
Knapsack in graph groups, HNN-extensions and

amalgamated products

Markus Lohrey

Universität Siegen, Germany
lohrey@eti.uni-siegen.de

Georg Zetzsche

Technische Universität Kaiserslautern, Germany
zetzsche@cs.uni-kl.de

Abstract

It is shown that the knapsack problem, which was introduced by
Myasnikov et al. for arbitrary finitely generated groups, can be solved
in NP for graph groups. This result even holds if the group elements
are represented in a compressed form by SLPs, which generalizes the
classical NP-completeness result of the integer knapsack problem. We
also prove general transfer results: NP-membership of the knapsack
problem is passed on to finite extensions, HNN-extensions over finite
associated subgroups, and amalgamated products with finite identified
subgroups.

1 Introduction

In their paper [40], Myasnikov, Nikolaev, and Ushakov started the investi-
gation of classical discrete optimization problems, which are classically for-
mulated over the integers, for arbitrary in general non-commutative groups.
Among other problems, they introduced for a finitely generated group G the
knapsack problem and the subset sum problem. The input for the knapsack
problem is a sequence of group elements g1, . . . , gk, g ∈ G (specified by finite
words over the generators of G) and it is asked whether there exists a solu-
tion (x1, . . . , xk) ∈ Nk of the equation gx11 · · · g

xk
k = g. For the subset sum
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problem one restricts the solution to {0, 1}k. For the particular case G = Z
(where the additive notation x1 · g1 + · · ·+ xk · gk = g is usually preferred)
these problems are NP-complete if the numbers g1, . . . , gk, g are encoded in
binary representation. For subset sum, this is a classical result from Karp’s
seminal paper [25] on NP-completeness. Knapsack for integers is usually
formulated in a more general form in the literature; NP-completeness of
the above form (for binary encoded integers) was shown in [18], where the
problem was called multisubset sum).1 Interestingly, if we consider sub-
set sum for the group G = Z, but encode the input numbers g1, . . . , gk, g
in unary notation, then the problem is in DLOGTIME-uniform TC0 (a small
subclass of polynomial time and even of logarithmic space that captures the
complexity of multiplication of binary encoded numbers) [15], and the same
holds for knapsack, since the instance x1 ·g1 + · · ·+xk ·gk = g has a solution
if and only if it has a solution with xi ≤ k · (max{g1, . . . , gk, g})3 [41]. This
allows to reduce unary knapsack to unary subset sum. See [22] for related
results.

In [40] the authors encode elements of the finitely generated group G
by words over the group generators and their inverses. For G = Z this
representation corresponds to the unary encoding of integers. Among others,
the following results were shown in [40]:

• Subset sum and knapsack can be solved in polynomial time for every
hyperbolic group.

• Subset sum for a virtually nilpotent group (a finite extension of a
nilpotent group) can be solved in polynomial time.

• For the following groups, subset sum is NP-complete (whereas the
word problem can be solved in polynomial time): free metabelian non-
abelian groups of finite rank, the wreath product Z o Z, Thompson’s
group F , and the Baumslag-Solitar group BS(1, 2).

Further results on knapsack and subset sum have been recently obtained in
[28]:

• For a virtually nilpotent group, subset sum belongs to NL (nondeter-
ministic logspace).

1Note that if we ask for a solution (x1, . . . , xk) in Zk, then knapsack can be solved in
polynomial time (even for binary encoded integers) by checking whether gcd(g1, . . . , gk)
divides g.
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• There is a nilpotent group of class 2 (in fact, a direct product of
sufficiently many copies of the discrete Heisenberg group H3(Z)), for
which knapsack is undecidable.

• The knapsack problem for the discrete Heisenberg group H3(Z) is de-
cidable. In particular, together with the previous point it follows that
decidability of knapsack is not preserved under direct products.

• There is a polycyclic group with an NP-complete subset sum problem.

• The knapsack problem is decidable for all co-context-free groups.

The focus of this paper will be on the knapsack problem. We will prove
that this problem can be solved in NP for every graph group. Graph groups
are also known as right-angled Artin groups or free partially commutative
groups. A graph group is specified by a finite simple graph. The vertices
are the generators of the group, and two generators a and b are allowed
to commute if and only if a and b are adjacent. Graph groups somehow
interpolate between free groups and free abelian groups and can be seen as
a group counterpart of trace monoids (free partially commutative monoids)
that have been used for the specification of concurrent behavior. In combina-
torial group theory, graph groups are currently a hot topic, mainly because
of their rich subgroup structure [5, 9, 17]. To prove that knapsack belongs
to NP for a graph group, we proceed in two steps:

• We show that if an instance gx11 · · · g
xk
k = g has a solution in a graph

group, then it has a solution, where every xi is bounded exponentially
in the input length (the total length of all words representing the group
elements g1, . . . , gk, g).

• We then guess the binary encodings of numbers n1, . . . , nk that are
bounded by the exponential bound from the previous point and verify
in polynomial time the identity gn1

1 · · · g
nk
k = g. The latter problem

is an instance of the so called compressed word problem for a graph
group. This is the classical word problem, where the input group
element is given succinctly by a so called straight-line program (SLP),
which is a context-free grammar that produces a single word (here, a
word over the group generators and their inverses). An SLP with n
productions in Chomsky normal form can produce a string of length
2n. It has been shown in [32] that the compressed word problem for a
graph group can be solved in polynomial time, see also [31] for more
details.
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In fact, our proof yields a stronger result: First, it yields an NP procedure
for solving knapsack-like equations h0g

x1
1 h1 · · ·hk−1g

xk
k hk = 1, where some of

the variables x1, . . . , xk are allowed to be identical. We call such an equation
an exponent equation. Hence, we prove that solvability of exponent equations
over a graph group belongs to NP.

