si, sj) ≤ 3 · 4i. Sincesi ∈ U , we must havesj ∈ U as well (there is
no path inS1 between the setsU andN× Z). Moreover, with Lemma 3.12 we get

size(sj) ≤ size(si) + r · 3 · 4i ≤ σ(i) + r · 3 · 4i
(4.2)
≤ σ(i+ 1),

i.e., sj ∈ Ui+1. This implies thatf↾S4i+1(S1, sj) is the identity. Hence,ti ∈ S3·4i(G, tj), a con-
tradiction. We can finally choose forf ′ the identity isomorphism onS4i(S1, si) = S4i(G, ti). This
proves (a).

Let us now prove (b). Letsi ∈ Li ∪ S3·4i(S1, s). Again, we distinguish two cases.

Case 1.si ∈ S3·4i(S1, s). This implies

S4i(S1, si, s) ⊆ S4i+1(S1, s).

We setti = f(si) ∈ S3·4i(G, t). We can conclude as in Case 1 for the proof of point (a) above.

Case 2. si 6∈ S3·4i(S1, s). Hence,si ∈ Li. We will find ti ∈ TreesA and an isomorphismf ′ :
S4i(S1, si) → S4i(G, ti) such thatti 6∈ S3·4i(G, t). Then, Lemma 3.1 implies that the mapping
g = (f↾S4i(S1, s)) ⊎ f

′ is an isomorphism fromS4i(S1, si, s) to S4i(G, ti, t), which is compatible
with f . Moreover, we will show that ifti ∈ Ui or si ∈ Ui, thenf ′ is the identity.

Case 2.1. si ∈ Ui ⊆ TreesA. We setti = si ∈ Ui, which impliesS4i(G, ti) ⊆ U . Thus,
S4i(S1, si) = S4i(G, ti). Assume thatti ∈ S3·4i(G, t). We will deduce a contradiction. Let
i+ 1 ≤ j ≤ ℓ such thatdG(ti, tj) ≤ 3 · 4i. Lemma 3.12 implies

size(tj) ≤ size(ti) + r · 3 · 4i ≤ σ(i) + r · 3 · 4i
(4.2)
≤ σ(i+ 1).

This implies thatf↾S4i+1(S1, sj) is the identity. Hence,si ∈ S3·4i(S1, sj), a contradiction. We can
finally choose forf ′ the identity isomorphism onS4i(S1, si) = S4i(G, ti).

Case 2.2.si ∈ N×Zi. Letsi = (n, u1 · · · um) with u1, . . . , um ∈ Vi∪Wi,m ∈M , and||u1 · · · um||+
int(m) > σ(i). There is exactly one1 ≤ j ≤ m with uj ∈ Wi. Let uj = α(v1, . . . , vq) with q ≥ 1,
α ∈ Aq, andv1, . . . , vq ∈ Vi. Define the string

w = u1 · · · uj−1v1 · · · vquj+1 · · · um (4.10)

of lengthm+ q − 1. Sincem ∈M , we also havem+ q − 1 ∈M .

Case 2.2.1.A1 6= ∅. Then, we can choose forti a tree with the following properties:

• ti \ up(ti, r · 4i) = w. For this, we connect all treesu1, . . . , um to one tree using a chain
of symbols of rank at least 2, starting fromuj ∈ Wi. Sincem ∈ M , this is possible by
Lemma 4.4 (applied to the ranked alphabetA \A1).

• ti 6∈ S3·4i(G, t) andsize(ti) > σ(i). This can be enforced by adding a long enough chain of
unary symbols to the root.

With Lemma 3.14, the first point impliesS4i(S1, si) ∼= S4i(G, ti). Moreover, sincesize(ti) > σ(i),
we haveti 6∈ Ui.

Case 2.2.2.A1 = ∅ and thusint(m) <∞. Note that||w|| = ||u1 · · · um|| − 1, i.e.,

||w|| + int(m) = ||u1 · · · um|| + int(m) − 1 ≥ σ(i).

Every tree in the stringw has size at mostr · 4i. Hence, we have||w|| ≤ (m+ q − 1) · r · 4i. We get

(m+ q − 1) · r · 4i + int(m) ≥ σ(i).

15



Moreover, sinceint(m) ≥ m−1
p−1 by Lemma 4.3, we havem + q − 1 ≤ int(m) · (p − 1) + q ≤

int(m) · (p− 1) + p. We get

(int(m) · (p− 1) + p) · r · 4i + int(m) ≥ σ(i).

Solving this inequality forint(m) yields

int(m) ≥
σ(i) − p · r · 4i

(p − 1) · r · 4i + 1
.

Plugging in the definition ofσ(i) from (4.1) yields

int(m) ≥ ℓ · r · 7 · 4i. (4.11)

We now defineℓ+ 1 different treest′1, . . . , t
′
ℓ+1 as follows.

We first fix a sequenceα1, . . . , αint(m) of symbols fromA \A0 such that that every chain, where
thejth internal node is labelled withαj has exactlym leaves. By Lemma 4.4 such a sequence exists.
In the following, we consider chains withint(m) + 1 many internal nodes such that the following
hold:

• Thejth internal node (1 ≤ j ≤ int(m)) is labelled withαj and the maximal internal node is
labelled withα ∈ Aq (thus, such a chain hasm+ q − 1 leaves).

• Every internal node belongs to{1, 2}∗ (thus, every internal node, which is not the root, is
either the first or the second child of its parent node).

• All leaves in the chain are labelled with some fixed constant2 ∈ A0.

This means that such a chain is uniquely determined by its maximal internal nodeu = max(t) ∈
{1, 2}int(m). We writet = chain(u).

Let u, v ∈ {1, 2}int(m) such thatu = xay andv = xbz with x, y, z ∈ {1, 2}∗, a, b ∈ {1, 2},
a 6= b. Definediff(u, v) = |y|+1 (= |z|+1). Recall also the definition of thediff-value for two trees
from Section 3.4. Then, we have

diff(chain(u), chain(v)) > diff(u, v). (4.12)

In fact,diff(chain(u), chain(v)) ≥ 2 · diff(u, v) holds.
Sinceint(m) ≥ ℓ · r · 7 · 4i by (4.11), we can findℓ+ 1 stringsw1, . . . , wℓ+1 ∈ {1, 2}int(m) such

that for allk 6= k′ we have
diff(wk, wk′) ≥ r · 7 · 4i. (4.13)

We may for instance set

wk = 1int(m)−ℓ·r·7·4i

1(k−1)·r·7·4i

2(ℓ−k+1)·r·7·4i

.

