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Abstract. We show that satisfiability foE TL* with equality-, order-, and mod-
ulo-constraints over. is decidable. Previously, decidability was only known for
certain fragments of TL*, e.g., the existential and positive fragments &fd

1 Introduction

Temporal logics likeLTL, CTL or CTL* are nowadays standard languages for specify-
ing system properties in model-checking. They are intéggrever node labeled graphs
(Kripke structures), where the node labels (also callechatqropositions) represent
abstract properties of a system. Clearly, such an abstragtem state does in general
not contain all the information of the original system st&ensider for instance a pro-
gram that manipulates two integer variableandy. A useful abstraction might be to
introduce atomic propositions sz, . .., vgs2 for v € {z, y}, where the meaning af;,
for —232 < k < 232 is that the variable € {z,y} currently holds the valué, and
v_g32 (resp.,vys2) means that the current valuewfs at most-232 (resp., at leas2®?).
It is evident that such an abstraction might lead to incamesults in model-checking.
To overcome these problems, extensions of temporal logitts a@nstraints have
been studied. Let us explain the idea in the contexfldf. For a fixed relational struc-
ture A (typical examples ford are number domains like the integers or rationals ex-
tended with certain relations) one adds atomic formulaB@farmr (X zy, ..., X xy)
(so called constraints) to standdrtlL. Here,r is (a name of) one of the relations of the
structureA, iy, ...,i, > 0, andzy, ...,z are variables that range over the universe of
A. An LTL-formula containing such constraints is interpreted ougimte) paths of a
standard Kripke structure, where in addition every nodaté¥tassociates with each of

the variableszy, . ..,z an element ofA (one can think ofA-registers attached to the
system states). A constraintX‘:zy, ..., X% x;) holds in a pathsg — s; — so — - - -
if the tuple (a1, ..., ax), whereq; is the value of variable;; at states;,, belongs to

the A-relationr. In this way, the values of variables at different systentestaan be
compared. In our example from the first paragraph, one migbose forA the struc-
ture (Z, <,=, (=a)acz), Where=, is the unary predicate that only holds fer This
structure has infinitely many predicates, which is not a lenob our main result will
actually talk about an expansion (£, <, =, (=,).cz). Then, one might for instance
write down a formulg <(x, X'y))U(=100(y)) which holds on a path if and only if there
is a point of time where variablg holds the valug 00 and for all previous points of
timet, the value ofr at timet is strictly smaller than the value gfat timet + 1.

Wtedproofs can be found in [4]. This work is supported by the DFG Research Training
Group 1763 (QuantLA). The second author is supported by the DR€nes project GELO.



In [9], Demri and Gascon studiddl'L extended with constraints from a language
IPC". If we disregard succinctness aspects, these constramtscgivalent to con-
straints over the structure

Z= (Za <=, (:a)aGZv (Ea,b)0§a<b)7 (1)

where=,, denotes the unary relatidn } and=,;, denotes the unary relatida + x |

x € Z} (expressing that an integer is congruenttmodulob). The main result from
[9] states that satisfiability of TL with constraints fromZ is decidable and in fact
PSPACE-complete, and hence has the same complexity as satigfidbili TL without
constraints. We should remark that tR8PACE upper bound from[9] even holds for
the succinct IPGrepresentation of constraints used.inh [9].

In the same way as outlined faif L above, constraints can be also added1d
andCTL* (then, constraints(X*z1, ..., X'z, ) are path formulas). A weak form of
CTL™* with constraints fromz (where only integer variables and the same state can be
compared) was first introduced in [5], where it is used to desgroperties of infinite
transition systems, represented by relational automéaierelit is shown that the model
checking problem fo€£TL* over relational automata is undecidable.

Demri and Gascori [9] asked whether satisfiabilityCGfL* with constraints from
Z over Kripke structures is decidable. This problem was itigated in [3,10], where
several partial results where shown: If we replac€ithe binary predicate: by unary
predicates<, = {z | < ¢} for ¢ € Z, then satisfiability forCTL* is decidable by
[10]. While, for the full structureZ satisfiability is decidable for th€TL* fragment
CEF* (which contains the existential and universal fragmenE€®t.* as well asEF)
[3].

In this paper we prove th&@TL* with constraints ove£ is decidable. Our proof is
divided into two steps. The first step provides a tool to prdeeidability of CTL* with
constraints over any structuré over a countable (finite or infinite) signatufe(the
structureA has to satisfy the additional property that the complemé&aty of its rela-
tions has to be definable in positive existential first-otdgic over.A). Let £ be a logic
that satisfies the following two properties: (i) satisfidpibf a given £L-sentence over
the class of infinite node-labeled trees is decidable, aphd (is closed under boolean
combinations with monadic second-order formulas (MSOypdal such logic is MSO
itself. By Rabin’s seminal tree theorem, satisfiability oS&-sentences over infinite
node-labeled trees is decidable. Assumih@as these two properties, we prove that
satisfiability of CTL™ with constraints overd is decidable if one can compute from
a given finite subsignature C S an £-sentence), (over the signature’) such that
for every countable-structureB: B |= 1, if and only if there exists a homomorphism
from B to A (i.e., a mapping from the domain 8fto the domain of4 that preserves all
relations fromo). We say that the structuré has the propertiEHomDef(£) if such a
computable function — 1, exists EHomDefstands for “existence of homomorphism
is definable”. For instance, the structyf@, <, =) has the propertHomDef(MSO),
see ExamplEl7.