Second, we show that the latter result even holds, when the group ele-
ments g1, . . . , gk, h0, . . . , hk are given succinctly by SLPs; we speak of solv-
ability of compressed exponent equations. This is interesting, since the SLP-
encoding of group elements corresponds in the case G = Z to the binary
encoding of integers. Hence, membership in NP for solvability of compressed
exponent equations over a graph group generalizes the classical NP mem-
bership for knapsack (over Z) to a much wider class of groups.

Furthermore, we extend the class of groups for which solvability of knap-
sack (resp. compressed exponent equations) can be checked in NP by prov-
ing general transfer results. Our first transfer result states that if H is
a finite extension of G and solvability of compressed exponent equations
(or knapsack) can be checked in NP for G, then the same holds for H.
This provides such algorithms for the large class of virtually special groups.
These are finite extensions of subgroups of graph groups. Virtually special
groups recently played a major role in a spectacular breakthrough in three-
dimensional topology, namely the solution of the virtual Haken conjecture
[1]. In the course of this development it turned out that the class of virtually
special groups is extremely rich: It contains Coxeter groups [19], one-relator
groups with torsion [45], fully residually free groups [45], and fundamental
groups of hyperbolic 3-manifolds [1].

We also prove transfer results for HNN-extensions and amalgamated
products with finite associated (resp. identified) subgroups in the case of the
knapsack problem. Such HNN-extensions and amalgamated products play
a fundamental role in combinatorial group theory [36]. For example, they
appear in Stallings’ decomposition of groups with more than one end [42]
and in the construction of virtually free groups [10]. Furthermore, they are
known to preserve a wide variety of structural and algorithmic properties
(see Section 9).

A side product of our proof is that the set of all solutions (x1, . . . , xk) ∈
Nk of an exponent equation gx11 · · · g

xk
k = g over a graph group is semilinear,

and a semilinear representation can be produced effectively. This seems to
be true for many groups, e.g., for all co-context-free groups [28]. On the
other hand, the discrete Heisenberg group H3(Z) is an example of a group
for which solvability of exponent equations is decidable but the set of all
solutions of an exponent equation is not semilinear; it is defined by a single
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quadratic Diophantine equation [28].
Finally, we complement our upper bounds by a new lower bound: Knap-

sack and subset sum are both NP-complete for a direct product of two free
groups of rank two (F2 × F2). This group is the graph group correspond-
ing to a cycle of length four. NP-hardness already holds for the case that
the input group elements are specified by words over the generators (for
SLP-compressed words, NP-hardness already holds for Z) and the exponent
variables are allowed to take values in Z (instead N). NP-completeness of
subset sum for F2 × F2 solves an open problem from [16].

Related work. The knapsack problem is a special case of the more general
rational subset membership problem. A rational subset of a finitely generated
monoid M is the homomorphic image in M of a regular language over the
generators of M . In the rational subset membership problem for M the
input consists of a rational subset L ⊆M (specified by a finite automaton)
and an element m ∈ M and it is asked whether m ∈ L. It was shown in
[35] that the rational subset membership problem for a graph group G is
decidable if and only if the corresponding graph has (i) no induced cycle
on four nodes (C4) and (ii) no induced path on four nodes (P4). For the
decidable cases, the precise complexity is open.

Knapsack for G can be also viewed as the question, whether a word equa-
tion X1X2 · · ·Xn = 1, where X1, . . . , Xn are variables, together with con-
straints of the form {gn | n ≥ 0} for the variables has a solution in G. Such
a solution is a mapping ϕ : {X1, . . . , Xn} → G such that ϕ(X1X2 · · ·Xn)
evaluates to 1 in G and all constraints are satisfied. For another class of
constraints (so called normalized rational constraints, which do not cover
constraints of the form {gn | n ≥ 0}), solvability of general word equations
was shown to be decidable (PSPACE-complete) for graph groups by Diekert
and Muscholl [13]. This result was extended in [12] to a transfer theorem
for graph products. A graph product is specified by a finite simple graph,
where every node is labelled with a group. The associated group is obtained
from the free product of all vertex groups by allowing elements from adja-
cent groups to commute. Note that decidability of knapsack is not preserved
under graph products. It is even not preserved under direct products, see
the above mentioned results from [28].
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2 Words and straight-line programs

For a word w we denote with alph(w) the set of symbols occurring in w.
The length of the word w is |w|.

A straight-line program, briefly SLP, is basically a context-free grammar
that produces exactly one string. To ensure this, the grammar has to be
acyclic and deterministic (every variable has a unique production where it
occurs on the left-hand side). Formally, an SLP is a tuple G = (V,Σ, rhs, S),
where V is a finite set of variables (or nonterminals), Σ is the terminal
alphabet, S ∈ V is the start variable, and rhs maps every variable to a
right-hand side rhs(A) ∈ (V ∪ Σ)∗. We require that there is a linear order
< on V such that B < A, whenever B ∈ N ∩ alph(rhs(A)). Every variable
A ∈ V derives to a unique string valG(A) by iteratively replacing variables
by the corresponding right-hand sides, starting with A. Finally, the string
derived by G is val(G) = valG(S).