Let us define the chainck = chain(wk) for all 1 ≤ k ≤ ℓ+ 1. Hence, (4.12) and (4.13) imply

diff(ck, ck′) > r · 7 · 4i (4.14)

for all k 6= k′. Moreover, every chainck has exactlym+ q − 1 leaves. Finally, the treet′k is obtained
from the chainck as follows: We replace theq children of the maximal internal nodemax(ck) (which
is labelled withα ∈ Aq) by v1, . . . , vq (in this order). All otherm− 1 leaves are replaced by the trees
u1, . . . , uj−1, uj+1, . . . , um (the order does not matter). It follows that the stringt′k \ up(t′k, r · 4

i) is
a permutation of the stringw from (4.10). With Lemma 3.14 and Remark 3.15 this ensures that

S4i(S1, si) ∼= S4i(G, t′k)

for all 1 ≤ k ≤ ℓ+ 1. Moreover, since each of the treesu1, . . . , uj−1, v1, . . . , vq, uj+1, . . . , um ∈ Vi

has size at mostr · 4i, the number of nodes in the subtree oft′k rooted at a leaf ofck may grow by at
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mostr · 4i, when we replace the leaf by one of the treesu1, . . . , uj−1, v1, . . . , vq, uj+1, . . . , um. This
implies

diff(t′k, t
′
k′) ≥ diff(ck, ck′) − r · 4i

(4.14)
> r · 6 · 4i,

providedk 6= k′. Hence, Lemma 3.13 implies

dG(t′k, t
′
k′) > 6 · 4i (4.15)

for all k 6= k′. We claim that there is at least one1 ≤ k ≤ ℓ+ 1 such thatt′k 6∈ S3·4i(G, t). In order
to obtain a contradiction, assume that for each1 ≤ k ≤ ℓ + 1 there exists someth (i + 1 ≤ h ≤ ℓ)
such thatdG(t′k, th) ≤ 3 · 4i. Since there are onlyℓ − i ≤ ℓ such treesth, the pigeon hole principle
implies that there existk 6= k′ andh with dG(t′k, th) ≤ 3 · 4i anddG(t′k′ , th) ≤ 3 · 4i. Hence,
dG(t′k, t

′
k′) ≤ 6 · 4i, which contradicts (4.15). We finally setti = t′k, wherek is chosen such that

t′k 6∈ S3·4i(G, t). Finally, note thatsize(ti) = ||u1 · · · um|| + int(m) > σ(i) (i.e., ti 6∈ Ui) andsi 6∈ U .
This concludes the proof of the lemma.

Lemma 4.5 allows us to prove the following lemma:

Lemma 4.6. Assume that

• −1 ≤ i ≤ ℓ,
• s = (si+1, . . . , sℓ) ∈ ((N×Z)∪U)ℓ−i with sj ∈ Lj∪S3·4j (sj+1, . . . , sℓ) for all j ∈ [i+1, ℓ],
• t = (ti+1, . . . , tℓ) ∈ Treesℓ−i

A , and
• f : S4i+1(S1, s) → S4i+1(G, t) is an isomorphism such thatf↾S4i+1(S1, sj) is the identity

for all j ∈ [i+ 1, ℓ] with tj ∈ Ui+1 or sj ∈ Ui+1.

Then, for every quantifier-free first-order formulaψ over the signature ofG and allQ0, . . . , Qi ∈
{∀,∃} we have

S1 |= Qixi ∈ Li(s) · · ·Q0x0 ∈ L0(x1, . . . , xi, s) : ψ(x0, . . . , xi, s)

⇐⇒

G |= Qixi · · ·Q0x0 : ψ(x0, . . . , xi, t).

Proof. The lemma can be shown by induction oni, starting withi = −1. For the induction base
(i = −1), note that the existence of the isomorphismf ensures thats andt satisfy the same quantifier-
free formulas. The induction step uses Lemma 4.5 and the classical back-and-forth argument from the
proof of the Ehrenfeucht-Fraı̈ssé-Theorem.

Settingi = ℓ in Lemma 4.6, it followsG |= ϕ if and only if S1 |= ϕ1, whereϕ1 is from (4.9).
For the remainder of the poof of Theorem 4.1, we proceed as follows: We simplify the sentence

ϕ1 (which is not an ordinary first-order sentence due to the additional constraints for the variables
x0, . . . , xℓ) and the structureS1 further, so that we can finally apply Theorem 4.2. In a first step
(Step 1 below), we eliminate in the formulaϕ1 the relativation of the variablesxi to the spheres
S3·4i(S1, xi+1, . . . , xℓ) ⊆ Li(xi+1, . . . , xℓ). Then, the structureS1 will be freplaced by an isomor-
phic structureS3 (using an intermediate isomorphic copyS2). These is done in Step 2 and Step 3
below. The structureS3 will be almost of the formT+ for a finite labelled graphT (these are the
structures appearing in Theorem 4.2). The only difference is that the universe ofS3 is a regular lan-
guage of the form∆∗Θ∆∗ (for finite alphabets∆ andΘ) instead of the set of all non-empty finite
words (as it is the case forT+). Also the constraint setsLi ⊆ Li(xi+1, . . . , xℓ) from S1 will be
mapped to simple regular languages inS3. We finally transformS3 into a structureS4 = T+ by
enlarging the finite alphabet over which words fromS3 are defined (Step 4).
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Step 1.Recall that quantifiers inϕ1 are relativized to the sets

Li(xi+1, . . . , xℓ) = Li ∪ S3·4i(S1, xi+1, . . . , xℓ).

Note thatxi ∈ S3·4i(S1, xi+1, . . . , xℓ) means that
∨ℓ

j=i+1 dS1(xi, xj) ≤ 3 · 4i holds. By Lemma 3.3
we can find an equivalent first-order formula of sizeO((ℓ − i) · i + (ℓ − i) · |Σ|) ≤ O(ℓ2 + ℓ · |Σ|)
and quantifier rankO(i) ≤ O(ℓ) (we take the formulaθ(x, y) = (x = y ∨

∨

σ∈Σ σ(x, y) ∨ σ(y, x))

in Lemma 3.3; note that the binary representation of3 · 4i has only 2 1-bits). After replacing the
constraintsxi ∈ S3·4i(S1, xi+1, . . . , xℓ) for 1 ≤ i ≤ ℓ, the resulting equivalent sentence has size
|ϕ| +O(ℓ3 + ℓ2 · |Σ|) and quantifier rankO(ℓ).

Step 2.It remains to eliminate constraints of the formxi ∈ Li = (N× Zi) ∪ Ui. In order to do this,
we will change the labelled graphS1 to a labelled graph of the formT+ for a finite labelled graphT.
The basic idea will be to change the alphbetU by taking words over ofU of some bounded length as
the new symbols; the resulting alphabet will be the setU ′ ∪ U ′′ below.

In the following, we assume thatA1 = ∅ (and henceint(m) < ∞ for all m); the caseA1 6= ∅ is
the simpler one.

In order to cope with the length constraint|w| ∈ M in the definition of the setZi from (4.8), we
define for0 ≤ i ≤ ℓ the sets

U ′ = {w ∈ U+ | |w| + 1 ∈ ranks},

V ′
i = {w ∈ V +

i | |w| + 1 ∈ ranks} ⊆ U ′.

We have

|U ′| ≤ (|U | + 1)p−1
(4.5)
≤ (|A| + 1)(p−1)·(σ(ℓ)+p·r·4ℓ)

(4.1)
≤ |A|2

O(ℓ)p2·r2
. (4.16)

Moreover, for0 ≤ i ≤ ℓ let us defineW ′
i as the set of all minimal words (with respect to the factor

relation on words)w ∈ V ∗
i WiV

∗
i with |w| ∈M (and hencew ∈ Z by (4.6)) and||w||+int(|w|) > σ(i)

(and hencew ∈ Zi by (4.8)). It follows that for such a wordw we have

||w|| + int(|w|) − (p− 1) · r · 4i − 1 ≤ σ(i).