Itis not clear whetheg from (1) has the propertgHomDef(MSO) (we conjecture
that it does not). Hence, we need a different logic. It turastbat Z has the property
EHomDef(WMSO+B), whereWMSO+B is the extension of weak monadic second-
order logic (where only quantification over finite subsetaliswed) with the bounding



quantifierB. A formulaBX : ¢ holds in a structured if and only if there exists a bound

b € N such that for every finite subsé of the domain of4 with A = ¢(B) we
have|B| < b. Recently, Bojaczyk and Toriczyk have shown that satisfiability of
WMSO+B over infinite node-labeled trees is decidalble [1]. The negblem is that
WMSO+B is not closed under boolean combinations WitBO-sentences. But fortu-
nately, the decidability proof foWMSO+B can be extended to boolean combinations
of MSO-sentences and(MSO + B)-sentences, see Sectidn 3 for details. This finally
shows that satisfiability of TL* with constraints fron% is decidable.

While it would be extremely useful to add successor condsdin= z + 1) to
Z, this would lead to undecidability even fai L [8] and the very basic description
logic ALC [13], which is basically multi-modal logic. NonetheleSsallows qualitative
representation of increment, for example= y + 1 can be abstracted by > z) A
(=12~ (y)) wherek is a large natural number. This is why temporal logics extend
with constraints oveZ seem to be a good compromise between (unexpressive) total
abstraction and (undecidable) high concretion.

In the area of knowledge representation, extensions ofig¢isn logics with con-
straints from so called concrete domains have been inegsstudied, sed [11] for
a survey. In[[12], it was shown that the extension of the dpson logic ALC with
constraints fromQ, <, =) has a decidableEKPTIME-complete) satisfiability prob-
lem with respect to general TBoxes (also known as generalegirinclusions). Such
a TBox can be seen as a secofdC-formula that has to hold in all nodes of a model.
Our decidability proof is partly inspired by the constroctifrom [12], which in con-
trast to our proof is purely automata-theoretic. Furtheults for description logics and
concrete domains can be found|in|[13,14].

Unfortunately, our proof does not yield any complexity bddar satisfiability of
CTL™* with constraints fromzZ. The boolean combinations dMMSO -+ B)-sentences
andMSO sentences that have to be checked for satisfiability (o¥inite trees) are of
a simple structure, in particular their quantifier depth @ high. But no complexity
statement for satisfiability o?lvMSO+B is made inl[1], and it seems to be difficult
to analyze the algorithm from [[1] (but it seems to be elemmgriiar a fixed quantifier
depth). It is based on a construction for cost functions finite trees from([6], where
the authors only note that their construction seems to hamehigh complexity.

2 Preliminaries

Let[1,d] = {1,...,d}. Forawordw = ajas---a; € [1,d]* andk < [ we define
wl: k] = aras - - - ag; itis the prefix ofw of lengthk.

Let P be a countable set of (atomic) propositions. A Kripke stitestoverP is a
triple X = (D, —, p), where (i) D is an arbitrary set of nodes (or states), {#)is a
binary relation onD such that for every, € D there existe € D with v — v, and
(i) p : D — 2P assigns to every node the set of propositions that hold imtike.
We require that J, ., p(v) is finite, i.e., only finitely many propositions appearkin
A K-pathis an infinite sequence = (vg, v1, v2, . . .) such thav; — v;; foralli > 0.
Fori > 0 we define the state(i) = v; and the pathr’ = (v;, v; 11, Vi, ..). A Kripke
d-treeis a Kripke structure of the forii¢ = ([1, d]*, —, p), where— contains all pairs



(u,ui) with w € [1,d]* andl < ¢ < d, i.e., ([1,d]*,—) is a tree with root where
every node hag children.

A signature is a countable (finite or infinite) sebf relation symbols. Every relation
symbolr € S has an associated arigy(r) > 1. An S-structure is a paird = (A, I),
where A is a non-empty set anél maps everyr € S to anar(r)-ary relation over
A. Quite often, we will identify the relatiod () with the relation symbot, and we
will specify anS-structure ag A, r1, 79, ...) whereS = {ry,r9,...}. TheS-structure
A = (A, I) is negation-closedf there exists a computable function that maps a relation
symbolr € S to a positive existential first-order formula, (z1, ..., z.)) (i.e., a
formula that is built up from atomic formulas using\/, and3) such that4> ")\ I (r) =
{(a1,...,aar(r)) | A E @rlai, ..., aa))}. In other words, the complement of every
relation(r) must be effectively definable by a positive existential fosder formula.

Example 1.The structureZ from (1)) is negation-closed (we will write = a instead
of =,(x) and similarly for=, ;). We have for instance:

—x#yifandonlyifx <yory < z.
—z#aifandonlyifdyeZ:y=an(z<yVy<uz).
— x Z amodb if and only if x = ¢ modb for some0 < ¢ < bwith a # c.

For a subsignature C S, ao-structure3B = (B, J) and anS-structureA = (A, I),
ahomomorphisnk : B — A is a mapping: : B — A such that for all- € & and all
tuples(by, . .., ba(r)) € J(r) we have(h(by),. .., h(byy)) € 1(r). We write B < A
if there is a homomorphism froifi to A.

3 MSO and WMSO-4B

Recall thatmonadic second-order logi@MSO) is the extension of first-order logic
where also quantification over subsets of the underlyingcaire is allowed. We as-
sume that the reader has some familiarity viitBO. Weak monadic second-order logic
(WMSO) has the same syntax RSO but second-order variables only range over finite
subsets of the underlying structure. FinalyMSO+B is the extension ofWMSO by
the additional quantifieBX : ¢ (thebounding quantifier The semantics dBX : ¢ in

the structured = (A, I) is defined as followsA = BX : ¢(X) if and only if there is

a boundb € N such thai B| < b for every finite subseB C A with A = o(B).