Let G = (V,Σ, rhs, S) be an SLP. The size of G is |G| =
∑

A∈V |rhs(A)|,
i.e., the total length of all right-hand sides. A simple induction shows that
for every SLP G of size m one has |val(G)| ≤ O(3m/3) ⊆ 2O(n) [8, proof
of Lemma 1]. On the other hand, it is straightforward to define an SLP
H of size 2n such that |val(H)| ≥ 2n. This justifies to see an SLP G as a
compressed representation of the string val(G), and exponential compression
rates can be achieved in this way. More details on SLPs can be found in the
survey [30].

3 Knapsack and exponent equations

We assume that the reader has some basic knowledge concerning (finitely
generated) groups, see e.g. [36] for further details. Let G be a finitely
generated group, and let A be a finite generating set for G. Then, elements
of G can be represented by finite words over the alphabet A±1 = A ∪A−1.

An exponent equation over G is an equation of the form

v0u
x1
1 v1u

x2
2 v2 · · ·u

xn
n vn = 1,

where u1, u2, . . . , un, v0, v1, . . . , vn ∈ G are group elements that are given
by finite words over the alphabet A±1 and x1, x2, . . . , xn are not necessarily
distinct variables. Such an exponent equation is solvable if there exists a

mapping σ : {x1, . . . , xn} → N such that v0u
σ(x1)
1 v1u

σ(x2)
1 v2 · · ·uσ(xn)n vn = 1

in the group G. Solvability of exponent equations over G is the following
computational problem:
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Input: An exponent equation E over G (where elements of G are specified
by words over the group generators and their inverses).

Question: Is E solvable?

The knapsack problem for the group G is the restriction of solvability of expo-
nent equations over G to exponent equations of the form ux11 u

x2
2 · · ·uxnn u−1 =

1, or, equivalently ux11 u
x2
2 · · ·uxnn = u, where the exponent variables x1, . . . , xn

have to be pairwise different.
We will also study a compressed version of exponent equations over G,

where elements of G are given by SLPs over A±1. A compressed exponent
equation is an exponent equation v0u

x1
1 v1u

x2
2 v2 · · ·uxnn vn = 1, where the

group elements u1, u2, . . . , un, v0, v1, . . . , vn ∈ G are given by SLPs over the
terminal alphabet A±1. The sum of the sizes of these SLPs is the size of the
compressed exponent equation.

Let us define solvability of compressed exponent equations over G as the
following computational problem:

Input: A compressed exponent equation E over G.

Question: Is E solvable?

The compressed knapsack problem for G is defined analogously. Note that
with this terminology, the classical knapsack problem for binary encoded
integers is the compressed knapsack problem for the group Z. The binary
encoding of an integer can be easily transformed into an SLP over the al-
phabet {a, a−1} (where a is a generator of Z) and vice versa. Thereby the
number of bits in the binary encoding and the size of the SLP are linearly
related.

It is a simple observation that the decidability and complexity of solvabil-
ity of (compressed) exponent equations over G as well as the (compressed)
knapsack problem for G does not depend on the chosen finite generating set
for the group G. Therefore, we do not have to mention the generating set
explicitly in these problems.

Remark 1. Since we are dealing with a group, one might also allow solution
mappings σ : {x1, . . . , xn} → Z to the integers. But this variant of solvability
of (compressed) exponent equations (knapsack, respectively) can be reduced
to the above version, where σ maps to N, by simply replacing a power uxii
by uxii (u−1i )yi, where yi is a fresh variable.

The goal of this paper is to prove the decidability of solvability of expo-
nent equations for so called graph groups. We actually prove that solvability
of compressed exponent equations for a graph group belongs to NP. Graph
groups will be introduced in the next section.
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4 Traces and graph groups

Let (A, I) be a finite simple graph. In other words, the edge relation
I ⊆ A × A is irreflexive and symmetric. It is also called the independence
relation, and (A, I) is called an independence alphabet. We consider the
monoid M(A, I) = A∗/≡I , where ≡I is the smallest congruence relation
on the free monoid A∗ that contains all pairs (ab, ba) with a, b ∈ A and
(a, b) ∈ I. This monoid is called a trace monoid or partially commutative
free monoid. Elements of M(A, I) are called Mazurkiewicz traces or simply
traces. The trace represented by the word u is denoted by [u]I , or sim-
ply u if no confusion can arise. For a language L ⊆ A∗ we denote with
[L]I = {u ∈ A∗ | ∃v ∈ L : u ≡I v} its partially commutative closure. The
length of the trace [u]I is |[u]I | = |u| and its alphabet is alph([u]I) = alph(u).
It is easy to see that these definition do not depend on the concrete word
that represents the trace [u]I . For subsets B,C ⊆ A we write BIC for
B×C ⊆ I. If B = {a} we simply write aIC. For traces s, t we write sIt for
alph(s)Ialph(t). The empty trace [ε]I is the identity element of the monoid
M(A, I) and is denoted by 1. A trace t is connected if we cannot factorize t
as t = uv with u 6= 1 6= v and uIv.

A trace t ∈ M(A, I) can be visualized by its dependence graph Dt. To
define Dt, choose an arbitrary word w = a1a2 · · · an, ai ∈ A, with t = [w]I
and define Dt = ({1, . . . , n}, E, λ), where E = {(i, j) | i < j, (ai, aj) ∈ D}
and λ(i) = ai. If we identify isomorphic dependence graphs, then this
definition is independent of the chosen word representing t. Moreover, the
mapping t 7→ Dt is injective. As a consequence of the representation of
traces by dependence graphs, one obtains Levi’s lemma for traces, see e.g.
[14, p. 74], which is one of the fundamental facts in trace theory. The formal
statement is as follows.