Since|w| ≤ ||w|| andint(|w|) ≥ |w|−1
p−1 by Lemma 4.3, we have

|w| +
|w| − 1

p− 1
− (p− 1) · r · 4i − 1 ≤ σ(i)

or equivalently

|w| ≤
p− 1

p
· σ(i) +

(p− 1)2

p
· r · 4i + 1.

Hence, for allw ∈W ′
i we have

|w| ≤ σ(i) + p · r · 4i + 1. (4.17)

Let us set

γ = σ(ℓ) + p · r · 4ℓ + 1
(4.1)
≤ p · r2 · 2O(ℓ) + p · r · 4ℓ + 1 = p · r2 · 2O(ℓ), (4.18)

which is an upper bound for the right-hand side of (4.17). Note thatγ is exponential in our input size.
Let

U ′′ = {w ∈ Z | |w| ≤ γ},

which contains all alphabetsW ′
i (0 ≤ i ≤ ℓ) as well asU . We have

|U ′′| ≤ (|U | + 1)γ
(4.5)
≤ (|A| + 1)γ·(σ(ℓ)+p·r·4ℓ)

(4.1)
≤ |A|2

O(ℓ)p2·r4
(4.19)
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which is doubly exponential in our input size.
For the further discussion, it is important that elements ofU ′ ∪U ′′ are viewed as single symbols.

For a wordw ∈ (U ′ ∪ U ′′)∗ we can define an expanded wordexp(w) ∈ U∗ in the natural way (e.g.
exp((a)(abba)(b)(ba)) = aabbabba). Note that for every wordw ∈ U ′∗U ′′U ′∗ we have|exp(w)| ∈
M (i.e., exp(w) ∈ Z). Vice versa, for every wordw ∈ Z there exists at least one wordw′ ∈
U ′∗U ′′U ′∗ with exp(w′) = w. Moreover, for every wordw ∈ V ′

i
∗W ′

iV
′
i
∗ we have|exp(w)| ∈M and

||exp(w)|| + int(|exp(w)|) > σ(i). Vice versa, ifw ∈ V ∗
i WiV

∗
i ∩ Z with ||w|| + int(|w|) > σ(i) (i.e.,

w ∈ Zi), then there exists at least one wordw′ ∈ V ′
i
∗W ′

iV
′
i
∗ with exp(w′) = w. This allows us to

replace the constraint setZi = {w ∈ V ∗
i WiV

∗
i ∩ Z | ||w|| + int(|w|) > σ(i)} by the setV ′

i
∗W ′

iV
′
i
∗.

Note that for a wordw ∈ Zi there may exist several wordsw′ ∈ V ′
i
∗W ′

iV
′
i
∗ with exp(w′) = w. This

is not a problem: by taking the setN×Zi in the structureS1, we basically takeℵ0 many copies ofw.
By our lifting construction from Section 3.2, every binary relation

σ
−→ (σ ∈ Σ) on TreesA is

defined onU ′ ∪ U ′′ ⊆ Trees+A and hence on(N × U ′∗U ′′U ′∗) ∪ U . Using this, it follows that our

labelled graphS1 = ((N× Z) ∪ U, Σ, {
σ
−→| σ ∈ Σ}) is isomorphic to the labelled graph

S2 = ((N× U ′∗U ′′U ′∗) ∪ U, Σ, {
σ
−→| σ ∈ Σ}).

The isomorphism maps the constraint setLi = (N× Zi) ∪ Ui to (N× V ′
i
∗W ′

iV
′
i
∗) ∪ Ui.

Step 3.In order to get rid of the direct product withN in N × V ′
i
∗W ′

iV
′
i
∗ we add a new symbol$ to

the alphabetU ′ ∪ U ′′. We lift the relations
σ
−→ (σ ∈ Σ) from U ′′∗ to (U ′′ ∪ {$})∗ in the standard way

($ does not occur in the left-hand and right-hand sides of the relations
σ
−→). Then, the labelled graph

S2 (and henceS1) is isomorphic to the graph

S3 = ((U ′ ∪ {$})∗U ′′(U ′ ∪ {$})∗ ∪ U, Σ, {
σ
−→| σ ∈ Σ}).

The isomorphism mapsU identically toU and the setN × {w} (for w ∈ U ′∗U ′′U ′∗) is mapped
bijectively onto the set of those words from(U ′ ∪ {$})∗U ′′(U ′ ∪ {$})∗ \ U , whose projection onto
the subalphabetU ′′ isw. Hence, the constraint setN× V ′

i
∗W ′

iV
′
i
∗ is mapped to the set

(V ′
i ∪ {$})∗W ′

i (V
′
i ∪ {$})∗ \ U. (4.20)

Step 4.In order to express in first-order logic that a word belongs tothe above constaint set (4.20), we
introduce another symbol#. Hence, our final alphabet is

Γ = U ′ ∪ U ′′ ∪ {$,#}.

With (4.16) and (4.19), the size ofΓ can be estimated as

|Γ| = 2 + |U ′| + |U ′′| ≤ |A|2
O(ℓ)p2·r4

. (4.21)

Next, we define a finite labelled graphT = (Γ,Σ′, {
a
−→| a ∈ Σ′}) with node setΓ as follows. The set

of actions is
Σ′ = Σ ∪ Γ.

The set of transitions is defined as follows. By our lifting construction from Section 3.2, every binary
relation

σ
−→ (σ ∈ Σ) on TreesA is defined onΓ ($ and# do not occur in the left-hand and right-hand

sides of the relations
σ
−→). Moreover, fora ∈ Γ we define the relation

a
−→ = {(a,#)}.

Finally, using the construction from Section 3.2, we define the labelled graph

S4 = T
+.
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We will construct a sentenceϕ4 over the signature ofS4 such thatS1 |= ϕ1 if and only if S4 |= ϕ4.
Using the edge relations

a
−→ (a ∈ Γ), we can expressx ∈ Ω+ (for Ω ⊆ Γ) as

∧

a∈Γ\Ω

¬∃y : a(x, y).

Moreover, a constraint|x|Ω ≥ k (saying that there are at leastk occurrences of symbols fromΩ in the
wordx) can be expressed as

∃y1, . . . , yk

(

∧

j 6=j′

yj 6= yj′ ∧
∧

j∈[1,k]

∨

a∈Ω

a(x, yi)

)

.

This allows us to express e.g.|x|Ω = k or x ∈ Ω. Hence, a constraintx ∈ Li = (N× Zi) ∪ Ui in ϕ1

can be replaced by the formula
(

x ∈ (V ′
i ∪W ′

i ∪ {$})+ ∧ |x|W ′
i

= 1 ∧ x 6∈ U
)

∨ x ∈ Ui

of sizeO(|Γ|). (for the correctness of this formula it is important thatV ′
i ∩W

′
i = ∅ which follows from

Vi ∩Wi = ∅). The size of the resulting sentenceϕ4 can be bounded by|ϕ|+O(ℓ3 + ℓ2 · |Σ|+ ℓ · |Γ|)
and its quantifier rank is stillO(ℓ).

