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Abstract. This paper gives a survey on recent progress in grammar-
based compression for trees. Also algorithms that directly work on gram-
mar-compressed trees will be surveyed.

1 Introduction

Trees are an omnipresent data structure in computer science. Large trees occur
for instance in XML processing or automated deduction. For certain appliations
it is important to work with compact tree representations. A widely studied
standard compact tree representation is the dag (directed acyclic graph), see e.g.
[5, 10–12,38]. A dag is basially a folded tree, where nodes may share children.
The tree represented by a dag is obtained by unfolding the dag. One of the nice
things about dags is that every tree has a unique minimal (or smallest) dag that
can be computed in linear time [10]. In the minimal dag of a tree t, isomorphic
subtrees of t are represented only once. Figure 1 shows a tree and its minimal dag
(we consider ranked ordered trees, where every node is labelled with a symbol,
whose rank determines the number of children of the node). In [38], dags are used
to obtain a universal (in the information theoretic sense) compressor for binary
trees under certain distributions. Dags can achieve exponential compression in
the best case: The minimal dag of a full binary tree of height n is a linear chain
of length n.

In recent years, another compact tree representation that generalizes dags
has been studied: Tree straight-line programs, briefly TSLPs. Whereas dags can
only share repeated complete subtrees, TSLPs can also share repeated occur-
rences of subtrees with gaps (i.e., subtrees, where some smaller subtrees are
removed). A TSLP can be seen as a very restricted context-free tree grammar
that produces exactly one tree. It consists of rewrite rules (productions) of the
form A(x1, . . . , xk) → t(x1, . . . , xk). Here, A is a nonterminal of rank k and
x1, . . . , xk are parameters that are replaced by concrete trees in the application
of this rule. The nodes of the tree t(x1, . . . , xk) are labelled with terminal sym-
bols (the node labels of the tree produced by the TSLP), nonterminal symbols
and the parameters x1, . . . , xk. There is a distinguished start nonterminal S of
rank 0. To produce a single tree, it is required that (i) for every nonterminal
A there is exactly one rule with A on the left-hand side, and (ii) that from a
nonterminal A one cannot reach A by more than one rewrite step. Finally, it is
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required that every parameter xi appears at most once in the right-hand side
of A (linearity). Dags can be seen as TSLPs, where every nonterminal has rank
zero. As for dags, TSLPs allow exponential compression in the best case, but
due to the ability to share also internal patterns, one can easily come up with
examples where the minimal dag is exponentially larger than the smallest TSLP,
see Section 2.

TSLPs generalize straight-line programs for words (SLPs). These are context-
free grammars that produce a single word. There exist several grammar-based
string compressors that produce (a suitable encoding of) an SLP for an input
word. Prominent examples are LZ78, RePair, Sequitur, and BiSection. Theoret-
ical results on the compression ratio of these algorithmis can be found in [8].
Over the last couple of years, the idea of grammar-based compression has been
extended from words to trees. In Section 3 we will discuss several grammar-based
tree compressors based on TSLPs.

SLPs and TSLPs are a simple and mathematically clean data structure.
These makes them well-suited for the development of efficient algorithms on
compressed objects. The goal of such algorithms is to manipulate and analyze
compressed objects and thereby beat a naive decompress-and-compute strategy,
where the uncompressed object is first computed and then analyzed. A typical
example for this is pattern matching. Here, we have a large text, which is stored
in compressed form and want to locate occurrences of a pattern (which is usually
given in explicit form) in the text. But algorithms on compressed objects can
be also useful for problems, where we do not directly deal with compression. In
many algorithms huge intermediate data structures have to be stored, which are
the main bottleneck in the computation. An obvious potential solution in such
a situation is to store these intermediate data structures in a compressed way.

A survey on algorithms that work on SLP-compressed words can be found in
[24], which contains a section on algorithms on TSLP-compressed trees as well.
In Section 4 we give a more detailed and up-to-date survey on algorithms for
trees that are represented by TSLPs.