Lemma 2. Let u1, . . . , um, v1, . . . , vn ∈M(A, I). Then

u1u2 · · ·um = v1v2 · · · vn

if and only if there exist wi,j ∈M(A, I) (1 ≤ i ≤ m, 1 ≤ j ≤ n) such that

• ui = wi,1wi,2 · · ·wi,n for every 1 ≤ i ≤ m,

• vj = w1,jw2,j · · ·wm,j for every 1 ≤ j ≤ n, and

• (wi,j , wk,`) ∈ I if 1 ≤ i < k ≤ m and n ≥ j > ` ≥ 1.

The situation in the lemma will be visualized by a diagram of the following
kind. The i–th column corresponds to ui, the j–th row corresponds to vj ,
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and the intersection of the i–th column and the j–th row represents wi,j .
Furthermore wi,j and wk,` are independent if one of them is left-above the
other one.

vn w1,n w2,n w3,n . . . wm,n
...

...
...

...
...

...

v3 w1,3 w2,3 w3,3 . . . wm,3
v2 w1,2 w2,2 w3,2 . . . wm,2
v1 w1,1 w2,1 w3,1 . . . wm,1

u1 u2 u3 . . . um

A consequence of Levi’s Lemma is that trace monoids are cancellative, i.e.,
usv = utv implies s = t for all traces s, t, u, v ∈M(A, I).

For a trace u ∈M(A, I) let ρ(u) be the number of prefixes of u. We will
use the following statement from [4].

Lemma 3. Let u ∈ M(A, I) be a trace of length n. Then ρ(u) ∈ O(nα),
where α is the size of a largest clique of the complementary graph (A, I)c =
(A, (A×A) \ I).

With an independence alphabet (A, I) we associate the group

G(A, I) = 〈A | ab = ba ((a, b) ∈ I)〉.

Such a group is called a graph group, or right-angled Artin group2, or free par-
tially commutative group. Here, we use the term graph group. Graph groups
received a lot of attention in group theory during the last few years, mainly
due to their rich subgroup structure [5, 9, 17], and their relationship to
low dimensional topology (via so called virtually special groups) [1, 19, 45].
We represent elements of G(A, I) by traces over an extended independence
alphabet. For this, let A−1 = {a−1 | a ∈ A} be a disjoint copy of the al-
phabet A, and let A±1 = A ∪ A−1. We define (a−1)−1 = a and for a word
w = a1a2 · · · an with ai ∈ A±1 we define w−1 = a−1n · · · a−12 a−11 . This defines
an involution (without fixed points) on (A±1)∗. We extend the independence
relation I to A±1 by (ax, by) ∈ I for all (a, b) ∈ I and x, y ∈ {−1, 1}. Then,
there is a canonical surjective morphism h : M(A±1, I)→ G(A, I) that maps
every symbol a ∈ A±1 to the corresponding group element. Of course, h is
not injective, but we can easily define a subset IRR(A±1, I) ⊆M(A±1, I) of
irreducible traces such that h restricted to IRR(A±1, I) is bijective. The set

2This term comes from the fact that right-angled Artin groups are exactly the Artin
groups corresponding to right-angled Coxeter groups.

9



IRR(A±1, I) consists of all traces t ∈M(A±1, I) such that t does not contain
a factor [aa−1]I with a ∈ A±1, i.e., there do not exist u, v ∈ M(A±1, I) and
a ∈ A±1 such that in M(A±1, I) we have a factorization t = u[aa−1]Iv. For
every trace t there exists a corresponding irreducible normal form that is ob-
tained by removing from t factors [aa−1]I with a ∈ A±1 as long as possible.
It can be shown that this reduction process is terminating (which is trivial
since it reduces the length) and confluent (in [29] a more general confluence
lemma for graph products of monoids is shown). Hence, the irreducible nor-
mal form of t does not depend on the concrete order of reduction steps. For
a group element g ∈ G(A, I) we denote with |g| the length of the unique
trace t ∈ IRR(A±1, I) such that h(t) = g.

For a trace t = [u]I (u ∈ (A±1)∗) we can define t−1 = [u−1]I . This is
well-defined, since u ≡I v implies u−1 ≡I v−1. The following lemma will be
important, see [13, Lemma 23]:

Lemma 4. Let s, t ∈ IRR(A±1, I). Then there exist unique factorizations
s = up, t = p−1v such that uv ∈ IRR(A±1, I). Hence, uv is the irreducible
normal form of st.

5 Factorizations of powers

Based on Levi’s lemma we prove in this section a factorization result for
powers of a connected trace. We start with the case that we factorize such
a power into two factors.

Lemma 5. Let u ∈M(A, I) \ {1} be a connected trace. Then, for all x ∈ N
and all traces y1, y2 the following two statements are equivalent:

(i) ux = y1y2

(ii) There exist l, k, c ∈ N and traces s, p such that: y1 = uls, y2 = puk,
sp = uc, l + k + c = x, and c ≤ |A|.