Example 2.For later use, we state some example formulas.d(et y) be aWMSO-
formula with two free first-order variablesandy. Let A = (A, I') be a structure and
let E = {(a,b) € Ax A| A= ¢(a,b)} be the binary relation defined lyy(x, y). We
define theVMSO-formulareach,,(a, b) to be

X VY (a e Y AVaVy((z e Y Ay e X Ap(z,y)) —yeY) —beY)

It is straightforward to prove thatl |= reach,(a,b) if and only if (a,b) € E*. Note
thatreach,, is the standardSO-formula for reachability but restricted to some finite
induced subgraph. Clearly,s reachable froma in the graph(A, E) if and only if it is

in some finite subgraph ¢f4, E).



Let ECycle, = 3z Jy(reach,(z,y) A ¢(y, )) be theWMSO-formula expressing
that there is a cycle ifA, E).
Given a second-order variahfe we definereachi(a, b) to be

a€ZANVY CZ(aeY AVaVy((zx e Y Aye ZAp(z,y)) »yeY)—beY).

We haveA = reachi(a, b) iff b is reachable froma in the subgraph ofA, E) induced
by the (finite) setZ. Note thatA = reach?(a,b) implies{a, b} C Z.

For the next examples we restrict our attention the caséhtbatraph( A, E) defined
by ¢(x,y) is acyclic. Hence, the reflexive transitive closuté is a partial order on
A. Note that a finite sef’ C A is an F-path froma € F tob € F if and only if
(F,(EnN(F x F))*)is afinite linear order with all elements betweeandb. Define
the WMSO-formulaPath(a, b, Z) as

Vee ZVyeZ (reachi(x,y) Y reachi(y,x)) A reachi(a,x) A reachi(m, b).

For every acycli¢ 4, E') we haveA = Path,(a, b, P) if and only if P contains exactly
the nodes along afA-path froma to b.

We finally define theVMSO+ B-formulaBPaths,(z,y) = BZ : Path,(z,y, 2).
By definition of the quantifieB, if (A4, E) is acyclic, thenA |= BPaths,(a, b) if and
only if there is a bound € N on the length of any~-path froma to b.

Next, let Bool(MSO, WMSO+B) be the set of all Boolean combinations SO-
formulas and\((VMSO -+ B)-formulas. We will use the following result.

Theorem 3 (cf. [1]). One can decide whether for a giveéne N and a formulay €
Bool(MSO, WMSO+ B) there exists a Kripkd-tree IC such thatiC = .

Proof. This theorem follows from results of Bdjazyk and Toraczyk [1,2]. They in-
troduced puzzles which can be seen as pA&irs- (A4,C), whereA is a parity tree
automaton and’ is an unboundedness conditi6rwhich specifies a certain set of infi-
nite paths labeled by states 4f A puzzle accepts a treg if there is an accepting run
p of Aon7 such that for each infinite path occurring inp, 7 € C holds. In partic-
ular, ordinary parity tree automata can be seen as puzztbstnvial unboundedness
condition. The proof of our theorem combines the followiegults.

Lemma4 ([1]). From a given WMSO+ B)-formulay andd € N one can construct a
puzzleP, such thaty is satisfied by some Kripketree iff P, is nonempty.

Lemma5 ([1]). Emptiness of puzzles is decidable.
Lemma 6 (Lemma 17 of [2]).Puzzles are effectively closed under intersection.

Let ¢ € Bool(MSO, WMSO+B). First, ¢ can be effectively transformed into a dis-
junction\/!_, (¢; A ;) wherep; € MSO andy; € WMSO+B for all . By Lemmd4,
we can construct a puzzF for ;. It is known that theMSO-formula; can be trans-
lated into a parity tree automatoh. Let P/ be a puzzle recognizing the intersection of
P; and 4; (cf. Lemma6). Nowy is satisfiable over Kripké-trees if and only if there
is ani such thatp; A, is satisfiable over Kripké-trees if and only if there is ahsuch
that P/ is nonempty. By Lemmia5, the latter condition is decidablétviconcludes the
proof of the theorem. O



Let £ be a logic (e.gMSO or Bool(MSO, WMSO+B)). An S-structure A has the
propertyEHomDef(L) (existence of homomorphisms tis £-definable) if there is a
computable function that maps a finite subsignature S to an£-sentencep, such

that for every countable-structure3: B < Aif and only if B = ¢,.

Example 7.The structureQ = (Q, <,=) has the propertfHomDef(WMSO) (and
EHomDef(MSO)). In [12] it is implicitly shown that for a countable<, =}-structure
B = (B,I), B < Qifand only if there does not exigt, b) € I(<) such thatb, a) €
(I(<)UlI(=)UI(=)"1)*. This condition can be easily expressed\iMSO using the
reach-construction from Examplel 2. Note that=) is not required to be the identity
relation onB.

4 CTL* with constraints

Let us fix a countably infinite set of atomic propositidh@nd a countably infinite set
of variablesV for the rest of the paper. L& be a signature. We define an extension of
CTL* with constraints over the signatufe We defineCTL*(S)-state formulag, and
CTL” ( )-path formulagy by the following grammar, where € P, r € S, k = ar(r),
i1,...,0x > 0,andzy, ...,z € V:

pu=p| | (@A) | Ep
Y=g | = | (P AY) | Xep | pUP | r(X Mz, .. X P ay)

A formula of the formR := r(X%1a4,..., X%*z;) is also called amtomic constraint
and we definel(R) = max{i,...,9} (the depth ofR). The syntactic difference
betweenCTL"(S) and ordinaryCTL" lies in the presence of atomic constraints.