2 Tree straight-line programs

For background on trees and tree grammars see [9]. Here, trees are rooted, or-
dered and node-labelled. Every node has a label from a finite alphabet Σ. More-
over, with every symbol a ∈ Σ a natural number (the rank of a) is associated.
Symbols of rank zero are called constants and symbols of rank one are unary. If
a tree node v is labelled with a symbol of rank n, then v has exactly n children,
which are linearly ordered. Such trees can conveniently be represented as terms.
The size |t| of a tree t is the number of nodes of t. Here is an example:

Example 1. Let f be a symbol of rank 2, h a symbol of rank 1, and a a symbol
of rank 0 (a constant). Then the term h(f(h(f(h(h(a)), a)), h(f(h(h(a)), a))))
corresponds to the tree of size 14, shown in Figure 1.
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Fig. 1. A node-labelled tree and its minimal dag

A tree straight-line program (TSLP for short and also called SLCF tree grammar
in [25, 28] or SLT grammar in [27]) over the terminal alphabet Σ (which is a
ranked alphabet in the above sense) is a tuple G = (N, Σ, S, P ), such that

– N is a finite set of ranked symbols (the nonterminals) with N ∩ Σ = ∅,
– S ∈ N has rank 0 (the initial nonterminal),

– and P is a finite set of productions of the form A(x1, . . . , xn) → t where A
is a nonterminal of rank n and t is a tree built up from the ranked symbols
in Σ ∪ N and the parameters x1, . . . , xn which are considered as symbols
of rank 0 (i.e., constants). Every xi is required to appear exactly once in
t. Moreover, it is required that every nonterminal occurs on the left-hand
side of exactly one production, and that the relation {(A, B) ∈ N × N |
(A(x1, . . . , xn) → t) ∈ P, B occurs in t} is acyclic.

A TSLP G generates a tree val(G) in the natural way. During the derivation
process, the parameters x1, . . . , xn are instantiated with concrete trees. Instead
of giving a formal definition, let us consider an example.

Example 2. Let S, A, B, C be nonterminals, let S be the start nonterminal and
let the TSLP G consist of the following productions:

S → A(B(a), B(a))

A(x1, x2) → C(C(x1, a), C(x2, a))

C(x1, x2) → h(f(x1, x2))

B(x) → h(h(x))
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Then val(G) is the tree from Example 1. It can be derived as follows:

S → A(B(a), B(a))

→ C(C(B(a), a), C(B(a), a))

→ C(C(h(h(a)), a), C(h(h(a)), a))

→ h(f(C(h(h(a)), a), C(h(h(a)), a)))

→ h(f(h(f(h(h(a)), a)), h(f(h(h(a)), a))))

The size of a TSLP G = (N, Σ, S, P ) is defined as the total number of all nodes
in right-hand sides of P , where nodes labelled with a parameter are not counted
(see [17] for a discussion of this). Hence, the size of the TSLP in Example 2 is
14. It is easy to show that the size of tree val(G) is bounded by 2O(|G|).

The following result from [28] turned out to be very useful for algorithmic
problems on trees that are represented by TSLPs:

Theorem 1 ([28]). From a given TSLP G = (N, Σ, S, P ), where every A ∈ N
has rank at most k and every σ ∈ Σ has rank at most r, one can compute in
time O(k · r · |G|) a TSLP H of size O(r · |G|) such that (i) val(G) = val(H) and
every nonterminal of H has rank at most one.