We can now conclude the proof of Theorem 4.1. Recall that our overall goal is to check, whether
G |= ϕ holds. By the above constructions, this is equivalent toS4 |= ϕ4. By Theorem 4.2, this can
be decided on an alternating Turing machine in time

O(|Γ|O(ℓ) · |ϕ4|) ≤ poly(|Γ|O(ℓ) + |ϕ| + |Σ|)

usingO(ℓ) ≤ O(|ϕ|) many alternations. Recall from (4.21) that|Γ| ≤ |A|2
O(ℓ)p2·r4

. Hence, we can
bound the running time bypoly(|A|2

O(ℓ)p2·r4
+ |ϕ| + |Σ|), which is doubly exponential in the input

size. This concludes the proof of Theorem 4.1.

4.2. Proof of Theorem 4.2. Let us fix a finite labelled graphG = (V,Σ, {
σ
−→| σ ∈ Σ}) and let

n = |V |. We want to decide the first-order theory ofG+. For this we can w.l.o.g. assume thatn ≥ 2.
Moreover, we can assume thatΣ = V × V and that the edge froma ∈ V to b ∈ V is labelled
with (a, b) (the original edge relations are definable by disjunctions in this new graph). Our decision
procedure for the first-order theory ofG+ uses the method of Ferrante and Rackoff from Section 3.3
for the functionH(k, ℓ) = nk+ℓ+2 + k. For this, we define a suitable equivalence relation≡k,ℓ

on k-tuples overV ∗. The definition of this equivalence relation uses a simpler equivalence relation
≡d defined on words, which corresponds to counting and comparing symbols up to the threshold
d. The main combinatorial lemma for the equivalence≡k,ℓ is Lemma 4.8. It rougly says that if
u ≡k,ℓ v andu ∈ V ∗, then one can always find a “short” wordv such that(u, u) ≡k,ℓ (v, v). This
corresponds to point (b) in Theorem 3.4. To apply the method of Ferrante and Rackoff, we also have
to show thatu ≡k,0 v implies thatu andv satisfy the same quantifer-free formulas inG+ (point (a)
in Theorem 3.4). This is stated in Lemma 4.9.

Recall that for a wordu ∈ A∗ over a finite alphabetA anda ∈ A, |u|a denotes the number of
occurrences ofa in u. Ford ≥ 1 andu, v ∈ A∗, we writeu ≡d v if for all a ∈ A the following holds:

• |u|a = |v|a or
• (|u|a ≥ d and|v|a ≥ d)
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Note that≡d is an equivalence relation and thatu ≡d+1 v impliesu ≡d v.
LetA andB be finite alphabets. For two wordsu = a1a2 · · · ak ∈ A∗ andv = b1b2 · · · bk ∈ B∗

of the same lengthk we define the convolutionu⊗ v = (a1, b1)(a2, b2) · · · (ak, bk) ∈ (A×B)k.

Lemma 4.7. Letα ∈ N, u, v ∈ Γ∗ (whereΓ is a finite alphabet),u′ ∈ V ∗ with |u| = |u′|, u ≡α·n v,
and |v| ≥ α · n · |Γ|. Then there existsv′ ∈ V ∗ with |v| = |v′| andu⊗ u′ ≡α v ⊗ v′.

Proof. Let a ∈ Γ andb ∈ V . Consider the valuesma,b = |u⊗ u′|(a,b) andna = |v|a. Finding a word
v′ ∈ V ∗ such that|v′| = |v| andu ⊗ u′ ≡α v ⊗ v′ is equivalent to finding numbersna,b (which will
be |v ⊗ v′|(a,b)) such that

•
∑

b∈V na,b = na for all a ∈ Γ and
• ma,b = na,b or (ma,b ≥ α andna,b ≥ α) for all a ∈ Γ, b ∈ V .

Note thatu ≡α·n v implies
∑

b∈V

ma,b = na or (
∑

b∈V

ma,b ≥ α · n andna ≥ α · n)

for all a ∈ Γ. Also recall that|V | = n. We choose the numbersna,b as follows, wherea ∈ Γ:

• If
∑

b∈V ma,b = na, then we setna,b = ma,b for all b ∈ V .
• If

∑

b∈V ma,b ≥ α · n andna ≥ α · n, then (since|V | = n) there must be at least oneb ∈ V
withma,b ≥ α. We first setna,b = ma,b for all b ∈ V withma,b < α. For all remainingb ∈ V
(which satisfyma,b ≥ α) we setna,b to some value≥ α such that the total sum

∑

b∈V na,b

becomesna. Sincena ≥ α · n this is possible.

For all k, ℓ ∈ N we define an equivalence relation≡k,ℓ on the set(V ∗)k of k-tuples of words
overV as follows: Let(u1, . . . , uk), (v1, . . . , vk) ∈ (V ∗)k. Then(u1, . . . , uk) ≡k,ℓ (v1, . . . , vk) if
and only if the following conditions hold:

(a) For all1 ≤ i, j ≤ k, |ui| = |uj| if and only if |vi| = |vj |.
(b) For all1 ≤ i ≤ k, ui = vi or |ui| ≥ nk+ℓ+1 and|vi| ≥ nk+ℓ+1.
(c) For all1 ≤ i ≤ k the following holds: Let1 ≤ i1 < i2 · · · < im ≤ k be exactly those indices

such that|ui| = |ui1 | = · · · = |uim |. Hence,|vi| = |vi1 | = · · · = |vim | due to (a). Then
ui1 ⊗ ui2 ⊗ · · · ⊗ uim ≡α vi1 ⊗ vi2 ⊗ · · · ⊗ vim , whereα = nℓ+1.

Lemma 4.8. Letk ≥ 0, ℓ > 0, (u1, . . . , uk) ≡k,ℓ (v1, . . . , vk), and letuk+1 ∈ V ∗. Then there exists
vk+1 ∈ V ∗ such that|vk+1| ≤ nk+ℓ+1 + k and(u1, . . . , uk, uk+1) ≡k+1,ℓ−1 (v1, . . . , vk, vk+1).

Proof. Assume that(u1, . . . , uk) ≡k,ℓ (v1, . . . , vk) and letuk+1 ∈ V ∗. We distinguish several cases:

Case 1.|uk+1| 6= |ui| for all 1 ≤ i ≤ k.

Case 1.1.|uk+1| < nk+ℓ+1. Then, we must have|uk+1| 6= |vi| for all 1 ≤ i ≤ k (if |vi| = |uk+1| <
nk+ℓ+1, then we must haveui = vi by (b) and hence|uk+1| = |ui|). We setvk+1 = uk+1.