Proof. That (ii) implies (i) is clear. It remains to prove that (i) implies (ii).
Assume that ux = y1y2 holds. The case that x ≤ |A| is trivial. Hence,
assume that x ≥ |A|+ 1. We apply Levi’s lemma (Lemma 2) to the identity
ux = y1y2:

y2 u1,2 u2,2 u3,2 u4,2 · · · ux−1,2 ux,2
y1 u1,1 u2,1 u3,1 u4,1 · · · ux−1,1 ux,1

u u u u · · · u u
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Let Ai = alph(u1,2 · · ·ui,2). Then Ai ⊆ Ai+1. If A1 = ∅ then u1,2 = 1 and we
can go to Case 2 below. Otherwise, assume that A1 6= ∅. In that case there
must exist 1 ≤ i ≤ |A| such that Ai = Ai+1, which implies alph(ui+1,2) ⊆ Ai.
Since ui+1,1I(u1,2 · · ·ui,2) we also have ui+1,1Iui+1,2. Since u is connected,
we have ui+1,1 = 1 or ui+1,2 = 1. We can therefore distinguish the following
two cases:

Case 1. There exists 1 ≤ i ≤ |A| + 1 such that ui,1 = 1. Then ui,2 = u,
which implies uj,1 = 1 for all j > i (since ui,2Iuj,1):

y2 u1,2 u2,2 · · · ui−1,2 u u · · · u u

y1 u1,1 u2,1 · · · ui−1,1 1 1 · · · 1 1

u u · · · u u u · · · u u

Let s = u1,1u2,1 · · ·ui−1,1 and p = u1,2u2,2 · · ·ui−1,2. Thus, y1 = u0s, y2 =
pux−i+1 and sp = ui−1 with i − 1 ≤ |A|, and the conclusion of the lemma
holds.

Case 2. There exists 1 ≤ i ≤ |A|+ 1 such that ui,2 = 1. Then, uj,2 = 1 for
all j < i (since ui,1 = u and uj,2Iui,1):

y2 1 1 · · · 1 1 ui+1,2 · · · ux−1,1 ux,2
y1 u u · · · u u ui+1,1 · · · ux−1,1 ux,1

u u · · · u u u · · · u u

Let y′1 = ui+1,1 · · ·ux,1. Hence, ux−i = y′1y2. We can use induction to
get factorizations y′1 = uls, y2 = puk, and sp = uc with c ≤ |A| and
k + l + c = x − i. Finally, we have y1 = uiy′1 = ui+ls, which shows the
conclusion of the lemma.

Now we lift Lemma 5 to an arbitrary number of factors.

Lemma 6. Let u ∈ M(A, I) \ {1} be a connected trace and m ∈ N, m ≥ 2.
Then, for all x ∈ N and traces y1, . . . , ym the following two statements are
equivalent:

(i) ux = y1y2 · · · ym.

(ii) There exist traces pi,j (1 ≤ j < i ≤ m), si (1 ≤ i ≤ m) and numbers
xi, cj ∈ N (1 ≤ i ≤ m, 1 ≤ j ≤ m− 1) such that:

• yi = (
∏i−1
j=1 pi,j)u

xisi for all 1 ≤ i ≤ m,

• pi,jIpk,l if j < l < k < i and pi,jI(uxksk) if j < k < i

• sm = 1 and for all 1 ≤ j < m, sj
∏m
i=j+1 pi,j = ucj
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• cj ≤ |A| for all 1 ≤ j ≤ m− 1,

• x =
∑m

i=1 xi +
∑m−1

i=1 ci.

Proof. Let us first show that (ii) implies (i). Assume that (ii) holds. Then
we get

y1y2 · · · ym =
m∏
i=1

(
(
i−1∏
j=1

pi,j)u
xisi

)
.

The independencies pi,jIpk,l for j < l < k < i and pi,jI(uxksk) for j < k < i
yield

m∏
i=1

(( i−1∏
j=1

pi,j
)
uxisi

)
= ux1s1p2,1 · · · pm,1ux2s2p3,2 · · · pm,2ux3s3 · · ·uxm−1sm−1pm,m−1u

xmsm

= ux1uc1ux2uc2ux3 · · ·ucm−1uxm = ux.

We now prove that (i) implies (ii) by induction on m. So, assume that
ux = y1y2 · · · ym. The case m = 2 follows directly from Lemma 5. Now
assume that m ≥ 3. By Lemma 5 there exist factorizations y1 = ux1s1,
y2 · · · ym = p1u

x′ , and s1p1 = uc1 with c1 ≤ |A| and x1 + x′ + c1 = x. Levi’s
lemma applied to y2 · · · ym = p1u

x′ gives the following diagram:

ym pm,1 y′m
...

...
...

y3 p3,1 y′3
y2 p2,1 y′2

p1 u u u . . . u u

There exist y′i with yi = pi,1y
′
i (2 ≤ i ≤ m), y′2 · · · y′m = ux

′
, and y′jIpi,1 for

j < i. By induction on m we get factorizations

y′i =
i−1∏
j=2

pi,ju
xisi

for 2 ≤ i ≤ m such that for all 2 ≤ j < i ≤ m:

• pi,jIpk,l if j < l < k < i and pi,jI(uxksk) if j < k < i,

• sm = 1 and for all 2 ≤ j < m, sj
∏m
i=j+1 pi,j = ucj for some cj ≤ |A|,

• x′ =
∑m

i=2 xi +
∑m−1

i=2 ci.

12



Since y′jIpi,1 for j < i we get pi,1Ipj,k for 1 < k < j < i and pi,1Iu
xjsj for

1 < j < i. Finally, we have

s1

m∏
i=2

pi,1 = s1p1 = uc1

and

x = x1 + c1 + x′ = x1 + c1 +
m∑
i=2

xi +
m−1∑
i=2

ci =
m∑
i=1

xi +
m−1∑
i=1

ci.

This proves the lemma.