This result is sharp in the sense that transforming a TSLP into an equivalent
TSLP where every nonterminal has rank zero involves an exponential blow-up in
the size of the TSLP. For instance, the tree tn = f2n

(a) with 2n many occurrences
of the unary symbol f can be produced by a TSLP of size O(n) (S → An(a),
Ai(x) → Ai−1(Ai−1(x)) for 1 ≤ i ≤ n, and A0(x) → f(x)) but the minimal dag
for tn is tn itself. Note that a dag can be transformed into a TSLP, where every
nonterminal has rank zero: The nodes of the dag are the nonterminals of the
TSLP, and if a σ-labelled node v has the children v1, . . . , vn in the dag (from
left to right), then we introduce the production v → σ(v1, . . . , vn). Similarly, a
TSLP, where every nonterminal has rank zero, can be transformed into a dag of
the same size.

In [25, 27, 28], also non-linear TSLPs were studied. A non-linear TSLP may
contain productions of the form A(x1, . . . , xk) → t, where a parameter xi occurs
several times in t. Non-linear TSLPs can achieve double exponential compression:
The non-linear TSLP with the productions S → An(a), Ai(x) → Ai−1(Ai−1(x))
for 1 ≤ i ≤ n, and A0(x) → f(x, x) produces a full binary tree of height 2n and
hence has 22n+1 − 1 many nodes.

TSLPs generalize SLPs, which produce words instead of trees. In SLPs, sym-
bols do not have a rank, and the productions are simply of the form A → w,
where w consists of terminal symbols and nonterminals. It is required again that
every nonterminal occurs on the left-hand side of exactly one production, and
that the relation {(A, B) | (A → w) is a production and nonterminal B occurs
in w} is acyclic. More details on SLPs can be found in [24].
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3 Constructing small TSLPs

Efficient algorithms that generate for a given input tree t a linear TSLP G with
val(G) = t are described in [6, 26]. The algorithm from [26], called TreeRePair,
is an extension of the grammar-based string compressor RePair [20] to trees. On
a collection of XML skeleton trees (where the data values were removed) the
compression ratio of TreeRePair (measured in the size of the computed TSLP
divided by the number of edges of the input tree) was about 2.8 %, whereas for
the same data set the compression ratio achieved by the minimal dag (number
of edges of the minimal dag divided by the number of edges of the input tree) is
about 12%, see [26].

Altough TreeRePair works very well on real XML data, its performance is
quite poor from a theoretical viewpoint: In [26], a familiy of (binary) trees tn
(n ≥ 1) is constructed, such that (i) tn has size O(n), (ii) a TSLP of size O(log n)
for tn exists, but (iii) the TSLP for tn computed by TreeRePair has size Ω(n).

For a tree t let opt(t) be the size of a smallest TSLP for the tree t. Similarly,
for a word s let opt(s) be the size of a smallest SLP for the word s. It was shown
in [8] that unless P = NP there is no polynomial time algorithm that computes
for a given word s an SLP of size less than 8569/8568 · opt(s). The same result
holds also for trees: Simply encode a word by the tree consisting of unary nodes
and a single leaf. A TSLP for this tree is basically an SLP for the original word.
For SLPs the best known polynomial time grammar-based compressors achieve
an approximation ratio of O(log( n

opt(s) )), i.e., the size of the computed SLP for

an input word s of length n is bounded by O(opt(s) · log( n
opt(s) )) [8, 16, 32, 33].

Recently, this bound has been also shown for trees:

Theorem 2 ([17]). From a given tree t of size n, one can compute in linear
time a TSLP G of size O(r · g + r · g · log( n

r·g )) such that val(G) = t. Here,

g = opt(t) and r is the maximal rank of a node label in t.

The algorithm from [17] uses three different types of compression operations that
are executed repeatedly on the current tree in the following order as long as the
tree has size at least two. At the same time we build up the TSLP for the input
tree.

Chain compression: For every unary symbol a, we replace every maximal occur-
rence of a pattern an(x) (maximal means that the parent node of the topmost
a-node is not labelled with a and also the unique child of the deepest a-node is
not labelled with a) by a single tree that is labelled with a fresh unary symbol
an. We call such maximal patterns maximal a-chains. Moreover, we add to the
TSLP productions that generate from the nonterminal an(x) the a-chain an(x).
These productions basically form an SLP for an. If an1(x), an2(x), . . . , ank(x)
are all maximal a-chains in the current tree with n1 < n2 < · · · < nk, then the
total size of all productions needed to produce these chains can be bounded by
O(k +

∑k
i=1 log(ni − ni−1) with n0 = 0.