Case 1.2.|uk+1| ≥ nk+ℓ+1. Choose a numberλ with nk+ℓ+1 ≤ λ ≤ nk+ℓ+1 + k and|vi| 6= λ for
all 1 ≤ i ≤ k. We will find a wordvk+1 such that|vk+1| = λ anduk+1 ≡α vk+1 for α = nℓ. Since
|uk+1| ≥ nk+ℓ+1, there exists a symbola ∈ V such that|uk+1|a ≥ nk+ℓ ≥ nℓ = α. If λ ≥ |uk+1|,
then we simply increase the number of occurrences ofa in uk+1 until a word of lengthλ is reached.
If λ < |uk+1|, then|uk+1| > nℓ+1. Hence, there even existsa ∈ V with |uk+1|a > nℓ. We remove
one of the occurrences ofa in uk+1. We can repeat this step until a word of lengthλ is reached.
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Case 2.|uk+1| = |ui| for some1 ≤ i ≤ k. Let 1 ≤ i1 < i2 · · · < im ≤ k be exactly those indices
such that|uk+1| = |ui1 | = · · · = |uim |. Letu = ui1 ⊗ui2 ⊗ · · · ⊗uim andv = vi1 ⊗ vi2 ⊗ · · · ⊗ vim .
Point (c) impliesu ≡nℓ+1 v.

Case 2.1.|uk+1| < nk+ℓ+1. Hence, we have|ui| < nk+ℓ+1. This implies|ui| = |vi| < nk+ℓ+1 by
(b). We setuk+1 = vk+1. Note thatvi1 = ui1 , . . . , vim = uim by (b). This implies

ui1 ⊗ ui2 ⊗ · · · ⊗ uim ⊗ uk+1 ≡α vi1 ⊗ vi2 ⊗ · · · ⊗ vim ⊗ vk+1

for all α.

Case 2.2.|uk+1| ≥ nk+ℓ+1. Hence, we have|u| = |ui| ≥ nk+ℓ+1. This implies|v| = |vi| ≥ nk+ℓ+1

by (b). We have to choose a wordvk+1 with |vk+1| = |vi| andu⊗uk+1 ≡α v⊗vk+1 for α = nℓ. This
is possible by Lemma 4.7: Note thatα · n = nℓ+1 and thusu ≡α·n v. In order to apply Lemma 4.7
we set in additionu′ = uk+1, v′ = vk+1, andΓ = V m. This implies

|v| ≥ nk+ℓ+1 = nℓ · n · nk ≥ nℓ · n · nm = α · n · |Γ|.

Hence, Lemma 4.7 can be applied indeed.

Recall the definition of the infinite graphG+ from (3.1).

Lemma 4.9. If (u1, . . . , uk) ≡k,0 (v1, . . . , vk), then the tuples(u1, . . . , uk) and (v1, . . . , vk) satisfy
the same quantifier-free formulas in the graphG+.

Proof. By symmetry, it suffices to prove the following two points:

(a) If ui = uj then alsovi = vj .

(b) If ui
(a,b)
−−−→ uj for some(a, b) ∈ V × V then alsovi

(a,b)
−−−→ vj .

Let us first prove (a). W.l.o.g. assume thati = 1 andj = 2. Let 2 < i1 < i2 < · · · < im be those
indices such that|u1| = |u2| = |ui1 | = · · · = |uim |. Since(u1, . . . , uk) ≡k,0 (v1, . . . , vk), we get
|v1| = |v2| = |vi1 | = · · · = |vim | andu1 ⊗ u2 ⊗ ui1 ⊗ · · · ⊗ uim ≡α v1 ⊗ v2 ⊗ vi1 ⊗ · · · ⊗ vim for
α = n ≥ 2. Sinceu1 = u2, all symbols that occur inu1 ⊗ u2 ⊗ ui1 ⊗ · · · ⊗ uim are of the form
(a, a, · · · ) for somea ∈ V . Hence, the same has to hold forv1 ⊗ v2 ⊗ vi1 ⊗ · · · ⊗ vim. But this means
thatv1 = v2.

For point (b), assume first thata = b. Thus,ui = uj and |ui|a > 0. By point (a), we already
know thatvi = vj . If i = j, then we can w.l.o.g. assume thati = j = 1. Let 1 < i1 < i2 < · · · < im
be those indices such that|u1| = |ui1 | = · · · = |uim |. Since(u1, . . . , uk) ≡k,0 (v1, . . . , vk), we get
|v1| = |vi1 | = · · · = |vim | andu1 ⊗ ui1 ⊗ · · · ⊗ uim ≡α v1 ⊗ vi1 ⊗ · · · ⊗ vim for α = n ≥ 2. Since
|u1|a > 0, the wordu1 ⊗ ui1 ⊗ · · · ⊗ uim contains at least one occurrence of a symbol of the form

(a, . . .). Hence, the same holds forv1 ⊗ vi1 ⊗ · · · ⊗ vim . But this means thatv1
(a,a)
−−−→ v1. If i 6= j,

then we can argue similarly.
Finally, let us assume thata 6= b. We must havei 6= j. W.l.o.g. assume thati = 1 andj = 2. Let

us choose the indices2 < i1 < i2 < · · · < im as for the proof of point (a) above. Sinceu1
(a,b)
−−−→ u2,

the following holds for the wordu = u1 ⊗u2 ⊗ui1 ⊗· · ·⊗uim: u contains exactly one occurrence of
a symbol of the form(a, b, . . .) and all other symbols inu are of the form(c, c, . . .) for c ∈ V . Again,
the same has to be true forv1 ⊗ v2 ⊗ vi1 ⊗ · · · ⊗ vim (only here it is important thatn ≥ 2 and not just

n ≥ 1). Hence,v1
(a,b)
−−−→ v2.
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We can now prove Theorem 4.2. Letϕ = Q0x0 · · ·Qℓxℓ : ψ(x0, . . . , xℓ) be a first-order formula
of quantifier rankℓ+1 over the signature ofG+, whereQ0, . . . , Qℓ ∈ {∀,∃} andψ is quantifier-free.
For 0 ≤ i ≤ ℓ let Li = {w ∈ V + | |w| ≤ nℓ+2 + i}. Theorem 3.4 (withH(k, ℓ) = nk+ℓ+2 + k),
Lemma 4.8, and 4.9 imply thatG+ |= ϕ if and only if

G
+ |= Q1x0 ∈ L0 · · ·Qℓxℓ ∈ Lℓ : ψ(x0, . . . , xℓ).

This can be decided on an alternating Turing machine in timeO(nℓ+2 · |ϕ|) with ℓ alternations by
guessing wordsvi ∈ Li either existentially (ifQi = ∃) or universally (ifQi = ∀) and then verifying
the statementψ(x0, . . . , xℓ).

5. AN ATIME(22poly(n)
, poly(n)) LOWER BOUND

In this section, we will prove that there exists a fixed GTRS such that the corresponding ground
tree rewrite graph has anATIME(22poly(n)

, poly(n))-complete first-order theory. This will be achieved
using a suitable tiling problem. Tiling problems turned outto be an important tool for proving hardness
and undecidability results in logic, see e.g. [4]. In a first step we will prove hardness for2NEXP

(doubly exponential non-deterministic time) in Section 5.2. In Section 5.3, we will finally push the
lower bound toATIME(22poly(n)

, poly(n)).