Remark 7. In Section 8 we will apply Lemma 6 in order to replace an
equation ux = y1y2 · · · ym, (where x, y1, . . . , ym are variables and u is a con-
crete connected trace) by an equivalent disjunction. Note that the length of
all factors pi,j and si above is bounded by |A| · |u|. Hence, one can guess
these traces as well as the numbers cj ≤ |A| (the guess results in a big dis-
junction). We can also guess which of the numbers xi are zero and which
are greater than zero. After these guesses we can verify the independences
pi,jIpk,l (j < l < k < i) and pi,jI(uxksk) (j < k < i), and the identities
sm = 1, sj

∏m
i=j+1 pi,j = ucj (1 ≤ j < m). If one of them does not hold,

the specific guess does not contribute to the disjunction. In this way, we can
replace the equation ux = y1y2 · · · ym by a big disjunction of formulas of the
form

∃xi > 0 (i ∈ K) : x =
m∑
i∈K

xi + c ∧
∧
i∈K

yi = piu
xisi ∧

∧
i∈[1,m]\K

yi = pisi,

where K ⊆ [1,m], c ≤ |A| ·(m−1) and the pi, si are concrete traces of length
at most |A| · (m − 1) · |u|. The number of disjuncts in the disjunction will
not be important for our purpose.

6 Automata for partially commutative closures

In this section, we present several automata constructions that are well-
known from the theory of recognizable trace languages [11, Chapter 2]. For
our purpose we need upper bounds on the size (the size of an automaton is its
number of states) of the constructed automata. In our specific situation we
can obtain better bounds than those obtained from the known constructions.
Therefore, we present the constructions in detail.

13



Let us fix an independence alphabet (A, I) and let A = (Q,A,∆, q0, F )
be a nondeterministic finite automaton (NFA) over the alphabet A, where
∆ ⊆ Q × A × Q is the transition relation, q0 ∈ Q is the initial state and
F ⊆ Q is the set of final states. Then, A is an I-diamond NFA if for all
(a, b) ∈ I and all transitions (p, a, q), (q, b, r) ∈ ∆ there exists a state q′

such that (p, b, q′), (q′, a, r) ∈ ∆. For an I-diamond automaton we have
L(A) = [L(A)]I . The NFA A is memorizing if (i) every state is accessible
from the initial state q0 and (ii) there is a mapping α : Q → 2A such that
for every word w ∈ A∗, if q0

w−→A q, then α(q) = alph(w).

Lemma 8. Let A1 and A2 be I-diamond NFA and let ni be the number of
states of Ai. Assume that A2 is memorizing. Then there exists an I-dia-
mond NFA for [L(A1)L(A2)]I with n1 · n2 many states.

Proof. Let Ai = (Qi, A,∆i, q0,i, Fi) for i ∈ {1, 2}. Let α2 : Q2 → 2A be the
map witnessing the fact that A2 is memorizing. Then, let

A = (Q1 ×Q2, A,∆, 〈q0,1, q0,2〉, F1 × F2),

where

∆ = {(〈p1, p2〉, a, 〈q1, p2〉) | (p1, a, q1) ∈ ∆1, aIα2(p2)} ∪
{(〈p1, p2〉, a, 〈p1, q2〉) | (p2, a, q2) ∈ ∆2}.

This indeed defines an I-diamond NFA.
We show that the following two statements are equivalent for all w ∈ A∗,

p1 ∈ Q1, and p2 ∈ Q2:

(i) 〈q0,1, q0,2〉
w−→A 〈p1, p2〉

(ii) There are w1, w2 ∈ A∗ such that w ≡I w1w2, q0,1
w1−→A1 p1, and

q0,2
w2−→A2 p2.

This clearly implies that L(A) = [L(A1)L(A2)]I .
Let us first prove that (i) implies (ii). The case w = ε is clear. Hence,

let w = w′a. Then there exist p′1 ∈ Q1, p
′
2 ∈ Q2 such that

〈q0,1, q0,2〉
w′−→A 〈p′1, p′2〉

a−→A 〈p1, p2〉.

By induction, there exists a factorization w′ ≡I w′1w′2 such that q0,1
w′1−→A1 p

′
1

and q0,2
w′2−→A2 p

′
2. Note that alph(w′2) = α2(p

′
2). There are two cases:
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Case 1. p′1
a−→A1 p1, p2 = p′2, and aIα2(p

′
2). Thus, aIw′2. We get w =

w′a ≡I w′1w′2a ≡I (w′1a)w′2. Let w1 = w′1a and w2 = w′2. We get q0,1
w1−→A1

p1 and q0,2
w2−→A2 p2.

Case 2. p′2
a−→A2 p2 and p1 = p′1. Let w1 = w′1 and w2 = w′2a. Thus, w =

w′a ≡I w′1w′2a = w1w2. Moreover, we have q0,1
w1−→A1 p1 and q0,2

w2−→A2 p2.

Let us now prove that (ii) implies (i). Assume that w ≡I w1w2, q0,1
w1−→A1

p1, and q0,2
w2−→A2 p2. We have to show that 〈q0,1, q0,2〉

w−→A 〈p1, p2〉. But

since A is an I-diamond NFA, it suffices to show that 〈q0,1, q0,2〉
w1w2−→A

〈p1, p2〉, which follows directly from the assumption and the definition of A
(note that α2(q0,2) = ∅). This concludes the proof of the lemma.

In general, for a regular language L ⊆ A∗, the partially commutative closure
[L]I is not regular. For instance, if A = {a, b} and aIb, then [(ab)∗]I consists
of all words with the same number of a’s as b’s. On the other hand, it
is well known that if u is a connected trace, then [u∗]I is regular (a more
general result, known as Ochmanski’s theorem holds in fact, see e.g. [11,
Section 2.3]). For our purpose we need an upper on the size of an I-diamond
NFA for [u∗]I (with u connected). Recall that ρ(u) is the number of different
prefixes of the trace u.

