
Parity Games of Bounded Tree- and
Clique-Width

Moses Ganardi

University of Siegen, Germany
ganardi@eti.uni-siegen.de

Abstract. In this paper it is shown that deciding the winner of a parity
game is in LogCFL, if the underlying graph has bounded tree-width, and
in LogDCFL, if the tree-width is at most 2. It is also proven that parity
games of bounded clique-width can be solved in LogCFL via a log-space
reduction to the bounded tree-width case, assuming that a k-expression
for the parity game is part of the input.

1 Introduction

Parity games are two-player graph games of infinite duration. The central ques-
tion in the study of parity games is to determine the winner of a given game. This
problem is motivated by its close connection to the µ-calculus model-checking
problem [1] but also from a complexity theoretical perspective the problem has
an interesting status: The best known upper bound is NP ∩ coNP (to be precise,
UP ∩ coUP [2]) and no polynomial time algorithm is known.

In this paper we study the parallel complexity of parity games of bounded
tree- and clique-width. It was shown by Obdržálek that on such classes parity
games become polynomial time solvable [3,4]. Recently, Fearnley and Schewe
presented an efficient parallel algorithm for parity games of bounded tree-width;
more precisely, they proved that the problem belongs to NC2 [5].

We improve the complexity bounds for parity games of bounded tree- and
clique-width to LogCFL, a subclass of NC2 containing those languages which
are log-space reducible to a context-free language [6]. In the tree-width case the
LogCFL bound follows from the observation that the polynomial time algorithm
by Obdržálek can be simulated by a bottom-up tree automaton reading the tree
decomposition. For the sake of completeness we present a new proof inspired by
[7], in which hierarchically defined parity games are treated. For parity games
of tree-width ≤ 2 we can improve the bound further to LogDCFL, containing
those languages which are log-space reducible to a deterministic context-free
language. Graphs of tree-width ≤ 2 are also known as series-parallel graphs.
Finally, we prove that parity games of bounded clique-width can be log-space
reduced to parity games of bounded tree-width if we assume that a k-expression
for the input game is given. This yields an alternative proof for Obdržálek’s
clique-width result with an improved complexity bound.

2 Preliminaries

For k ∈ N we abbreviate {1, . . . , k} by [k]. For a function f we write dom(f) for
the domain of f . We denote by [a 7→ b] the function which maps a to b, and by
f [a 7→ b] the function which maps a to b and is otherwise defined as f . All graphs
considered in this paper are directed graphs. We assume familiarity with the
basic concepts of log-space reductions, in particular the fact that the composition
of two log-space computable functions is log-space computable again. We refer
to [8] for more details on parallel complexity theory.

2.1 Parity games

A parity game G = (V0, V1, E, λ) consists of a directed graph (V,E) where
V = V0 ∪ V1 is partitioned into vertices, or positions, of Player 0 and 1, and
a priority function λ : V → N. We only consider finite parity games and define
the size of G is the number of positions |V |. The two players move a token from
a starting position along the edges forming a path π, also called play: if the to-
ken is currently in position v ∈ Vs then Player s moves the token to a successor
position of v. If a position v ∈ Vs without successors is reached, then Player 1−s
wins the play. Otherwise the play π = v0v1 . . . is infinite and is won by Player 0
if and only if the maximal priority occurring infinitely often in λ(v0)λ(v1) . . . is
even.

A strategy σ for Player s is a partial function σ : V ∗Vs → V which maps a
finite sequence v0 . . . vn to a successor of vn. A play π = v0v1 . . . is conform with
σ if σ(v0 . . . vi) = vi+1 for all i < |π| where vi ∈ Vs. A strategy σ for Player s
is winning from v0 ∈ V if Player s wins every play which is conform with σ; we
also say that Player s wins G from v0. The winning region of Player s is the set
of all positions from which Player s wins G. A positional strategy σ for Player s
depends only on the current position and can be represented by a partial function
σ : Vs → V where (v, σ(v)) ∈ E for all v ∈ dom(σ). It is known that every parity
game G is positionally determined, i.e. from every position either Player 0 or 1
has a positional winning strategy [9]. Solving parity games is formulated as the
decision problem: Given a parity game G and a starting position v0 ∈ V , does
Player 0 win G from v0?

An important parameter of a parity game G is the maximal priority d oc-
curring in G because the running times of many algorithms for solving parity
games are polynomial in the size of G but exponential in d. It is also known
that the winning regions of parity games where the maximal priority is bounded
can be defined by a fixed MSO-formula [10]. Hence, by the log-space version of
Courcelle’s Theorem [11] parity games whose tree-width and maximal priority
are bounded by constants can be solved in log-space. For our purposes it is im-
portant that the maximal priority of a parity game can be assumed to be linear
in the number of vertices by a compression of the priority function, see [12].

2

1

0

1

0

0

4

0

1

2

3

Fig. 1: An edge-labeled parity game where circles belong to Player 0 and squares
belong to Player 1.