Pair compression: After the chain compression step, there do not exist occur-
rences of a pattern a(a(x)) in the current tree for a unary symbol a. Let Σ1 be

5



the set of all unary symbols that appear in the current tree. We first compute
a partition Σ1 = Σ0,1 ∪ Σ1,1. Then, every occurrence of a pattern a(b(x)) with
a ∈ Σ0,1 and b ∈ Σ1,1 is replaced by a single node labelled with the fresh unary
symbol ca,b. Moreover, we introduce the TSLP-production ca,b(x) → a(b(x)).
The partition Σ1 = Σ0,1 ∪ Σ1,1 is chosen such that the number of occurrences
of a pattern a(b(x)) with a ∈ Σ0,1 and b ∈ Σ1,1 is large. More precisely, one can
choose the partition such that there are at most (n1− c+2)/4 such occurrences,
where n1 is the number of unary nodes in the current tree and c is the number
of maximal chains consisting of unary nodes.

Leaf compression: We eliminate all leaves of the current tree as follows: Let
v be an f -labelled node such that v has at least one leaf among its children.
Let n ≥ 1 be the rank of f , and let 1 ≤ i1 < i2 < · · · < ik ≤ n be
the positions of the leaves among the children of v. Let aj be the label (a
constant) of the ithj child of v. Then we remove all children of v, which are
leaves, and replace the label f of v by the fresh symbol fi1,a1,...,ik,ak

, which
has rank n − k. Moreover, we add to the TSLP the production fi1,a1,...,ik,ak

→
f(x1, . . . , xi1−1, a1, xi1+1, . . . xi2−1, a2, xi2+1, . . . , xik−1, ak, xik+1, . . . , xn).

Chain compression and pair compression are the two compression steps in Jeż’s
string compressor from [16]. They allow to shrink chains of unary nodes. Intu-
itively, if there are no long chains of unary nodes in the tree, then there must be
many leaves and leaf compression will shrink the size of the tree substantially.
More precisely, it can be shown that in a single phase, consisting of chain com-
pression, followed by pair compression, followed by leaf compression, the size of
the tree drops by a constant factor. This allows to come up with a linear bound
on the running time. To bound the size of the produced TSLP and, in partic-
ular, to compare it with the size of a smallest TSLP for the input tree, Jeż’s
recompression technique is used in [17].

To the knowledge of the author, there is no algorithm for computing a small
non-linear TSLP for a given input tree and thereby achieves a reasonable ap-
proximation ratio. This raises the question of whether the size of a smallest
non-linear TSLP can be approximated in polynomial time up to a factor of say
log n (assuming reasonable assumptions from complexity theory).

It is well known that for every word w ∈ Σ∗ there exists an SLP for w of
size O( n

log
σ

n ), where σ = |Σ|. Examples of grammar-based compressors that

achieve this bound are for instance LZ78 or BiSection [18]. A simple information
theoretic argument shows that the bound O( n

log
σ

n ) is optimal. By the following

result from [15] the same bound holds also for binary trees and TSLPs.

Theorem 3 ([15]). From a given tree t of size n, where every terminal symbol
has rank at most 2, one can compute in linear time a TSLP G of size O( n

log
σ

n )

such that val(G) = t. Here, σ is the number of different node labels that appear
in t.