Lemma 9. Let u ∈ M(A, I) \ {1} be connected. There is a memorizing
I-diamond NFA for [u∗]I of size 2 · ρ(u)|A|.

Proof. The following construction can be found in [39, Proposition 5] for
the more general case of the partially commutative closure of a so called
loop-connected automaton. We present the construction in our simplified
situation, since the NFA gets slightly smaller.

We first define a non-memorizing I-diamond NFA A for [u∗]I of size
ρ(u)|A|. Then, we show that by adding an additional bit to all states, we
can get a memorizing I-diamond NFA A for [u∗]I of size 2 ·ρ(u)|A|. The idea
for the construction of A is implicitly contained in the proof of Lemma 5:
Assume that the automaton wants to read a word of the form ux and a
prefix y1 is already read. Then y1 must be of the form uks, where s is a
prefix of uc for some c ≤ |A|. The prefix s must be of the form u1u2 · · ·uc
such that if u = uivi, then viIuj if i < j. The state of the NFA stores the
tuple (u1, u2, . . . , uc).

DefineA = (Q,A,∆, q0, F ), whereQ is the set of all tuples (u1, u2, . . . , uc)
of traces such that there exist v1, . . . , vc ∈ M(A, I) with u = uivi (since
M(A, I) is cancellative, the vi are uniquely determined by the ui), ui 6= 1,
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vi 6= 1, and viIuj if i < j. Note that we must have c ≤ |A|: If c > |A|,
then there exist i ≤ |A| such that alph(v1 · · · vi) = alph(v1 · · · vi+1). Hence,
alph(vi+1) ⊆ alph(v1 · · · vi). Since (v1 · · · vi)Iui+1 we get ui+1Ivi+1 which
contradicts ui+1 6= 1 6= vi+1 and the fact that u is connected.

Since ui 6= 1 for all i, we can encode a state (u1, u2, . . . , uc) ∈ Q by the
tuple (u1, u2, . . . , uc, 1, . . . , 1) of length |A|. This implies that the number
of states of A is bounded by ρ(u)|A|. Note that if |u| = 1, then the empty
tuple () is the only state.

The transitions of A are defined as follows, where (u1, u2, . . . , uc) ∈ Q:

(a) ()
a−→A () if u = a ∈ A,

(b) (u1, u2, . . . , uc)
a−→A (u2, . . . , uc) if c > 0, u1a = u and aI(u2 · · ·uc),

(c) (u1, u2, . . . , uc)
a−→A (u1, . . . , ui, a, ui+1, . . . , uc) if aI(ui+1 · · ·uc) and

(u1, . . . , ui, a, ui+1, . . . , uc) ∈ Q,

(d) (u1, u2, . . . , uc)
a−→A (u1, . . . , ui−1, uia, ui+1, . . . , uc) if aI(ui+1 · · ·uc) and

(u1, . . . , ui−1, uia, ui+1, . . . , uc) ∈ Q.

The initial state as well as the final state is the empty tuple (). It is easy to
check that this is indeed an I-diamond NFA.

We claim that for every state (u1, . . . , uc) ∈ Q and every w ∈ A∗ the
following two statements are equivalent (which shows that L(A) = [u∗]I):

(i) ()
w−→A (u1, . . . , uc)

(ii) w ≡I uku1 · · ·uc for some k ≥ 0

Let us first show by induction on |w| that (i) implies (ii). The case w = ε is
clear. So, assume that w = w′a. There must exist a state (u′1, . . . , u

′
d) ∈ Q

such that
()

w′−→A (u′1, . . . , u
′
d)

a−→A (u1, . . . , uc).

By induction, we get w′ ≡I u`u′1 · · ·u′d for some ` ≥ 0. The definition of the
transitions of A implies that w = w′a ≡I u`u′1 · · ·u′da ≡I uku1 · · ·uc, where
k ∈ {`, `+ 1}.

For the direction from (ii) to (i) assume that w ≡I uku1 · · ·uc for some
k ≥ 0. We have to show that ()

w−→A (u1, . . . , uc). Since A is an I-diamond

NFA, it suffices to show that ()
uku1···uc−−−−−→A (u1, . . . , uc). But this follows

directly from the definition of A.
To make Amemorizing, we first keep only those states that are accessible

from the initial state (). Then, we add an extra bit to every state that indi-
cates whether we have already seen a completed occurrence of u. Thus, the
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new set of states is Q×{0, 1}, the initial state is the pair ((), 0), and the final
states are ((), 0) and ((), 1). The transitions operate on the Q-component as
for A. The {0, 1}-component is copied except for a transition (q, a, p) ∈ ∆
of type (b). This transition gives us the transitions ((q, 0), a, (p, 1)) and
((q, 1), a, (p, 1)). Then, we can define the α-mapping by

α((u1, . . . , uc), i) =

c⋃
j=1

alph(uj) ∪ alph(ui).

The resulting NFA is still an I-diamond NFA.

A direct consequence of Lemma 8 and 9 is:

Lemma 10. Let p, u, s ∈ M(A, I) with u 6= 1 connected. There is an NFA
for [pu∗s]I of size 2 · ρ(p) · ρ(s) · ρ(u)|A|.