2.2 Edge-labeled parity games

For the tree-width result it is useful to convert the given parity game into a dif-
ferent form where priorities are assigned to edges instead of vertices. Further we
allow multiple (finitely many) edges between two vertices, which is convenient
for gluing together two parity games. Formally, an edge-labeled parity game has
the form G = (V0, V1, E) where E ⊆ V × N × V is a finite set of labeled edges.
In this context, a play π = (v0, p0, v1)(v1, p1, v2) . . . is a finite or infinite se-
quence of edges, which is won by Player 0 if and only if the maximal priority
occurring infinitely often in p0p1 . . . is even. A strategy for Player s is a partial
function ρ : V ∗Vs → E which maps a finite sequence v0 . . . vn to an outgoing
edge (vn, p, vn+1) of vn. A positional strategy is a partial function ρ : Vs → E,
where ρ(v) is an outgoing edge of v for all v ∈ dom(ρ). Winning strategies and
winning regions are defined similarly as for standard parity games. Figure 1 de-
picts an edge-labeled parity game where the marked positions and edges form
the winning region and a positional winning strategy of Player 0.

Lemma 1 For every parity game there is an edge-labeled parity game with the
same winning regions, and vice versa. In particular, edge-labeled parity games
are positionally determined.

Proof. Given a parity game, assign to each edge the priority of its starting vertex.
Conversely, given an edge-labeled parity game, subdivide every edge and assign
its priority to its new vertex; all other vertices have priority 0. ut

We will mainly deal with edge-labeled parity games G without multiple edges,
i.e. (u, p, v), (u, q, v) ∈ E implies p = q, which we call simple (edge-labeled) parity
games. Whenever an edge-labeled parity game contains exactly one edge between
a pair of positions u and v, we sometimes denote the edge by (u, v) without the
priority and we write λ(u, v) = p. Every edge-labeled parity game can be made
simple as witnessed by the following lemma.

Lemma 2 For every edge-labeled parity game one can compute in log-space a
simple edge-labeled parity game with the same winning regions.

Proof. Consider the reward order v on N, which intuitively sorts the priorities
according to their attractivity to Player 0: We define p v q if p and q are even
and p ≤ q, or p and q are odd and p ≥ q, or p is odd and q is even.

For an edge-labeled parity game G = (V0, V1, E) we define the simplified
edge-labeled parity game simple(G) by combining multiple edges between two
endpoints (u, v) into a single one with the following priority:

λ(u, v) =

{
maxv{p ∈ N : (u, p, v) ∈ E}, if u ∈ V0,
minv{p ∈ N : (u, p, v) ∈ E}, if u ∈ V1.

It can be verified that winning regions are preserved. ut

2.3 Tree-width

In the following we define two well-known graph decompositions and the cor-
responding graph measures, tree-width and clique-width. Many NP-complete
problems become solvable in log-space or linear time on classes of bounded tree-
or clique-width, see [11,13,14].

A tree decomposition T = (T, {Xi}i∈I) of a graph G = (V,E) consists of
a rooted tree T with node set I and a family of bags Xi ⊆ V for i ∈ I such
that for all (u, v) ∈ E there exists i ∈ I with u, v ∈ Xi, and for all v ∈ V
the set {i ∈ I : v ∈ Xi} is non-empty and connected in T . The width of T is
maxi∈I |Xi| − 1 and the tree-width of a graph G is the minimum width of a tree
decomposition of G. The tree-width of a parity game is the tree-width of its
underlying graph. Deciding whether the tree-width of a given graph is at most a
given parameter k ∈ N is NP-complete [15]; however, for every fixed k ∈ N there
exists a log-space algorithm which decides whether a given graph has tree-width
≤ k and in that case computes a width-k tree decomposition for it [11]. We call
a width-k tree decomposition T = (T, {Xi}i∈I) smooth if

(a) |Xi| = k + 1 for all i ∈ I,
(b) |Xi ∩Xj | = k for all edges (i, j) in T .

It is known that tree decompositions can be made smooth in linear time, see [16,
Chapter 6]. For our purposes we devise a space efficient algorithm:

Lemma 3 For every fixed k ∈ N there exists a log-space algorithm which, given
a width-k tree decomposition T of G, computes a smooth width-k tree decompo-
sition of G.

Proof. Let T = (T, {Xi}i∈I) be a tree decomposition of width k. First of all,
we root T at some node i ∈ I such that |Xi| = k + 1, which is computable in
log-space.

For property (a) we present a procedure which adds a vertex to each bag Xi

which does not have maximal size. Let I0 = {i ∈ I : |Xi| = k + 1}. For each
i ∈ I \ I0 independently we add a vertex to Xi as follows: Let j be the lowest
ancestor of i in I0 and let j′ be the unique child of j on the path from j to i.

We add the lexicographically smallest vertex in Xj \Xj′ to Xi. This procedure
preserves the tree decomposition properties and can be performed in log-space.
After at most k + 1 iterations of this procedure, all bags have uniform size.