Formulas ofCTL*(S) are interpreted over triples= (A, K, ~), whered = (A4, )
is anS-structure (also called treoncrete doman £ = (D, —, p) is a Kripke structure
overP, andy : D x V — A assigns to everfw, ) € D x V avaluey(v, z) (the value
of variablex at nodev). We call such a tripl€ = (A, K, v) an.A-constraint graphAn
A-constraint grapld = (A, K, ) is an.A-constraintd-treeif K is a Kripked-tree.

We now define the semanticsGTL*(S). For anA-constraint graplf = (A, K, v)
with A = (4, I) andK = (D, —, p), a statev € D, aK-pathm, a state formulg, and
a path formulay we write (C,v) = ¢ if ¢ holds in(C, v) and(C, w) = ¢ if ¢ holds in
(C, ). This is inductively defined as follows (for the boolean cectives— and A the
definitions are as usual and we omit them):

- (C,v) Epiff p € p(v).

— (C,v) E Ev iff there is aK-pathm with 7(0) = v and(C, ) = 9.

= (C,m) = iff (C,7(0)) = ¢

— (Cm) = X iff (C,7) = . |

— (C,m) | ¢ Uty iff there existsi > 0 such thaiC, 7*) = ¢, and for all0 < j < ¢
we have(C, 77) = 9. _

— (C,m) Er(Xhxy, ..., Xing,) iff (y(7(i1), 1), ..., Y(7(in),2n)) € I(r).

7r
7r
m

h
m



Note that the role of the concrete domalrand of the valuation functiofy is restricted
to the semantic of atomic constrain@IL*-formulas are interpreted over Kripke struc-
tures, and to obtain their semantics it is sufficient to replaby K in the rules above
and to remove the last line.

We use the usual abbreviatiorts:V 0, := —=(—6; A —62) (for both state and path
formulas),Ay := —E— (universal path quantifiery;Ryy = —(—1p1U—1)s) (the
release operator). Note th@t, 7) | 1Ry iff ((C,7") | 1, for all i > 0 or there
existsi > 0 such tha(C, 7%) = ¢; and(C, 77) = 19 forall 0 < j < ).

Using this extended set of operators we can put every formtdaa semantically
equivalentnegation normal formwhere— only occurs in front of atomic propositions
or atomic constraints. Le#g () be the the number of different subformulas of the form
E+ in the CTL*(S)-formulad. ThenCTL"(S) has the following tree model property:

Theorem 8 (cf. [10]).Letp be aCTL"(S)-state formula in negation normal form and
let A = (A, I) be anS-structure. Therp is A-satisfiable if and only if there exists an
A-constraint(#e(¢) + 1)-treeC with (C,¢) = .

Note that for checking.A, K, v) = » we may ignore all propositions € P that do not
occur inp. Similarly, only those values(u, ), wherez is a variable that appears in
p, are relevant. Hence, W, is the finite set of variables that occur¢n then we can
considery as a mapping fronD x V,, to the domain ofA4. Intuitively, we assign to
each node: € D registers that store the valuggu, z) for z € V..

5 Satisfiability of constraint CTL* over a concrete domain

When we talk about satisfiability fdfTL*(S) our setting is as follows: We fix a con-
crete domaind = (A4,1). Given aCTL"(S)-state formulap, we say thatp is A-
satisfiable if there is anl-constraint graplt = (A, K, ) and a node of X such that
(C,v) E . With SATCTL*(A) we denote the following computational problets:a
given state formulg € CTL*(S) A-satisfiable?The main result of this section is:

Theorem 9. Let A be a negation-closef-structure, which moreover has the property
EHomDef(Bool(MSO, WMSO+B)). Then the problerSATCTL"(A) is decidable.

We say that £ TL*(S)-formula is in strong negation normal forrif negations only
occur in front of atomic propositions (i.ep,is in negation normal form and there is no
subformula—R whereR is an atomic constraint).

Letus fix aCTL"(S)-state formulap in negation normal form and a negation-closed
S-structureA for the rest of this section. We want to check whethas A-satisfiable.
First, we reduce to formulas in strong negation normal form:

Lemma 10. Let.A = (A, I) be a negation-closef-structure. From a give@ TL* (S)-
state formulap one can compute @TL*(S)-state formulap in strong negation normal
form such thatp is A-satisfiable iff is .A-satisfiable.

From now on let us assume thats in strong negation normal form. Lét= #g(v)+1.
Let Ry,..., R, be alist of all atomic constraints that are subformulag cdnd letV,,
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Fig. 1. The (N, <, =)-constraint 2-tre€ from Ex.[11, the Kripke 2-tre§ = C*, and
the structuregr.

be the finite set of variables that occurdnLet us fix new propositiong,, . . . , p,, (one
for eachR;) that do not occur inp. Letd; = d(R;) be the depth of the constraify;.
We denote withp? the (ordinary)CTL*-formula obtained fromp by replacing every
occurrence of a constraiit; by X% p,. Given anA-constraintd-treeC = (A, K,7),
whereK = ([1,d]*, —, p) andp(v) N {p1,...,pn} = B forall v € [1,d]*, we define a
Kripke d-treeC® = ([1, d]*, —, p*), wherep®(v) contains

— all propositions fronmp(v) and
— all propositionsp; (1 < i < n) such that the following holds, where we as-
sume thatR; has the formr(X/txy,..., X/ z;) with k = ar(r) (hence,d; =
max{j1,...,Jk}):
e v = suwith |u| = d;
o (y(sur,z1),...,v(sug,x)) € I(r), whereu; = uf: 5] for1 <1 < k.