5.1. Tiling systems. A tiling systemis a tupleS = (Θ,H,V), whereΘ is a finite set oftile types,H ⊆ Θ × Θ is a horizontal matching relation, andV ⊆ Θ × Θ is a vertical matching relation. A
mappingσ : [0, k − 1] × [0, k − 1] → Θ (wherek ≥ 0) is a k-solution forS if for all (x, y) ∈
[0, k − 1] × [0, k − 1] the following holds:

• if x < k − 1, σ(x, y) = θ, andσ(x+ 1, y) = θ′, then(θ, θ′) ∈ H, and
• if y < k − 1, σ(x, y) = θ, andσ(x, y + 1) = θ′, then(θ, θ′) ∈ V.

Let Solk(S) denote the set of allk-solutions forS. Let w = w0 · · ·wn−1 ∈ Θn be a word and
let k ≥ n. With Solk(S,w) we denote the set of allσ ∈ Solk(S) such thatσ(x, 0) = wx for all
x ∈ [0, n − 1]. For a tiling systemS we define its(22n

× 22n
) tiling problemas follows:

(22n

× 22n

) TILING PROBLEM FOR TILING SYSTEMS = (Θ,H,V)

INPUT: A wordw ∈ Θn.
QUESTION: DoesSol22n (S,w) 6= ∅ hold?

The following proposition is folklore, see also [4, 9].

Proposition 5.1. [4, 9] There is some fixed tiling systemS0 whose(22n
× 22n

) tiling problem is
2NEXP-hard under logspace reductions.
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5.2. Hardness for 2NEXP. Let us fix the tiling systemS0 = (Θ0,H0,V0) of Proposition 5.1 whose
tiling problem is hard for2NEXP. We now define a fixed GTRSR0 = (A,Σ, R) and prove that the
first-order theory ofG(R0) is 2NEXP-hard under logspace reductions. We define

A0 = {♥,1,1†,1‡,O,O†,O‡},

A1 = Θ0,

A2 = {•}, and

Σ = {ℓ, r, h, u,m†,m‡, } ∪ Θ0 ∪A0.

The set of rewrite rulesR is given as follows:

(1) X
X
7−→ X for eachX ∈ A0,

(2) X
m†
7−→ X† for eachX ∈ {1,O} (this will correspond tomarkinga leaf),

(3) X†
m‡
7−→ X‡ for eachX ∈ {1,O} (this will correspond toselectinga leaf),

(4) X†
h

7−→ ♥ for eachX ∈ {1,O},
(5) •(♥,♥)

u
7−→ ♥,

(6) θ(X‡)
θ

7−→ θ(X‡) for all θ ∈ Θ0,X ∈ {1,O},
(7) •(♥,X‡)

r
7−→ X‡ for eachX ∈ {1,O}, and

(8) •(X‡,♥)
ℓ

7−→ X‡ for eachX ∈ {1,O}.

For the rest of this section we fixG0 = G(R0). Let us fix an inputw = θ0 · · · θn−1 ∈ Θn of the
(22n

× 22n

) tiling problem forS0. Our goal is to compute in logspace fromw a first-order sentenceϕ
overΣ such that

Sol22n (S0, w) 6= ∅ ⇐⇒ G0 |= ϕ.

For each subsetΓ ⊆ Σ, we define
Γ

−→ =
⋃

γ∈Γ
γ

−→. The following lemma follows immediately from
Lemma 3.3 (take the formulaθ(x, y) =

∨

γ∈Γ γ(x, y)).

Lemma 5.2. Given a subset of actionsΓ ⊆ Σ and j ∈ [0, 2n+1] (in binary) one can compute in
logspace a first-order formulaΓj(x, y) such that for allt, t′ ∈ TreesA we haveG0 |= Γj(t, t′) if and

only if t (
Γ

−→)j t′ in G0.

In caseΓ = {γ} is a singleton, we also writeγj(x, y) for the formulaΓj(x, y) of Lemma 5.2.
Moreover, for subsetsΓ1, . . . ,Γk ⊆ Σ andj1, . . . , jk ∈ N, we write[Γj1

1 · · ·Γjk

k ](x, y) for the formula

∃x0, . . . , xk :
(

x0 = x ∧ xk = y ∧
k

∧

i=1

Γji

i (xi−1, xi)
)

.

A treet ∈ TreesA is atile tree if t = θ(t′) for somet′ ∈ TreesA such that the following holds:

• θ ∈ Θ0,
• The label of every leaf oft′ is from {O,1}.
• The distance of every leaf oft′ to the root oft′ is n+ 1.
• Every internal node oft′ is labeled with•.
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Example 5.3. This is a tile tree in casen+ 1 = 3:

θ

•

•

•1 O •O O •

•1 O •1 1
Let us fix a tile treet. Note thatt has precisely2n+1 = 2 · 2n leaves. Hence, there is a one-to-one

correspondence between[0, 2n+1 − 1] and leaves oft by means of their lexicographic order int. For
each leafλ let lex(λ) ∈ [0, 2n+1−1] be the position ofλ among all leaves w.r.t. the lexicographic order
(starting with0). The intention is thatt represents theθ-labeled grid element(M,N) ∈ [0, 22n

− 1]2,
where each leafλ that is a left (resp. right) child represents the⌊ lex(λ)

2 ⌋th least significant bit of the
2n-bit binary presentation ofM (resp. ofN ): In caseλ is a left child, thent(λ) = O (resp.t(λ) = 1)
if and only if the⌊ lex(λ)

2 ⌋th least significant bit ofM equals0 (resp.1) and analogously ifλ is a right
child this corresponds toN . For the tile treet from Example 5.3 we haveM = 1 + 4 + 8 = 13 and
N = 8.

We say a leafλ of a treet is markedif t(λ) = X† for someX ∈ {O,1}. We say a leafλ of a tree
t is selectedif t(λ) = X‡ for someX ∈ {O,1}. A marked tile treeis a tree that can be obtained from
a tile treet by markingeveryleaf of t. For the rest of this section, letD = 2n+1 − (n+ 2).

Lemma 5.4. One can compute in logspace a first-order formulamarked(x) such that for every tree
t ∈ TreesA\{O‡,1‡,♥} with precisely2n+1 marked leaves we have:G0 |= marked(t) if and only if the
marked leaves oft are the leaves of some (unique) marked tile subtree oft.

Proof. The idea is to express the following: Whenever we select any of the 2n+1 marked leaves, we
can execute from the resulting tree some sequence from the languageh2n+1−1uD{ℓ, r}n+1Θ0. Let us
explain the intuition behind this. Assume we have selected exactly one of the2n+1 marked leaves of
t, and lett′ be the resulting tree. First, note that after executing the sequenceh2n+1−1 from t′, we have
replaced each of the marked leaves oft′ with the symbol♥, reaching some treet′′. Second, when
executinguD from t′′ we have reached, in caset contained a marked tile subtree, some treet′′′ that
has a chain of the following form as a subtree, whereX ∈ {O,1} andθ ∈ Θ0:

θ

•

♥ •

•

•

♥ •

♥ X‡

♥

♥

Finally, fromt′′′ we can now “shrink” this subtree to the treeθ(X‡) by executing some sequence from
{ℓ, r}n+1 followed by executingθ. Formally, we definemarked(x) as follows:

∀y
(

m‡(x, y) → ∃z : [h2n+1−1uD{ℓ, r}n+1Θ0](y, z)
)
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Note that in this formula,y runs over all trees that can be obtained by selecting a markedleaf of
x. Basically, in this way we quantify over all marked leaves ofx. Note that the formulamarked(x)
ensures that the marked leaves ofx are all at the same depth inx.