In [15], only the bound O(n log n) on the running time is stated. The linear time
algorithm will appear in a long version of [15]. Let us briefly sketch the linear
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time algorithm for a binary trees t with node labels from a set Σ (|Σ| = σ). The
algorithm works in two steps:

Step 1. We decompose the tree t into O( n
log

σ
n ) many clusters (connected sub-

graphs) of size at most c · logσ n for a constant c that will be chosen later. Each
cluster is a full subtree of t with at most two full subtrees of t removed from
it. Hence, we can write such a cluster as a tree u(x1, . . . , xk) with k ≥ 2, where
every parameter xi appears exactly once. We replace each cluster u(x1, . . . , xk)
in t by a single node labelled with a nonterminal Au of rank at most two, and
introduce the production Au(x1, . . . , xk) → u(x1, . . . , xk). Note that the result-
ing tree s has size O( n

log
σ

n ). We add the production S → s, where S is the start

nonterminal. With some care, this first step can be done in linear time.

Step 2. The TSLP we obtain from the previous step has size O(n), so nothing
is gained. We now compute in linear time (using [10]) the minimal dag for the
forest consisting of all cluster trees u(x1, . . . , xk). Recall that each such tree has
size at most c · logσ n. Hence, to bound the size of the minimal dag of this forest,
one only has to count the number of binary trees of size at most c · logσ n, where
every node is labelled with a symbol from Σ∪{x1, x2}. By choosing the constant
c suitably, we can (using the formula for the number of binary trees of size m,
which is given by the Catalan numbers) bound this number by

√
n. The minimal

dag for the cluster trees together with the start production S → s translates into
a TSLP for t of size

√
n + O( n

log
σ

n ) = O( n
log

σ
n ).

Theorem 3 can be generalized to trees of higher rank. Then the constant hidden
in the big-O-notation depends on the maximal rank of a terminal symbol, but
the precise dependence is not analyzed in [15].

A simple information theoretic argument shows that the average size of a
minimal TSLP for a uniformly chosen tree of size n with labels from an alphabet
of size σ is Ω( n

log
σ

n ) and hence, by Theorem 3, Θ( n
log

σ
n ). In [11] it is shown that

the average size of the minimal dag of a uniformly chosen binary tree with n
unlabelled nodes is Θ( n√

log n
). In [3] this result is extended to node-labelled

unranked trees.
With some additional effort, one can ensure that the TSLP G in Theorem 3

has height O(log n). This has an interesting application for the problem of trans-
forming arithmetical expressions into circuits (i.e., dags). Let S = (S, +, ·) be a
(not necessarily commutative) semiring. Thus, (S, +) is a commutative monoid
with identity element 0, (S, ·) is a monoid with identity element 1, and · left
and right distributes over +. An arithmetical expression is just a labelled binary
tree where internal nodes are labelled with the semiring operations + and ·,
and leaf nodes are labelled with variables y1, y2, . . . or the constants 0 and 1.
An arithmetical circuit is a (not necessarily minimal) dag whose internal nodes
are labelled with + and · and whose leaf nodes are labelled with variables or
the constants 0 and 1. The depth of a circuit is the length of a longest path
from the root node to a leaf. An arithmetical circuit evaluates to a multivari-
ate noncommutative polynomial p(y1, . . . , yn) over S, where y1, . . . , yn are the
variables occurring at the leaf nodes. Two arithmetical circuits are equivalent
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if they evaluate to the same polynomial. Brent [4] has shown that every arith-
metical expression of size n over a commutative ring can be transformed into an
equivalent circuit of depth O(log n) and size O(n) (the proof easily generalizes to
semirings). Using Theorem 3 one can refine the size bound to O(n·log m

log n ), where
m is the number of different variables in the formula:

Theorem 4 ([15]). A given arithmetical expression F of size n having m dif-
ferent variables can be transformed in time O(n) into an arithmetical circuit C
of depth O(log n) and size O(n·log m

log n ) such that over every semiring, C and F

evaluate to the same noncommutative polynomial (in m variables).

To show Theorem 4 one first transforms the arithmetical expression into a TSLP
of size O( n

log
m

n ) = O(n·log m
log n ). Then one transforms the TSLP into a circuit that

evaluates to the same polynomial (over any semiring) as the TSLP. Only for this
second step, one has to use the semiring structure.