For property (b) consider an inclusion maximal set J ⊆ I where Xi = Xj

for all i, j ∈ J , which forms a connected subtree of T . All such sets J can
be found in log-space and can be merged into single nodes such that all bags
are pairwise distinct. Now assume |Xi ∩ Xj | < k for some tree edge (i, j). Let
Xi \Xj = {u1, . . . , um} and Xj \Xi = {v1, . . . , vm}. We replace the edge (i, j)
by a path (i0, . . . , im) where Xi` = (Xi ∩Xj) ∪ {v1, . . . , v`, u`+1, . . . , um}. ut

2.4 Clique-width

To define clique-width we need to consider colored graphs G = (V,E, γ) where
γ : V → [k] is a coloring function. A k-expression is a term built up from
constants i ∈ [k], unary symbols ρβ and αi,j where β : [k] → [k] and i, j ∈ [k],
and a binary symbol ⊕. Every k-expression t defines a colored graph val(t) up
to isomorphism as follows:

– val(i) = ({v}, ∅, [v 7→ i]) where v is a fresh symbol.
– val(t1 ⊕ t2) is the disjoint union of val(t1) and val(t2).
– If val(t) = (V,E, γ), we set val(ρβ(t)) = (V,E, β ◦ γ).
– If val(t) = (V,E, γ), we set val(αi,j(t)) = (V,E′, γ) where

E′ = E ∪ {(v, w) ∈ V 2 : γ(v) = i, γ(w) = j}.

The clique-width of a graph G is the minimal number k ∈ N such that there is
a k-expression t and a coloring function γ of G with val(t) = (G, γ). We remark
that the standard definition of k-expressions uses operations of the form ρi→j
which recolors all vertices with color i to j; this does not affect the definition of
clique-width. To define the clique-width of parity games we modify the form of
k-expressions to define colored parity games (G, γ). In this context a k-expression
is built up from constants (i, s, p) ∈ [k]×{0, 1}×N, which defines a parity game
with a single vertex of Player s with color i and priority p, and the unary and
binary symbols as before.

It is known that every graph class of bounded tree-width has also bounded
clique-width but not vice versa [17]. In that sense clique-width is a more general
graph measure than tree-width. As with tree-width, deciding whether the clique-
width of a given graph is at most a given parameter is NP-complete [18]. Unlike
tree-width it is open whether for fixed k ≥ 4 the question, does a given graph
have clique-width ≤ k, is solvable in polynomial time. In Section 5 we will assume
that a k-expression for the parity game is already part of the input.

2.5 Tree automata

We consider terms (or trees) over a ranked alphabet Σ, i.e. a finite set of func-
tion symbols where every symbol has an arity. A (bottom-up) tree automaton

A = (Q,∆,F) over Σ consists of a finite set of states Q, a set ∆ of transition
rules of the form a(q1, . . . , qn) → q where a ∈ Σ is n-ary and q1, . . . , qn, q ∈ Q,
and a set of final states F ⊆ Q. We callA deterministic if there are no two rules in
∆ with the same left-hand side, otherwise A is called nondeterministic. A tree t is
accepted by A if t

∗→∆ q for some q ∈ F where→∆ is the one-step rewriting rela-
tion defined by ∆. The uniform membership problem for (non)deterministic tree
automata asks: Does a given (non)deterministic tree automaton accept a given
tree? It is known that the uniform membership problem is LogCFL-complete in
the nondeterministic case and in LogDCFL in the deterministic case [19].

3 Parse trees

Instead of working directly with tree decompositions our algorithm for parity
games of bounded tree-width uses an equivalent notion from [16, Chapter 6],
called parse trees, which describe how a graph or a parity game of bounded
tree-width can be constructed using simple operations.

3.1 Parse trees for graphs

A k-graph (V,E, τ) is a graph together with an injective function τ : [k] → V ,
which distinguishes k vertices, called boundary vertices. Vertices which are not
boundary are called internal. Given k-graphs G = (V,E, τ), G′ = (V ′, E′, τ ′) we
define the following parsing operators:

– renameβ(G) = (V,E, τ ◦ β−1) where β is a permutation of [k],
– push(G) = (V ∪ {v}, E, τ [1 7→ v]) where v is a fresh symbol,
– glue(G,G′) takes the disjoint union of two k-graphs, and identifies τ(i) and
τ ′(i) for all i ∈ [k].

If glue(G,G′) = (V ′′, E′′, τ ′′), we assume for simplified notation that V ∪V ′ =
V ′′ and τ = τ ′ = τ ′′, i.e. a boundary vertex in glue(G,G′) has the same name in
G and in G′. We will consider graphs constructed by combining atomic k-graphs,
which are k-graphs of size k, with the parsing operators. A parse tree t of width
k is the representation of such a construction as a labeled tree. A parse tree t
defines a k-graph G if G is isomorphic to the k-graph obtained by evaluating t
bottom-up; we also simply say that G is definable if the parse tree is irrelevant.
A parse tree t defines a graph G if t defines (G, τ) for some τ .