A grid tree is a treet for which every leaf is inside a subtree oft that is a tile tree.

Lemma 5.5. One can compute in logspace a first-order formulagrid(x) such that for allt ∈ TreesA

we haveG0 |= grid(t) if and only ift is a grid tree.

Proof. The formulagrid will be a conjunction of the following two statements: (i) every leaf is either
labeled withO or 1, (ii) for each leaf oft that we can mark via the actionm†, we can mark2n+1 − 1
further leaves reaching some treet′ with G0 |= marked(t′). Formally,grid(x) is the conjunction of

∧

a∈A0\{O,1}¬a(x, x),
which realizes (i), and the formula

∀y
(

m†(x, y) → ∃z
(

m2n+1−1
† (y, z) ∧ marked(z)

)

)

,

which realizes (ii).

A marked grid treeis a tree that can be obtained from a grid treet by replacing exactly one tile
subtree oft by some marked tile tree. Aselected grid treeis a tree that can be obtained from some
marked grid treet by selectingprecisely onemarked leafλ of t. In that case,lex(λ) ∈ [0, 2n+1 − 1]
is the lexicographical position ofλ within the marked tile tree.

Lemma 5.6. One can compute in logspace for eachi ∈ [1, n + 1] a first-order formula biti(x) such
that for every selected grid treet with selected leafλ we have that theith least significant bit oflex(λ)
is 1 if and only ifG0 |= biti(t).

Proof. We define biti(x) = ∃y : [h2n+1−1uD{ℓ, r}i−1r](x, y).

Lemma 5.7. One can compute for each◦ ∈ {<,=} in logspace a first-order formulaϕ◦(x, y) such
that for every two selected grid treest1 andt2 with selected leavesλ1 andλ2 we haveG0 |= ϕ◦(t1, t2)
if and only if lex(λ1) ◦ lex(λ2).

Proof. We only treat the case when◦ equals<; its definition should be self-explanatory:
∨

j∈[1,n+1]

(

(¬bitj(x) ∧ bitj(y)) ∧
∧

1≤i<j

(biti(x) ↔ biti(y))

)

Recall that the unique marked tile subtree of a marked grid tree t represents aθ-labeled grid
element(M,N) ∈ [0, 22n

− 1]2 for someθ ∈ Θ0. Therefore, let us defineM(t) = M , N(t) = N ,
andΘ0(t) = θ.

Lemma 5.8. One can compute in logspace first-order formulasϕθ(x),ϕi,M (x, x′),ϕi,N (x, x′), where
θ ∈ Θ0 andi ∈ {0, 1} such that for all marked grid treest andt′ the following holds:

(1) G0 |= ϕθ(t) if and only ifΘ0(t) = θ,
(2) G0 |= ϕi,M (t, t′) if and only ifM(t) + i = M(t′), and
(3) G0 |= ϕi,N (t, t′) if and only ifN(t) + i = N(t′).
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Proof. For point (1) we defineϕθ(x) as follows:

∃y : [m‡h
2n+1−1uD{ℓ, r}n+1θ](x, y)

For the remaining points (2) and (3), we only give the formulaϕ1,M (x, x′), i.e., we wish to express
that for any two marked grid treest andt′ we haveG0 |= ϕ1,M (t, t′) if and only ifM(t)+1 = M(t′).
Let us fix two marked grid treest andt′. Assume we have selected among the2n+1 marked leaves
of t some leafλ. Recall thatλ represents one of the2n bit positions ofM(t) if and only if λ is a left
child, otherwise it would represent a bit position ofN(t). Hence we will only be interested in leaves
of t andt′ which are left children. For this sake, let us express that the selected leaf of a selected grid
treez is a left child via the formulaleft(z):

left(z) = ∃z′, z′′
(

h(z, z′) ∧ ℓ(z′, z′′)
)

Our formulaϕ1,M (x, y) is defined as follows:

∃x′, y′
(

m‡(x, x
′) ∧m‡(y, y

′) ∧ ϕ=(x′, y′) ∧ O‡(x
′, x′) ∧ 1‡(y′, y′) ∧ left(x′) ∧ ψ1 ∧ ψ2

)

.

Thus, we select a positionp ∈ [0, 2n − 1] that is set to0 (resp.1) in the binary representation ofM(t)
(resp.M(t′)). The formulaψ1(x, y, x

′, y′) is defined as

∀z

(

(

m‡(x, z) ∧ ϕ<(z, x′) ∧ left(z)
)

→ 1‡(z, z))∧

∀z

(

(

m‡(y, z) ∧ ϕ<(z, y′) ∧ left(z)
)

→ O‡(z, z)

)

.

It expresses that each bit at some position that is smaller than p is set to1 (resp. 0) in the binary
representation ofM(t) (resp. M(t′)). The formulaψ2 expresses that the binary representations of
M(t) andM(t′) agree on each position that is bigger thanp. Formally,ψ2(x, y, x

′, y′) is defined as

∀u, v

(

(

m‡(x, u) ∧m‡(y, v) ∧ ϕ=(u, v) ∧ ϕ<(x′, u) ∧ left(u)
)

→ (1‡(u, u) ↔ 1‡(v, v))).
We define the formulasol(x) as the conjunction of the following formulas, wheremark(z1, z2) is

an abbreviation form2n+1

† (z1, z2) ∧ marked(z2):

• x is a grid tree:
grid(x)

• Whenever we mark two tile subtrees ofx that represent the same grid element, theirΘ-labels
agree:

∀y, z

(

(mark(x, y) ∧ mark(x, z) ∧ ϕ0,M (y, z) ∧ ϕ0,N (y, z)) →
∧

θ∈Θ0

(ϕθ(y) ↔ ϕθ(z))

)

• Whenever we mark a tile subtree ofx that corresponds to the grid element(M,N) andM <
22n

− 1 there exists some tile subtree ofx that corresponds to the grid element(M + 1, N)
and the horizontal matching relation is satisfied:

∀y

(

(

mark(x, y) ∧ ∃z(m‡(y, z) ∧ O‡(z, z) ∧ left(z))
)

→

∃y′
(

mark(x, y′) ∧ ϕ1,M (y, y′) ∧ ϕ0,N (y, y′) ∧
∨

(θ,θ′)∈H0

(ϕθ(y) ∧ ϕθ′(y
′))

)

)
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• Analogously to the previous formula, we can express that whenever we mark a tile subtree of
x that corresponds to the grid element(M,N) andN < 22n

−1 there exists some tile subtree
of x that corresponds to the grid element(M,N + 1) and the vertical matching relation is
satisfied.

Finally we can construct a formulaϕw(x) that guarantees that grid element(j, 0) is labeled byθj

(recall thatw = θ0 · · · θn−1) for eachj ∈ [0, n − 1]:

∃y0, . . . , yn−1

(

∧

j∈[0,n−1]

(mark(x, yj) ∧ ϕθj
(yj)) ∧ ∀z(m‡(y0, z) → O‡(z, z)) ∧

∧

j∈[1,n−1]

(ϕ1,M (yj−1, yj) ∧ ϕ0,N (yj−1, yj))

)

Our final formulaϕ is defined asϕ = ∃x(sol(x) ∧ ϕw(x)). It follows by construction that

Sol22n (S0, w) 6= ∅ ⇐⇒ G0 |= ϕ.