There are also some other tree compressors that use grammar formalisms
slightly different from TSLPs. In [1] so called elementary ordered tree grammars
are used, and a polynomial time compressor with an approximation ratio of
O(n5/6) is presented. Also the top dags from [2] can be seen as a variation of
TSLPs for unranked trees. In [2] it was shown that for every tree t of size n
the top dag has size O( n

log0.19 n
). An extension of TSLPs to higher order tree

grammars was proposed in [19].

4 Algorithmic problems for TSLP-compressed trees

Let us now consider algorithmic problems for TSLP-compressed trees. Probably
the most basic question is whether two trees, both given by TSLPs, are equal.

Theorem 5 ([6, 34]). For two given TSLPs G and H it can be checked in poly-
nomial time, whether val(G) = val(H).

For the proof of Theorem 5 one constructs in polynomial time from a TSLP G an
SLP G′ such that val(G′) represents a depth-first left-to-right transversal of the
tree val(G). For this, G′ contains k + 1 nonterminals A0,1, A1,2, A2,3, . . . , Ak−1,k,
Ak,0 for a rank-k nonterminal A of G. Intuitively, A0,1 produces the part of
the traversal of valG(A) from the root of valG(A) to the position of the first
parameter, Ai,i+1 (1 ≤ i ≤ k − 1) produces the part of the traversal from the
position of the ith parameter to the position of the (i+1)th parameter, and Ak,0

produces the part of the traversal from the position of the kth parameter back
to the root. For the TSLP from Example 2 we obtain the following SLP:

S0,0 → A0,1B0,1aB1,0A1,2B0,1aB1,0A2,0

A0,1 → C0,1C0,1, A1,2 → C1,2aC2,0C1,2C0,1, A2,0 → C1,2aC2,0C2,0

C0,1 → hf, C1,2 → ε, C2,0 → ε

B0,1 → hh, B1,0 → ε
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For a ranked tree, its depth-first left-to-right transversal uniquely represents the
tree. Therefore, for two TSLPs G and H we have val(G) = val(H) if and only if
val(G′) = val(H′). Hence, equality of trees that are represented by linear TSLPs
can be reduced to checking equality of SLP-compressed words, which can be
checked in polynomial time by a famous result of Plandowski [31] (which has
been indendently shown in [14, 30]). In [34], Theorem 5 is shown by a direct
extension of Plandowski’s algorithm for SLPs.

It is open whether Theorem 5 can be extended to non-linear TSLPs. For
these, the best upper bound on the equivalence problem is PSPACE [6] and no
good lower bound is known.

In [13], Theorem 5 has been extended to the unification problem. Unifica-
tion is a classical problem in logic and deduction. One considers trees s and t
with distinguished variables (these variables should be not confused with the
parameters in TSLPs), which label leaf nodes. The trees s and t are unifiable
if there exists a substitution that maps every variable x appearing in s or t to
a variable-free tree (also called ground term) such that σ(s) = σ(t). Here, σ(s)
(resp., σ(t)) denotes the tree that is obtained by replacing every x-labelled leaf
of s (resp., t) by the tree σ(x). The following result has been shown in [13]:

Theorem 6 ([13]). For two given TSLPs G and H (where some of the terminal
symbols of rank 0 are declared as variables) it can be checked in polynomial time,
whether val(G) and val(H) are unifiable.

In fact, the representation of the most general unifier of val(G) and val(H) in
terms of TSLPs for the variables is computed in [13] in polynomial time.