Hence, the fact that propositignlabels nodew with |u| = d; means that the constraint
R; holds along every path that starts in nadend descends in the tree down via node
su. The superscriptd” in C* stands for “abstracted” since we abstract from the concrete
constraints and replace them by new propositions.

Moreover, given a Kripkel-tree7 = ([1,d]*, —, p) (where the new propositions
p1,...,pn are allowed to occur i) we define a countablg-structureGr = ([1, d]* x
V,, J) as follows: The interpretatiodi(r) of the relation symbot € S contains allk-
tuples (whergc = ar(r)) ((su1,21),. .., (sug, zx)) for which there exist < i < n
andu € [1,d]* with |u| = d; such thap; € p(su), R; = r(XJ1zy,...,X/*x;), and
up = ul: jg] forl <¢ <k.

Example 11.Figure[1 shows an example, where we assumedhat 2 andn = 2,

Ry = [<(x1,Xz2)], and Ry = [=(Xz1, Xx2)]. The figure shows an initial part of an
(N, <, =)-constraint 2-tre€ = ((N, <,=),K,v). The edges of the Kripke-tree

are dotted. We assume thats defined over the empty set of propositions. The node to
the left (resp., right) of a tree nodeis labeled by the value(u, 1) (resp.y(u, x2)).

The figure shows the labeling of tree nodes with the two nevpgsitionsp; andp.
(corresponding td?; andR5) as well as thg <, =}-structureGs for 7 = C°.



Lemma 12. Let » be aCTL"(S)-state formula in strong negation normal form. The
formulay is A-satisfiable if and only if there exists a Kripkge(¢) + 1)-tree7 such
that(7,¢) = ¢* andGr < A.

Let § = ¢° for the further discussion. Hence,is an ordinaryCTL*-state formula,
where negations only occur in front of propositions frém {pi,...,pm}, andd =
#e(6) + 1. By Lemmal1R, we have to check, whether there exists a Kripkee 7
suchtha(7,¢) E 0 andGr < A.

Let o C S be the finite subsignature consisting of all predicate syt oc-
cur in our initial CTL*(S)-formula ¢. Note thatGr is actually as-structure. Since
the concrete domaid has the propertEHomDef(Bool(MSO, WMSO+B)), one can
compute fromo a Bool(MSO, WMSO +B)-formula « such that for every countable
o-structure3 we have3 |= « if and only if B < A. Hence, our new goal is to decide,
whether there exists a Kripkétree7 such thai(7,¢) = 6 andGr = a (note thatGr
is countable). It is well known that eveyTL*-state formula can be effectively trans-
formed into an equivaleM1SO-formula with a single free first-order variable. Since the
roote of a tree is first-order definable, we getldi$O-sentence) such tha(7 ,¢) = ¢
if and only if 7 |= 4. Hence, we have to check whether there exists a Kripltee T
suchthatZ = ¢ andGr = a. If we can translate thBool(MSO, WMSO +B)-formula
a back into aBool(MSO, WMSO+B)-formulac’ such that§r = o & 7T = o),
then we can finish the proof.

Recall the construction dfr: For every nodey € D of T = (D, —,p) we in-
troducem := |V,,| copies(v,z) for z € V. The S-relations between these nodes
are determined by the propositiops . . ., p,,: The interpretation of € S contains all
k-tuples & = ar(r)) ((su1,y1),- .., (sug,yx)) for which there exist < ¢ < n and
u € [1,d]* with |u| = d;, p; € p(su), Ry = r(XIyy, ..., XIky), andu, = uf: jq]
for 1 <t < k. This is a particular case of aSO-transduction[[i7] with copy hum-
berm. It is therefore possible to compute from a givéi®O-sentence) over the sig-
natureS an MSO-sentence;’ such thatGr = n < 7 E #'. But the problem is
that in our situatior is the Bool(MSO, WMSO+B)-formula «, and it is not clear
whetherMSO-transductions (or even first-order interpretations) ammpatible with
the logicWMSO+B. Nevertheless, there is a simple solution. Vgt= {z1, ...,z }.
From a Kripked-tree7 = ([1,d]*, —, p) we build an extendedl + m)-Kripke tree

7¢ = ([1,d + m]*,—, p®) as follows: Let us fix new propositiong, ..., g, (one
for each variabler;) that do not occur in th&1SO-sentence) and such thap(v) N
{q1,...,qm} = 0forallv € [1,d]*. We define the new labeling functigsi as follows:

o°(0) = plo) for v € [1,d°
pf(vi) ={gi—q} forve [1,d]",d+1<i<d+m
p¢(viv) = Oforve [1,d]*,d+1<i<d+m,uc[l,d+m]"

It is easy to write down an MSO-senteng@esuch that for everyd + m)-Kripke tree
7' we haveT’ E g if and only if 7/ = 7¢ for some Kripked-tree 7. Moreover,
since the old Kripkei-tree7 is MSO-definable within7 ¢, we can construct from the
MSO-sentence) a newMSO-sentence)© such thatZ |= « if and only if 7¢ |= °.
Finally, letg(z) = V!, ¢i(x). Then, the nodes af7 are in a natural bijection with



the nodes off ¢ that satisfyg(z): If 7¢ = q(u) for u € [1,d + m]*, then there is a
uniquei € [1,m] suchthatZ © = ¢;(u) andu = v(i+d). Then we associate the node
with node(v, z;) of Gr. By relativizing all quantifiers in th&ool(MSO, WMSO+B)-
formula« to ¢(z), we can construct Bool(MSO, WMSO+B)-formulaa® such that
Gr Eaifandonlyif7¢ = a°.