With Proposition 5.1 we get:

Theorem 5.9. The first-order theory ofG0 is 2NEXP-hard under logspace reductions.

5.3. Pushing hardness to ATIME(22poly(n)
, poly(n)). Let us fix a tiling systemS = (Θ,H,V). Given

σ, σ′ ∈ Solk(S) we sayσ′ extendsσ vertically if σ′(x, 0) = σ(x, k − 1) for eachx ∈ [0, k − 1]. Let
Solk(S, σ) be the set of allσ′ ∈ Solk(S) such thatσ′ extendsσ vertically. The standard encoding of
Turing machine computations into tilings shows that there is a fixed tiling systemS1 = (Θ1,H1,V1)

such that the following problem is hard forATIME(22poly(n)
, poly(n)) under logspace reductions.

L INEARLY ALTERNATING (22n
× 22n

) TILING PROBLEM (FORS1)

INPUT: A wordw = θ0θ1 · · · θn−1 ∈ Θn
1 , wheren is odd.

QUESTION: Does∃σ1 ∈ Sol22n (S1, w)∀σ2 ∈ Sol22n (S1, σ1) · · · ∃σn ∈ Sol22n (S1, σn−1) : true

hold?

The idea is that the quantified solutionsσi represent subcomputations of an alternating Turing-ma-
chine, where all states in the subcomputation are either existential (if i is odd) or universal (ifi
is even). Our definition of vertical extension of solutions ensures that these subcomputations can
be combined into on single computation of the alternating Turing-machine. A similar encoding of
alternating Turing machines by tiling systems can be found in [9].

Let G1 be the fixed GTRS graph that is obtained fromG0 of Section 5.2 when we replace the
tiling systemS0 by S1.

Corollary 5.10. The first-order theory ofG1 is hard for ATIME(22poly(n)
, poly(n)) under logspace

reductions.

Proof. We recycle the proof presented in Section 5.2. We adapt the formulas constructed in Section
5.2 to the fixed tiling systemS1 (instead ofS0). Recall that we can compute in logspace a formula
sol(x) such that for every treet we have thatG1 |= sol(t) if and only if t corresponds to a22n

-solution
for S1. It is an easy exercise to construct in logspace a formulaext such that for any two treest and
t′ each satisfyingsol we haveG1 |= ext(t, t′) if and only if the solution corresponding tot′ extends
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that of t vertically. We obtain that a wordw (with n = |w| odd) is a positive instance of the linearly
alternating(22n

× 22n

) tiling problem if and only ifG1 is a model of the sentence

∃x1

(

sol(x) ∧ ϕw(x) ∧ ∀x2

(

(sol(x2) ∧ ext(x1, x2)) → · · · ∃xn (sol(xn) ∧ ext(xn−1, xn))

))

.

We should remark that hardness forATIME(22poly(n)
, poly(n)) can be also proved using the

method of Compton and Henson [11] (monadic interpretation of addition on large numbers). The
use of tilings has the advantage of giving an almost generic reduction. On the other hand, the method
of [11] yields completeness under the slightly stronger log-lin reductions.

6. THE FIRST-ORDER THEORY WITH REGULAR UNARY PREDICATES

For a GTRSR = (A,Σ, R) and a set of treesL ⊆ TreesA, we denote with(G(R), L) the structure
that results from the labelled graphG(R) by adding the setL as an additional unary predicate. Note
that ifL is a regular set of trees, then(G(R), L) is a tree automatic structure, and hence has a decidable
first-order theory.

By the following result, ourATIME(22poly(n)
, O(n)) upper bound for the first-order theory of a

ground tree rewrite graph does not carry over to ground tree rewrite graphs expanded by a regular
unary predicate.

Theorem 6.1. There exists a fixed GTRSR2 = (A,Σ, R) and a fixed regular tree languageL ⊆
TreesA such that the first-order theory of(G(R2), L) is non-elementary.

Proof sketch. The proof idea is an adaption of the proof of Theorem 2 in [20]and is hence only shortly
sketched. We reduce from the satisfiability problem for first-order logic over binary words. Binary
words are considered as structures over the signature(P0, P1,≤), whereP0 andP1 are unary relations
(representing those positions, where the letter is0 and1, respectively), and where≤ is the natural
order relation on positions. The idea is that a treet ∈ TreesA (whereA2 = {•} andA0 = {0, 1})
corresponds to the unique word over{0, 1} that one obtains by simply reading the yield string (the
sequence of node labels when traversing the leaves in lexicographic order) oft. Let yield(t) denote
the yield string oft.

We translate a given first-order sentenceϕ over the signature(P0, P1,≤) into a first-order formula
ψ(x) over the signature of(G(R2), L) such that for every treet ∈ TreesA we have:yield(t) |= ϕ if
and only if(G(R2), L) |= ψ(t). Assume thatx1, . . . , xn are the variables that occur inϕ. Bounding
a variablexi (1 ≤ i ≤ n) of ϕ to a certain position in the wordyield(t) is simulated by labelling the
corresponding leaf of the treet by a chain of unary symbols of lengthi. In order to keep the GTRS
R2 fixed, this chain has to be built up ini rewrite steps that are controlled by the formulaψ(x). In
order to verify an atomic predicatexi < xj in the treet one has to check, whether thei-labelled node
of t is lexicographically smaller than thej-labelled node. To do this using a fixed GTRS, one first
replaces the chain of lengthi (resp.,j) that identifies the position to whichxi (resp.,xj) is bound by a
special constanta (resp.b). Again, this process has to be controlled by the formulaψ(x). Finally, we
can checkxi < xj using the regular set of trees that contain a uniquea-labelled leaf and a uniqueb-
labelled leaf, and thea-labelled leaf is lexicographically smaller than theb-labelled leaf. This regular
set will be the setL in the theorem.
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7. OPEN PROBLEMS

We proved that the uniform first-order theory of ground tree rewrite graphs belongs to the com-
plexity classATIME(22poly(n)

, O(n)) and that there exists a fixed ground tree rewritie graph with an
ATIME(22poly(n)

, O(n))-complete first-order theory.
A complexity gap in this context exists for the first-order theory of the one-step rewrite graph of

a semi-Thue system (word rewrite system): It is known to be2EXPSPACE-hard and decidable but it
is not known to be elementary [26]. One may try to tackle this problem using techniques similar to
those used in this paper.

An important open problem concerning ground tree rewrite graph concerns bisimulation equiv-
alence. It is not known whether the following problem is decidable: Given a ground tree rewrite
systemR and two treess andt, ares andt are bisimilar in the graphG(R)? For pushdown graphs
this problem is decidable [41] but not elementary, as was recently shown in [1]. A further question
is the complexity of deciding bisimilarity between a groundtree rewrite system and a finite system,
lying betweenPSPACE andcoNEXP [20].
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