In [36], the authors studied the compressed submatching problem: The input
consists of TSLPs G (the pattern TSLP) and H, where some of the terminal
symbols of rank 0 appearing in G are declared as variables, and it is asked
whether there exists a substitution σ such that σ(val(G)) is a subtree of val(H).
Whereas the complexity of the general compressed submatching problem is still
open (the best upper bound is NP), Schmidt-Schauß proved in [36]:

Theorem 7 ([36]). Compressed submatching can be solved in polynomial time,
if (i) no variable appears more than once in the tree produced by the pattern
TSLP (i.e., this tree is linear) or (ii) all nonterminals in the pattern TSLP have
rank zero (i.e., the pattern TSLP is in fact a dag).

So far, we considered ordered trees, where the children of a node are linearly
ordered. Deciding isomorphism of unordered trees, where the children are not
ordered is more difficult than for ordered trees. For explicitly given unordered
trees, isomorphism can be decided in logspace by a result of Lindell [22]. For
unordered trees that are given by dags, one can solve the isomorphism problem
by a simple partition refinement algorithm [29]. Recently this result has been
extended to unordered trees that are represented by TSLPs [27]:

Theorem 8 ([27]). For two given TSLPs G and H it can be checked in poly-
nomial time, whether val(G) and val(H) are isomorphic as unordered trees.
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For non-linear TSLPs it was shown in [27] that the problem whether val(G) and
val(H) are isomorphic as unordered trees is PSPACE-hard and in EXPTIME.

In [25, 28], the problem of evaluating tree automata over TSLP-compressed
input trees was considered. A tree automaton runs on a ranked input tree
bottom-up and thereby assigns states to tree nodes. Transitions are of the form
(q1, . . . , qn, f, q), where f is a node label of rank n and q1, . . . , qn, q are states of
the tree automaton. Then a run of the tree automaton is a mapping ρ from the
tree nodes to states that is consistent with the set of transitions in the following
sense: If a tree node is labelled with the symbol f (of rank n) and v1, . . . , vn are
the children of v in that order, then (ρ(v1), . . . , ρ(vn), f, ρ(v)) must be a tran-
sition of the tree automaton. A tree automaton accepts a tree if there is a run
that assigns a final state to the root of the tree (every tree automaton has a
distinguished set of final states). The problem of checking whether an explicitly
given tree is accepted by a tree automaton that is part of the input is complete
for the class LogCFL (which is contained in the parallel class NC2) [23]. For a
fixed tree automaton this problem belongs to NC1 [23]. For TSLP-compressed
trees we have:

Theorem 9 ([28]). It is P-complete to check for a given TSLP G and a given
tree automaton A, whether A accepts val(G).

The polynomial time algorithm works in two steps:

Step 1. Using Theorem 1 the input TSLP G is transformed in polynomial time
into a TSLP H such that val(G) = val(H) and every nonterminal of H has rank
at most one.

Step 2. For a TSLP G, where every nonterminal has rank 0 or 1, it is easy
to evaluate a tree automaton A on val(G). Bottom-up on the structure of the
TSLP, one computes for every nonterminal A of rank 0 the set of states to which
valG(A) can evaluate (i.e., those states that may appear in a run at the root),
whereas for a nonterminal A of rank 1 one computes a binary relation on the set
of states of A. This relation contains a pair (q1, q2) if and only if the following
holds: There is a mapping from the nodes of valG(A) to the states of A such that
(i) the above condition of a run is satisfied, (ii) to the unique parameter-labelled
node of valG(A) the state q1 is assigned, and (iii) to the root the state q2 is
assigned. It is easy to compute this information for a nonterminal A assuming
it has been computed for all nonterminals in the right-hand side of A.

In [28], also a generalization of Theorem 9 to tree automata with sibling con-
straints is shown. In this model, transitions can depend on (dis)equalities be-
tween the children of the node to which the transition is applied to.

The problem, whether a given tree automaton accepts the tree val(G), where
G is a given non-linear TSLP was shown to be PSPACE-complete in [25]. In fact,
PSPACE-hardness already holds for a fixed tree automaton.

Several other algorithmic problems for TSLP-compressed input trees are
studied in [7, 13, 21, 35, 37, 36].
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