It follows that there is a Kripké-tree7 such thatl = ¢ andGr = « if and only
if there is a Kripke(d + m)-tree7”’ such thatf’ = (6 A ¢° A a). Sinces A ¢ A af
is aBool(MSO, WMSO+B)-formula, the latter is decidable by Thi. 3.

6 Concrete domains over the integers

The main technical result of this section is:

Proposition 13. Z from (@) has the propertfHomDef (Bool(MSO, WMSO+B)).
SinceZ is negation-closed (see EX. 1) our main result follows by T8m
Theorem 14. SATCTL*(Z) is decidable.

We prove Prod.13 in three steps. First, we show that thetsteiZ, <) has the prop-
erty EHomDef(WMSO+B). Then we extend this result to the struct(?e <, =) and,
finally, to the full structurez.

Proposition 15. (Z, <) has the propertfHomDef(WMSO+B).

As a preparation of the proof, we first define some terminobogythen we characterize
structures that allow homomorphisms(#, <) in terms of their paths. Letl = (A, I)
be a countablg <}-structure. We identify4 with the directed graplfA, E) where
E = I(<). When talking about paths, we always refer to finite dirediedaths. The
length of a path(ao, a1, . ..,a,) (i.e.,(a;—1,a;) € Eforl <i<mn)isn.ForS C A
andz € A\ S, a path frome to S is a path fromz to some nodeg € S. A path fromS

to x is defined in a symmetric way.

Lemma 16. We haved < (Z, <) if and only if

(H1) A does not contain cycles, and
(H2) for all a,b € A there isc € N such that the length of all paths fromto b is
bounded by:.

Proof. Let us first show the “only if” direction of the lemma. Suppdsés a homo-
morphism fromA to (Z, <). The presence of a cyclgi, ...ar—1) in A (k > 1,
(ai,air1modk) € E for 0 < i < k — 1) would imply the existence of integers
205+ Rk—1 with z; < Zi4+1 modk for0 <i< k-1 (Wherezi = h(al)), which is
not possible. Hence, (H1) holds.

Suppose now thai,b € A are such that for every there is a path of length at
leastn froma to b. If d = h(b) — h(a), we can find a patiag, a; . .., a) with ag =
a, a = bandk > d. Sinceh is a homomorphism, this path will be mapped to an
increasing sequence of integérS:) = h(ag) < h(a1) < --- < h(ax) = h(b). But
this contradictg:(b) — h(a) = d < k. Hence, (H2) holds.
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For the “if” direction of the lemma assume thdtis acyclic (property (H1)) and
that (H2) holds. Fix an enumeratiag, a;, as, . . . Of the countable sed. Forn > 0 let
Spi={a€ A|3i,j <n:(a;a),(a,a;) € E*}, which has the following properties:

(P1) S, is convex w.r.t. the partial ordet*: If a,c € S,, and(a,b), (b,c) € E*, then
be S,

(P2) Fora € A\ S, all paths between and.S,, are “one-way”, i.e., there do not exist
b,c € S, such thalb,a), (a,c) € E*. This follows from (P1).

(P3) Foralla € A\ S, there exists a bound € N such that all paths betweenand
Sy, have length at most Letc¢? € N be the smallest such bound (hence, we have
c¢¢ = 0 if there do not exist paths betweerand.s,,).

To see (PB), assume that there only exist paths ffgmo a but not the other way
round (see (B2)); the other case is symmetric. If there isoumd on the length of paths
from S,, to a, then by definition ofS,,, there is no bound on the length of paths from
{ao, ..., a,} toa. By the pigeon principle, there exidis< i < n such that there is no
bound on the length of paths from to a. But this contradicts property (H2).

We build our homomorphism inductively. For everyn > 0 we define functions
hn : S, — 7Z such that the following invariants hold for all> 0.

(11) If n > 0thenh,(a) = hy,—1(a) foralla € S,,_1
(12) hy(Sy) is bounded irZ, i.e., there existy, zo € Z such thati,,(S,,) C [z1, 22].
(13) hy, is a homomorphism from the subgra@$,, £ N (S, x S,)) to (Z, <).

Forn = 0 we haveSy = {ag}. We sethq(ag) = 0 (any other integer would be also
fine). Properties [[11)(13) are easily verified. For- 0, there are four cases.

Case 1a, € S,_1, thusS,, = S, _;. We seth,, = h,,_. Clearly, (I1)-(3) hold fom.

Case 2.a, ¢ S,—1 and there is no path from,, to S,_; or vice versa. We set
hn(ay,) := 0 (andS, = S,_1 U {a,}). In this case [II1){I3) follow easily from the
induction hypothesis.

Case 34, ¢ S,_; and there exist paths from, to S,,_1. Then, by (PR) there do not
exist paths front,,_; to a,,. Hence, we have

Sp=Sp_1U{a€A|TbE Su1: (an,a),(a,b) € E*}.

We have to assign a valug,(a) for alla € A\ S,,_; that lie along a path from,, to

Sn—1. By (I2) there exist, zo € Z with h,,_1(S,_1) C [21, 22]. Recall the definition
of ¢¢_, from (A3). For alla € A\ S,,_; that lie on a path from,, to S,,_, we set
hn(a) = z1 — c¢%_,. Since there are paths fromto S,,_1, we havec?_; > 0. Hence,
foralla € S, \ S,_1, hn(a) < 2. Let us check thak,, : S,, — Z satisfy ([1)- (I3):
Invariant ([1) holds by definition of,,. For ([d) note that,,(S,,) C [z1 — ¢ 4, 22].

It remains to show[I3), i.e., that, is a homomorphism fromS,,, £ N (S, x Sy))
to (Z, <). Hence, we have to show thiatb;) < h(bs) forall (b1,b2) € EN(Sy x Sp).