It was shown in [16] that a graph has tree-width ≤ k if and only if it is
definable by a parse tree of width ≤ k+1. Their proof shows that the conversion
from tree decompositions to parse trees can be carried out in linear time. Using
smooth tree decompositions we prove that parse trees can be computed in log-
space for graphs of bounded tree-width.

Lemma 4 For every fixed k ∈ N, there exists a log-space algorithm which, given
a graph G of tree-width ≤ k, computes a parse tree of width ≤ k+ 1 defining G.

Proof. Let T = (T, {Xi}i∈I) be a width-k tree decomposition of G computed
by the log-space algorithm from [11]. By Lemma 3 we can make T smooth in
log-space. For each i ∈ I we fix a numbering of the k + 1 vertices in Xi. Let
Gi be the (k + 1)-graph induced by the subtree of T rooted in i where the j-th
boundary vertex of Gi is the j-th vertex in Xi.

We present a bottom-up construction for the (k + 1)-graphs Gi. If i ∈ I is a
leaf node, then Gi is atomic. If i ∈ I is an inner node, for each child j ∈ I of i
we apply the following operations to Gj to obtain G′j : Assume Xj \ Xi = {v}
and Xi \ Xj = {w}. Permute v to be the first boundary vertex, introduce w
using push, add existing edges between w and the other boundary vertices by
gluing with a suitable atomic (k + 1)-graph and permute the boundary vertices
according to the order on Xi. By gluing all such graphs G′j we obtain a (k+ 1)-
graph isomorphic to Gi. This construction gives rise to a parse tree, which can
be computed in log-space from T . ut

3.2 Parse trees for parity games

We want to transfer the notion of parse trees to parity games. For that we con-
sider k-games, i.e. edge-labeled parity games G = (V0, V1, E, τ) with k boundary
positions given by an injective function τ : [k] → V . The operator renameβ is
defined as previously. The operator pushs carries a parameter s ∈ {0, 1} which
specifies that the new position belongs to Player s. Finally glue(G1,G2) is only
defined if G1 and G2 are compatible, i.e. corresponding boundary positions belong
to the same player. Parse trees for k-games are defined in an analogous manner.
Here the leaf nodes are labeled by atomic k-games, i.e. k-games of size k.

As a precomputation step of the algorithms in the next section we compute
for a given parity game G and a starting position v0 a parse tree t of width k which
defines a k-game in which v0 is a boundary position. This can be done in log-
space by an adaption of Lemma 4: First we compute in log-space a smooth tree
decomposition of the underlying graph of G. Then we root the tree decomposition
at some bag containing v0 before converting it into a parse tree. In the conversion
phase we label the leaf nodes of the parse tree by the atomic k-games induced
by the leaf bags. Whenever a new position v is introduced by push, we annotate
the push-operator by the parameter s ∈ {0, 1} depending on the owner of v.

4 Parity games of bounded tree-width

In this section by parity games we always mean edge-labeled parity games. Con-
sider the construction of a definable k-game G from atomic k-games using the
parsing operators, as described by a parse tree. We reduce the problem of de-
termining the winner of G from some boundary position to the evaluation of a
tree automaton reading the parse tree. One possible approach is to compute in
a bottom-up manner for each tree node a small k-game which is equivalent in
a certain sense to the k-game defined by the subtree rooted in that node. In
the end it remains to solve a small parity game in the root node. In fact, every

definable 3-game has an equivalent simple atomic 3-game. Simple parity games
of constant size can be stored in space O(log d) where d is the maximal priority.
However, this approach fails for definable k-games where k > 3, i.e. parity games
with tree-width > 2. Instead, with the help of a nondeterministic tree automaton
we guess and fix a positional strategy for Player 0, and obtain a parity game
in which only Player 1 makes non-trivial moves. So called solitaire k-games can
again be compressed to size k. In both approaches the tree automata can be con-
structed using only logarithmic space. Since the uniform membership problems
for the corresponding tree automata can be solved in LogCFL and LogDCFL,
respectively, parity games of bounded tree-width can be solved in LogCFL and
parity games of tree-width ≤ 2 can be solved in LogDCFL.

4.1 Equivalent k-games and valid reduction rules

We start by defining the following Myhill-Nerode type equivalence: Two compat-
ible k-games G1,G2 are called equivalent, denoted by G1 ≈ G2, if for all k-games
H compatible with G1 and G2 and all positions v in H we have

Player 0 wins glue(G1,H) from v ⇐⇒ Player 0 wins glue(G2,H) from v.

In fact, ≈ is a congruence with respect to the parsing operators, i.e. G1 ≈ G2
implies renameβ(G1) ≈ renameβ(G2), pushs(G1) ≈ pushs(G2) and glue(G1,H) ≈
glue(G2,H) for all k-games H compatible with G1 and G2.

We introduce valid reduction rules, which compute in log-space to a given k-
game G an equivalent k-game G′. For example, the operation simple from Lemma
2, which removes multiple edges, is valid, which can be shown by a very similar
proof. We will always append the application of simple to valid reduction rules
without mentioning it. In the following let G = (V0, V1, E, τ) be a simple k-game.
For the sake of easier proofs we can assume that each player uses a uniform
positional winning strategy, which is winning from all positions in his winning
region [20, Chapter 6]. A positional strategy ρ uses an edge (u, p, v) ∈ E if
ρ(u) = (u, p, v). One can also assume that a positional winning strategy ρ for
Player s is minimal, i.e. dom(ρ) is contained in the winning region of Player
s. In the following, if we mention winning strategies, we always mean uniform
minimal positional winning strategies.

Lemma 5 Let u ∈ Vs be an internal position where (u, p, u) ∈ E.

1. If p ≡ s (mod 2), it is valid to add loops with priority s to all predecessors
of u in Vs and then to remove u.

2. If p 6≡ s (mod 2), it is valid to remove the loop (u, p, u).

Proof. Let H be a k-game compatible with G and let G′ be the modified k-game.

1. If a winning strategy for Player s in glue(G,H) uses an edge leading to u,
Player s can instead use the new loops with priority s in glue(G′,H). On the
other hand no winning strategy for Player 1− s in glue(G,H) can use one of
the edges leading to u.

2. The loop (u, p, u) cannot be used by any winning strategy for Player s in
glue(G,H). Hence, glue(G,H) and glue(G′,H) have the same winning regions.

ut

Lemma 6 Let u, v ∈ Vs where (v, u) ∈ E. It is valid to add edges (v, p, w) where
p = max(λ(v, u), λ(u,w)) for each successor w of u, and then to remove the edge
(v, u).

Proof. Let H be a k-game compatible with G, let G′ be the modified k-game
and let ρ be a winning strategy for Player s in glue(G,H). If ρ(v) = (v, u), then
ρ(u) must be defined, say ρ(u) = (u,w). In glue(G′,H) Player s can win from
the same winning region by moving from v directly to w and otherwise playing
according to ρ. Conversely, if ρ is a winning strategy for Player s in glue(G′,H)
which uses one of the new edges (v, p, w), then Player s can win from the same
winning region by moving from v via u to w, and otherwise playing according
to ρ. ut

Lemma 7 Let (u, p, v), (v, q, u) ∈ E where u and v belong to different players
and let s = max(p, q) mod 2. It is valid to remove the edge from the cycle whose
starting point belongs to Player 1− s.

Proof. Let H be a k-game compatible with G. No winning strategy for Player
1 − s in glue(G,H) can use the edge which is to be removed because Player s
could win by responding with the other edge. ut

Let C be a class of k-games and let f be an n-ary partial operation mapping
n-tuples G = (G1, . . . ,Gn) of k-games to a k-game f(G). A partial operation
f ′ : Cn → C implements f on C if f(G) ≈ f ′(G) for all G ∈ dom(f) ∩ Cn. With
the help of the previous lemmata we can prove the following main ingredient for
solving parity games of tree-width at most 2 using deterministic tree automata.

Lemma 8 All parsing operators have log-space computable implementations on
the class of all simple atomic 3-games.

Proof. On the class of all simple atomic k-games renameβ implements itself and
simple ◦ glue implements glue. It remains to treat the parsing operator pushs.

If G is an atomic 3-game, then pushs(G) is the disjoint union of a 2-game of
size 3 and a boundary position belonging to Player s. Since the addition of an
isolated boundary position respects ≈, it suffices to show that for each simple
2-game of size 3 one can compute in log-space an equivalent 2-game of size 2.

So let G = (V0, V1, E, τ) be a simple 2-game of size 3. Let vi = τ(i) for
i ∈ {1, 2} and let u ∈ Vs be the unique internal position. By applying the
reduction rules from Lemma 5, 6 and 7 to u, we can eliminate all cycles of
length at most 2 in G which contain u. Hence, between u and each vi there
exists at most one edge in one direction. We can eliminate u using the following
valid reduction rules:

1. If u has no incoming edge, remove u.

v1 v2

u

1

0 3

2

3

1

≈

v1 v2

u

1

0 3

2

3

≈

v1 v2

u

0 3

2

2

≈

v1 v2

u

0 3

2

≈ v1 v2
2

3

Fig. 2: Applying valid reduction rules to a 2-game.

2. If u has no outgoing edge, add loops with priority 1 − s to all predecessors
of u in V1−s and remove u.

3. Otherwise the only edges incident to u are (vi, u), (u, vj) ∈ E for i 6= j. Add
an edge (vi, vj) with priority max(λ(vi, u), λ(u, vj)) and remove u. ut

Later we will see that Lemma 8 cannot be extended to k-games for k > 3.
However, if we fix a positional strategy of Player 0 it suffices to consider parity
games in which Player 1 makes non-trivial moves. A solitaire game for Player s
is a parity game where all positions belong to Player s.

Lemma 9 For every k ∈ N and s ∈ {0, 1}, all parsing operators except for
push1−s have log-space computable implementations on the class of all simple
atomic solitaire k-games for Player s.