—If bl,bQ € S,_1, thenhn(bl) = hnfl(bl) < hnfl(bQ) = hn(bg) by induction
hypothesis.

—If b € S, \ Sp—1 andby € S,,_1, we know thath,,(ba) = hy,—1(ba) > 2z; while
hn(b1) < z1 by construction. This directly impliek,, (b1) < h,(b2).
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— If by € S, \ Sp—1 andby € S,,_1, then(by, b2) € E and by assumptiob, must be
on a path fromu,, to S,,_; which contradicts (B2).

— If both b, and b, belong toS,, \ S, — 1 thenh,,(b;) == 23 — c  fori e {1,2}
Since(by,bs) € E, we haver” | > ¢?2 . This impliesh,, (b ) < hn(bQ).

Case 4a,, ¢ S,—1 and there exist paths froi$},_; to a,,. Foralla € S,, \ S,,—1 =
{a € A\ S,_1 | abelongs to a path fror§,,_; to a, }, seth,(a) = z2 + ¢%_,. The
rest of the argument goes analogously to Case 3.

This concludes the construction bf,. By (ID) limit function i = J, .y h: exists.
By (IB) andA = J,cy S:, h is @ homomorphism fromd to (Z, <). O

Proof of Prop.[Ib.We translate the conditions (H1) and (H2) from Lemma& 16 into
WMSO+B. Cycles are excluded by the senterdeCycle _ (Examplé_). Moreover, for
an acyclic{<}-structureA we haveA = VaVy BPaths.(x,y) (see also Exampld 2)

if and only if for all a,b € A there is a bound € N on the length of paths fromto b.
Thus, A < (Z, <) ifand only if A = —ECycle_ A VzVy BPaths. (z, y). O

Next, we extend Prof)._15 to the negation-closed strugtdres, =). To do so let us
fix a countable{<, =}-structure A = (A, I). Note that/(=) is not necessarily the
identity relation onA. Let~ = (I(=) U I(=)~1)* be the smallest equivalence relation
on A that containd (=). Since~ is the reflexive and transitive closure of the first-order
definable relatiol (=) U I(=)"!, we can construct & MSO-formula3(z, y) (using
thereach-construction from EX.12) that defines Let

E. =~ olI(<)o ~i.e., the relation defined by the formula (2)
p<(z,y) = Fu v (B(z,u) Au < vAG(v,y)). 3)
With A = (4, I) we denote the--quotient of A: It is a { < }-structure, its domain is the
setA = {[a]~ | a € A} of all ~-equivalence classes, and for two equivalence classes
I~
I(<

[a]~ and[b]. we have([d],[b].) € I(<) iff there area’ ~ a andb’ ~ b such that
(@', V) € ). Let us write[a] for [a]... We have:

Lemma 17. A < (Z,<,=) ifand only A < (Z, <).

In the next lemma, we translate the conditions for the emteof a homomorphism
from A to (Z, <) into conditions in terms afd.

Lemma 18. The following conditions are equivalent:

— A satisfies the conditions (H1) and (H2) from Lenimh 16.
— The graph(A, E.) is acyclic and for alla, b € A there is a bound € N such that
all E_-paths froma to b have length at most

Proposition 19. The concrete domain&, <,=), (N, <,=) and (Z \ N, <,=) have
propertyEHomDef(WMSO+B).

Proof. We only proof the proposition f(fZ, <, =). The other two cases are similar. We
want to find a(WMSO+B)-formula ¢ such that for al{ <, =}-structures4, A = ¢
if and only if A < (Z,<,=). Let A = (A,I) be a{<,=}-structure. We use the
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notations introduced before Lemiinal 17. By Lenimh 17[add 18 we twaconstruct a
(WMSO+B)-formula expressing thad has noE_-cycles and for alk, b € A there is

a boundec € N on the length ofy . -paths froma to b. For this, we can use the formula
constructed in the proof of Prdp.]15 withreplaced by the formula. from (3). O

In the rest of this section, we prove Prgp] 19 for the full stiwe Z from (1), which is
defined over the infinite signatue= {<,=}U{=,| c € Z} U{=,,| 0 < a < b}. By
the definition oEHomDef(Bool(MSO, WMSO+B)) we have to compute from a finite
subsignature C S aBool(MSO, WMSO+B)-sentencep,, that defines the existence
of a homomorphism t& when interpreted over a-structure 4. Hence, let us fix a
finite subsignature C S. We can assume that= {<,=} U{=.| c € C} U{=,
b€ D,0 < a < b} for finite non-empty set€’ C Z andD C N\ {0,1}. Define
m = min(C) and M = max(C'). W.l.0.g. we can assume that < 0 andM > 0. Let
A = (A, I) be a countable-structure. In order to not confuse the relatifs=) with
the identity relation o4, we write in the followingE_(x,y) for the atomic formula
expressing thafz, y) belongs to the relatiodi(=). Similarly, we write E.(z) for the
atomic formula expressing thate I(=.). Instead of=, ;(z) we writez = a modb.
Definex <y < (z <y V E=(z,y) V E-(y,z)) and theMSO-formula

Pboundedz) = Fy Fz( \/ E.(y) A \/ E.(2) Areach<(y,z) A reach<(z, 2)).
ceC ceC

Let B ={a € A| AE ¢poundeda)}. We call the induced substructue:= A 5 the
“bounded” part of4. Every homomorphism fron8 to Z has to mapB to the interval
[m, M]. Thus, a homomorphisiia: B — Z can be identified with a partition @8 into
M —m + 1setsB,,, ..., By, whereB; = {a € B | h(a) = i}. It follows that:

Lemma 20. There is anMSO-sentencepg such that for everys-structure A with
bounded par3, we have3 < Z if and only if A = ¢ 5.

Similar to B we define three other parts obastructure by th&VMSO-formulas

Sﬁgreaten(x) = “pounded ) A Jy (Sﬁboundet{y) A reach< (y, x))a
Psmalled ) = —Pbounded ) A Iy (Sﬁboundet{y) A feaChg(ﬂ% y))a
‘Prest(m) = ﬁ(%Dboundec(vﬁc) \ ‘Pgreaten(x) \ @smallel(x))-

Moreover, letG' = {a € A | A = ¢greatef@)}, S = {a € A | A = psmaleda) }, and
R={a€ Al AE ¢resfa)}. L&tN = Z[y andN = Z] y. Then we have:

Lemma2l. A=< Ziff (B2 Z, Algusur = 2, Alg 2N, andAlg X N).

We need some conventions on modulo constraints. A sequenck ), ..., (ax, bx)
with0 < a; < b; € D for1 <4 < kiscontradictory if there is no numben € N such
thatn = a; modb; for all 1 < ¢ < k. In the following letCS;, denote the set of con-
tradictory sequences of lengkh It is straightforward to show that every contradictory
sequence contains a contradictory subsequence of lengtbsat := max{2, |D|}.
Recall that~ is the smallest equivalence relation containifig=) and that~ is
defined by theWMSO-formula ¢(x, y). We call ac-structureA = (A, T) modulo
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contradictingif there is a~-class|c], elements:, cs, . .., ¢ € [¢], and a contradictory
sequencéas, b1), ..., (ax, by) such that; € I(=,,,) forall1 <i <k.

The following WMSO-formula pmoedconeXxpresses that@structure is modulo con-
tradicting, where we write,(j) (resp.s,(j)) for the first (resp. second) entry of the
j-th element of the sequenee= CSy:

¥Pmodcon= \/ \/ Jxy -z /\ l‘z,l‘J /\ Tj = Sa mOdsb( )

2<k<L s€CSy, i,j<k i<k
Lemma 22. Leto’ = o \ {=. | c € Z}. Let A = (A, I) be ac’-structure.

- A < Z iff Ais not modulo contradicting an@4, I(<), I(=)) = (Z,<,=).
— A =< Niff Ais not modulo contradicting an@4, I(<),I(=)) = (N, <,=).

Proof of Prop[IBLet A = (A, I) be ao-structure. We defined a partition df into

B, @G, S, andR. Since membership in each of these set®i$ASO + B)-definable, we
can relativize anyWMSO+B)-formula to any of these sets. For instance, we write
¢ for the relativization ofp to the substructure induced I6y. Let o5 be theMSO-
formulafrom Lemm&20, and faf' € {Z,N, Z\ N} let o be aformulathat expresses
A= (C,<,=), see Proff. 19. Thed = (pp A 5V E A 0§ A <pZ\N A =@modcon) Iff
A=Z due to Lemmak 21 andP2. 0

7 Extensions, Applications, Open Problems

A simple adaptation of our proof foE shows thatQ = (Q, <, =, (=4)seq) has the
propertyEHomDef (Bool(MSO, WMSO+B)) aswell: A = (A, T) < Qiff (i) (4, E<)
is acyclic, whereE_ is defined as in[{2), (ii) there does not exigtb) € EL (the
transitive closure oE.) with a € I(=,), b € I(=,) andg < p, and (iii) there do not
exista ~ bwitha € I(=,), b € I(=,), andg # p.

Let us finally state a simple preservation theoremAesatisfiability forCTL"(S).
Assume thajd andB are structures over countable signatusgsandSs, respectively,
and letB be the domain oB. We say thatA is existentially interpretablén B if there
existn > 1 and quantifier-free first-order formulagys, . .., y;, z1, ..., x,) and

<)07"(217"'7Zl7~7'r1,17"'7x1,n7"'7xar(’r‘),17" y Lar(r )fOI’T’GSA

over the signaturéy, where the mapping — ;- has to be computable, such théts
isomorphic to the structurgb € B™ | 3¢ € B': B = ¢(c,b)}, I) with

I(r) = {(b1s- - -, bar(r)) € BT | Fe € B Bl ¢, (€,b1, ..., bar(ry) } fOr 1 € S

Proposition 23. If SATCTL*(B) is decidable and4 is existentially interpretable i,
thenSATCTL™(A) is decidable too.

Examples of structuregl that are existentially interpretable (&, <,=), and hence
have a decidablSATCTL*(A)-problem are (iYZ", <ex, =) (for n > 1), where<e
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denotes the strict lexicographic order ertuples of integers, and (ii) the structure
Allenz, which consists of alZ-intervals together with Allen’s relation's (before),a
(after), m (meets),mi (met-by),o (overlaps),oi (overlapped by)d (during), di (con-
tains),s (starts) si (started by),f (ends)fi (ended by). In artificial intelligence, Allen’s
relations are a popular tool for representing temporal kedge.

It remains open to determine the complexity@FL*-satisfiability with constraints
over Z, see the last paragraph in the introduction. Clearly, thiblem isS2EXPTIME-
hard due to the known lower bound fof L*-satisfiability. To get an upper complexity
bound, one should investigate the complexity of the empsinaroblem for puzzles
from [I] (see Lemma&l5). An interesting structure for whichk tlecidability status for
satisfiability of CTL* with constraints is open, i§{0,1}*, <,, £,), where<, is the
prefix order on words, and,, is its complement. It is not clear, whether this structure
has the propertHomDef (Bool(MSO, WMSO+B)).
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