Proof. As in Lemma 8 we only need to show that every simple atomic solitaire
k-game G of size k + 1 can be compressed to size k in log-space. Using Lemma
5 and 6 we can eliminate all incoming edges of the unique internal position u in
G. Then u can be removed. ut

4.2 Construction of the tree automata

We fix the following (arbitrary) encoding of isomorphism classes of k-games. An
atomic k-game G = (V0, V1, E, τ) is in normal form if V = [k] and τ(i) = i for
all i ∈ [k]. Given an atomic k-game G, we denote by [G] the unique k-game in
normal form isomorphic to G.

Theorem 10 Parity games of tree-width ≤ 2 can be solved in LogDCFL.

Proof. Let G0 be a parity game of tree-width ≤ 2 with maximal priority d and
let v0 be a given starting position. We apply simple to G0 and compute a parse

tree t of width 3 as explained in Section 3.2 such that v0 is the i-th boundary
position of the 3-game defined by t. We assume that the atomic 3-games in the
leaf nodes of t are in normal form.

Let C be the set of simple atomic 3-games in normal form with maximal
priority ≤ d. We can encode the elements G ∈ C using O(log d) bits where d was
assumed to be linear in the size of G. We compute from the parameters d and i
a deterministic tree automaton A = (C, ∆, F) over the alphabet of t, where ∆
contains for all compatible G,H ∈ C transitions of the form

G → G,
renameβ(G)→ [rename′β(G)],

pushs(G)→ [push′s(G)],

glue(G,H)→ [glue′(G,H)].

Here f ′ denotes the implementation of f from Lemma 8. A state G is contained
in F if and only if Player 0 wins G from the i-th boundary position, which can be
easily computed in log-space. Player 0 wins G0 from v0 if and only if A accepts
t, which can be decided in LogDCFL [19]. ut

For our approach to solve parity games with tree-width > 2 it is convenient to
assume that every position has at least one successor, which can be established
by adding to each position of Player s a loop with priority 1 − s. Let ρ be a
positional strategy for Player 0 in an edge-labeled parity game G = (V0, V1, E).
We define Gρ = (∅, V0 ∪ V1, Eρ) where

Eρ = {ρ(v) : v ∈ dom(ρ)} ∪ {(v, p, w) ∈ E : v ∈ V1},

which is a solitaire game for Player 1. It is easy to see that Player 0 wins G from
v if and only if there exists a positional strategy ρ for Player 0 with dom(ρ) = V0
such that Player 0 wins Gρ from v. A nondeterministic automaton reading a parse
tree can guess and fix positional strategies for Player 0 on the atomic k-games
in the leaf nodes and verify whether they together form a positional strategy ρ
in the whole game such that dom(ρ) = V0.

Theorem 11 Parity games of bounded tree-width can be solved in LogCFL.

Proof. We adapt the proof of Theorem 10 where G0 now has tree-width ≤ k. We
compute in log-space a parse tree t which defines a (k + 1)-game (G0, τ) such
that τ(i) = v0. Let M = {j ∈ [k + 1] : τ(j) ∈ V0} and let C be the set of simple
atomic solitaire (k+1)-games for Player 1 in normal form with maximal priority
≤ d. We define A = (C × 2[k+1], ∆, F) over the alphabet of t, where ∆ contains
for all compatible G,H ∈ C, subsets U,W ⊆ [k + 1] and positional strategies ρ
for Player 0 on G, transitions of the form

G → (Gρ,dom(ρ)),

renameβ((G, U))→ ([rename′β(G)], β(U)),

pushs((G, U))→ ([push′1(G)], U \ {1}),
glue((G, U), (H,W))→ ([glue′(G,H)], U ∪W), if U ∩W = ∅.

2

1

3 4

0

2i− 1 2i

(a) Gi

2

v3v2 v5

3 41

0
0

0

3
4

5 6
9

10

(b) G{2,3,5}

2

3 41

2i 2i− 1

(c) Hi

Fig. 3: 4-games for the separation of ≈-classes.

Here f ′ denotes the implementation of f from Lemma 9. A state (G, U) is in
F if and only if Player 0 wins G from the i-th boundary position and U = M .
We can encode all states using O(log d) bits and compute ∆ and F in log-space.
Player 0 wins G0 from v0 if and only if A accepts t, which can be decided in
LogCFL. ut

4.3 A lower bound

We conclude this section with a proof that parity games of tree-width 3 cannot
be solved in LogDCFL using the deterministic tree automata approach as in
Theorem 10.

Theorem 12 For each d ∈ N there exist 2d − 1 many definable 4-games which
have maximal priority ≤ 2d and are pairwise inequivalent.

Proof. Consider the atomic 4-games Gi and Hi depicted in Figure 3. For ev-
ery non-empty subset I ⊆ [d] we construct a 4-game GI by gluing all 4-games
push1(Gi) for i ∈ I together. In glue(GI ,Hi) we denote by u the unique position
of Player 0 and by vk the position whose outgoing edges are labeled by 2k − 1
and 2k for all k ∈ I.

We claim that for all i ∈ [d] and non-empty I ⊆ [d], Player 0 wins glue(GI ,Hi)
from u if and only if i ∈ I, which proves that all 4-games GI are pairwise
inequivalent. If i ∈ I, Player 0 wins glue(GI ,Hi) by always moving from u to vi.
If i /∈ I, Player 1 wins glue(GI ,Hi) as follows. From a position vk Player 1 moves
along the edge labeled by 2k − 1 if k > i, and along the edge labeled by 2k if
k < i. ut

For numbers k, d ∈ N and i ∈ [k], consider the tree language of all parse
trees which define k-games with maximal priority ≤ d won by Player 0 from
the i-th boundary position. This tree language is regular by Theorem 11 but
already for k = 4 it cannot be recognized by a deterministic tree automaton
with a polynomial number of states in d according to Theorem 12. It remains
open whether the presented complexity bounds for parity games of bounded
tree-width can be improved.

5 Parity games of bounded clique-width

In this final section we present a log-space reduction which transforms parity
games given by k-expressions into parity games of tree-width ≤ 8k − 1 and
preserves the winners. As a corollary we obtain the following theorem:

Theorem 13 For every k ∈ N, parity games of clique-width ≤ k can be solved
in LogCFL, assuming that a k-expression for the parity game is part of the input.

Let tG be a k-expression which defines a parity game G = (V0, V1, E, λ). We
view tG as a labeled tree and define T to be the set of all tree nodes, i.e. all
subterms of tG . For each v ∈ V we denote by tv ∈ T the unique leaf node which
introduces v. Recall that tv specifies the color of v when first introduced, which
we denote by γ(v), the owner of v and its priority λ(v).

We simulate G by the tree game G∗, which is basically played on the tree
tG . During a play in the tree game we need to memorize additional information,
which is why we have multiple copies of each tree node. The positions in the tree
game G∗ are of the form (t, i,m, s) where

– t ∈ T is a tree node,
– i ∈ [k] is the current color,
– m ∈ {↑, ↓} specifies the current direction and
– s ∈ {0, 1} indicates that the position (t, i,m, s) belongs to Player s.

For every position v ∈ Vs in G we define the corresponding position v↑ =
(tv, γ(v), ↑, s) in G∗. The edges of G∗ are defined in the following: Player s can
draw from a position (t, i, ↑, s) to (t′, j, ↑, s) where t′ is the father node of t and, if
t′ = ρβ(t), then β(i) = j, otherwise i = j. In a position of the form (αi,j(t), i, ↑, s)
Player s can decide to draw to (αi,j(t), j, ↓, s). Then, Player s can draw from a
position (t, i, ↓, s) to (t′, j, ↓, s) where t′ is a child node of t and, if t = ρβ(t′) then
β(j) = i, otherwise i = j. From a position of the form (tw, γ(w), ↓, s) Player s
has to draw to w↑ from where the owner of w continues to play. Note that there
are positions without outgoing edges in the tree game, for example positions
(tv, i, ↓, s) where i 6= γ(v) or positions (αi,j(t), k, ↑, s) where i 6= k and αi,j(t) is
the root of tG . For all v ∈ V we assign the priority λ(v) to the position v↑ and to
all other positions priority 0. Clearly, G∗ can be computed in log-space from tG .
The following lemma shows how plays in G can be simulated in the tree game.

Lemma 14 Player 0 wins G from v0 ∈ V if and only if she wins the tree game
G∗ from v↑0 .

Proof. A move from v ∈ Vs to a successor w in G can be simulated by a finite
path πvw in G∗ from v↑ to w↑. Let αi,j(t) be a tree node that introduces the
edge (v, w). Player s moves “upwards” to (αi,j(t), i, ↑, s), then to (αi,j(t), j, ↓, s).
After that Player s moves “downwards” to (tw, γ(w), ↓, s) and finally to w↑. In
this way, every positional strategy σ for Player s in G defines a strategy σ∗ for
Player s in G∗, which in general is not positional. The maximal priority of a

α•,•

⊕

ρ•→•

α•,•

⊕

32

ρ•→•

α•,•

⊕

10↑

↑

↑

↑

↑

↑ ↓

↓

↓

↓

↓

↓↑

Fig. 4: A 2-expression and a finite play in the tree game.

position in πvw is max(λ(v), λ(w)). Also notice that v ∈ Vs has no outgoing
edges in G if and only if no other position of the form w↑ is reachable from v↑

in G∗, i.e. Player s loses G∗ from v↑.
Consider a positional strategy σ of Player s in G and a play π∗ in G∗ from v↑0

which is conform with σ∗. If π∗ is infinite, it is of the form π∗ = πv0v1πv1v2 . . .
where π = v0v1 . . . is a play in G conform with σ and both plays have the same
winner. If π∗ is finite, it can be decomposed as π∗ = πv0v1πv1v2 . . . πvn−1vnπ

′

where π′ has no prefix of the form πvw. In this case v0 . . . vn is a finite play in
G conform with σ and both plays are lost by the owner of vn. Hence, if σ is
winning from v0, then σ∗ is winning from v↑0 . ut

The simulation is illustrated in Figure 4 using two colors. Using the notion
from [21] we can state that G∗ has strong tree-width ≤ 4k, which implies a tree-
width bound of 8k − 1. This proves that parity games of clique-width ≤ k are
log-space reducible to parity games of tree-width ≤ 8k−1, under the assumption
that a k-expression is provided, and hence Theorem 13 follows.

The algorithm by Obdržálek for parity games of bounded clique-width in [4]
uses the fact that every winning strategy can be transformed into an equivalent t-
strategy, which is a simple corollary of Lemma 14: By the positional determinacy
theorem we can assume that Player 0 uses a positional strategy in the tree game
G∗, which indeed defines a t-strategy in G.

References

1. C. Stirling, Local model checking games, in: I. Lee, S. A. Smolka (Eds.), CONCUR,
Vol. 962 of LNCS, Springer, 1995, pp. 1–11.

2. M. Jurdziński, Deciding the winner in parity games is in UP ∩ co-UP, Information
Processing Letters 68 (3) (1998) 119–124.

3. J. Obdržálek, Fast mu-calculus model checking when tree-width is bounded, in:
W. A. H. Jr., F. Somenzi (Eds.), CAV, Vol. 2725 of LNCS, Springer, 2003, pp.
80–92.

4. J. Obdržálek, Clique-width and parity games, in: J. Duparc, T. A. Henzinger
(Eds.), CSL, Vol. 4646 of LNCS, Springer, 2007, pp. 54–68.

5. J. Fearnley, S. Schewe, Time and parallelizability results for parity games with
bounded treewidth, in: A. Czumaj, K. Mehlhorn, A. M. Pitts, R. Wattenhofer
(Eds.), Automata, Languages, and Programming, Vol. 7392 of LNCS, Springer,
2012, pp. 189–200.

6. I. H. Sudborough, On the tape complexity of deterministic context-free languages,
Journal of the Association for Computing Machinery 25 (3) (1978) 405–414.

7. S. Göller, M. Lohrey, Fixpoint logics over hierarchical structures, Theory Comput.
Syst. 48 (1) (2011) 93–131.

8. H. Vollmer, Introduction to Circuit Complexity, Texts in Theoretical Computer
Science, Springer, 1999.

9. E. A. Emerson, C. S. Jutla, Tree automata, mu-calculus and determinacy (extended
abstract), in: 32nd Annual Symposium on Foundations of Computer Science, IEEE
Computer Society, 1991, pp. 368–377.

10. I. Walukiewicz, Monadic second order logic on tree-like structures, in: C. Puech,
R. Reischuk (Eds.), STACS 96, Vol. 1046 of LNCS, Springer, 1996, pp. 401–413.

11. M. Elberfeld, A. Jakoby, T. Tantau, Logspace versions of the theorems of Bodlaen-
der and Courcelle, in: 51st Annual IEEE Symposium on Foundations of Computer
Science, 2010, pp. 143–152.

12. O. Friedmann, M. Lange, Solving parity games in practice, in: Z. Liu, A. P. Ravn
(Eds.), Automated Technology for Verification and Analysis, Vol. 5799 of LNCS,
Springer, 2009, pp. 182–196.

13. B. Courcelle, Graphs as relational structures: An algebraic and logical approach,
in: H. Ehrig, H.-J. Kreowski, G. Rozenberg (Eds.), Graph-Grammars and Their
Application to Computer Science, Vol. 532 of LNCS, Springer, 1990, pp. 238–252.

14. B. Courcelle, J. A. Makowsky, U. Rotics, Linear time solvable optimization prob-
lems on graphs of bounded clique-width, Theory Comput. Syst. 33 (2) (2000)
125–150.

15. S. Arnborg, D. G. Corneil, A. Proskurowski, Complexity of finding embeddings in
a k-tree, SIAM J. Algebraic Discrete Methods 8 (2) (1987) 277–284.

16. R. G. Downey, M. R. Fellows, Parameterized Complexity, Monographs in Com-
puter Science, Springer Verlag, 1999.

17. B. Courcelle, S. Olariu, Upper bounds to the clique width of graphs, Discrete
Applied Mathematics 101 (1-3) (2000) 77–114.

18. M. R. Fellows, F. A. Rosamond, U. Rotics, S. Szeider, Clique-width is NP-complete,
SIAM J. Discrete Math. 23 (2) (2009) 909–939.

19. M. Lohrey, On the parallel complexity of tree automata, in: A. Middeldorp (Ed.),
RTA, Vol. 2051 of LNCS, Springer, 2001, pp. 201–215.

20. E. Grädel, W. Thomas, T. Wilke (Eds.), Automata, Logics, and Infinite Games:
A Guide to Current Research, Vol. 2500 of LNCS, Springer, 2002.

21. D. Seese, Tree-partite graphs and the complexity of algorithms, in: L. Budach
(Ed.), FCT, Vol. 199 of LNCS, Springer, 1985, pp. 412–421.