Proof. We first construct an I-diamond NFA for p (which is identified here
with the set of words {u ∈ A∗ | p = [u]I}) with ρ(p) many states by taking
the set of all prefixes of p as states. Then, we construct a memorizing I-
diamond NFA for [u∗]I with 2 · ρ(u)|A| states using Lemma 9. By Lemma 8
we get an I-diamond automaton for [pu∗]I with 2 ·ρ(p) ·ρ(u)|A| many states.
Finally, we construct an I-diamond NFA for s with ρ(s) many states by
taking the set of all prefixes of s as states. This NFA is also memorizing.
Hence, we can apply Lemma 8 to get an NFA for [pu∗s]I with 2 · ρ(p) · ρ(s) ·
ρ(u)|A| many states.

The main lemma from this section that will be needed later is:

Lemma 11. Let p, q, u, v, s, t ∈ M(A, I) with u 6= 1 and v 6= 1 connected.
Let m = max{ρ(p), ρ(q), ρ(s), ρ(t)} and n = max{ρ(u), ρ(v)}. Then the set

L(p, u, s, q, v, t) := {(x, y) ∈ N× N | puxs = qvyt}

is semilinear and is a union of O(m8 · n4|A|) many linear sets of the form
{(a+ bz, c+ dz) | z ∈ N} with a, b, c, d ∈ O(m8 · n4|A|).

Proof. By Lemma 9 there exists an NFA for [pu∗s]I of size

k = 2 · ρ(p) · ρ(s) · ρ(u)|A| ≤ 2 ·m2 · n|A|

and an NFA for [qv∗t]I of size

` = 2 · ρ(q) · ρ(t) · ρ(v)|A| ≤ 2 ·m2 · n|A|.
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Then, we obtain an NFA A for L = [pu∗s]I ∩ [qv∗t]I with k · ` states. We
are only interested in the length of words from L. Hence, we replace in A
every transition label by the symbol a. The resulting NFA B is defined over
a unary alphabet. Let P = {n | an ∈ L(B)}. By [43, Theorem 1], the set P
can be written as a union

P =
r⋃
i=1

{bi + ci · z | z ∈ N}

with r ∈ O(k2`2) ⊆ O(m8 · n4|A|) and bi, ci ∈ O(k2`2) ⊆ O(m8 · n4|A|). For
every 1 ≤ i ≤ r and z ∈ N there must exist a pair (x, y) ∈ N× N such that

bi + ci · z = |ps|+ |u| · x = |qt|+ |v| · y.

In particular, bi ≥ |ps|, bi ≥ |qt|, |u| divides bi − |ps| and ci, and |v| divides
bi − |qt| and ci. We get:

L(p, u, s, q, v, t) =

r⋃
i=1

{(
bi − |ps|
|u|

+
ci
|u|
· z, bi − |qt|

|v|
+
ci
|v|
· z
) ∣∣∣∣ z ∈ N

}
This shows the lemma.

7 Linear Diophantine equations

We will also need a bound on the norm of a smallest vector in a certain kind
of semilinear sets. We will easily obtain this bound from a result by Zur
Gathen and Sieveking [44].

Lemma 12. Let A ∈ Zn×m, a ∈ Zn, C ∈ Nk×m, c ∈ Nk. Let β be an upper
bound for the absolute value of all entries in A, a, C, c. The set

L = {Cz + c | z ∈ Nm, Az = a} ⊆ Nk (1)

is semilinear. Moreover, if L 6= ∅ then L contains a vector with all entries
bounded by β + n! ·m · (m+ 1) · βn+1.

Proof. Semilinearity of L is clear since the set is Presburger-definable. For
the size bound, we use a result by Zur Gathen and Sieveking [44] to bound
the size of a smallest positive solution of the system Az = a. Let A ∈ Zn×m,

B ∈ Zp×m, a ∈ Zn×1, b ∈ Zp×1. Let r = rank(A), and s = rank

(
A
B

)
. Let
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M be an upper bound on the absolute values of all (s − 1) × (s − 1)- or

(s× s)-subdeterminants of the (n+ p)× (m+ 1)-matrix

(
A a

B b

)
, which are

formed with at least r rows from the matrix (A a). Then by the main result
of [44], the system Az = a, Bz ≥ b has an integer solution if and only if it
has an integer solution z such that the absolute value of every entry of z is
bounded by (m+ 1)M .

In our situation, we set p = m, B is the m-dimensional identity matrix,
and b is the vector with all entries equal to zero (then Bz ≥ b expresses

that all entries of z are positive). Since

(
A
B

)
is an (n+m)×m-matrix we

get s = rank

(
A
B

)
≤ m. We claim that the absolute values of all (s × s)-

subdeterminants (and also all (s−1)×(s−1)-subdeterminants) of the matrix(
A a

B b

)
are bounded by n!·βn. To see this, select s rows and s columns from(

A a

B b

)
and consider the resulting submatrix D. Recall Leibniz’ formula

for the determinant (where Ss is the set of all permutations of {1, . . . , s}):

det(D) =
∑
σ∈Ss

sgn(σ)
s∏
i=1

D[i, σ(i)].

Assume that the rows 1, . . . , s1 (s1 ≤ n) of D are from the n × (m + 1)-
submatrix (A, a). The remaining (s2 := s − s1 many) rows s1 + 1, . . . , s
of D are from (B, b). If one of the rows s1 + 1, . . . , s of D only contains
zeros, then det(D) = 0. Otherwise, since B is the identity matrix and b is
the zero vector, each of the rows s1 + 1, . . . , s contains a unique 1; all other
entries are zero. That means that every permutation σ ∈ Ss that gives
a non-zero contribution to det(D) must take fixed values on s1 + 1, . . . , s.
For the values of σ on the rows 1, . . . , s1, only s1 ≤ n many values remain.
Hence, at most s1! ≤ n! many permutations contribute a non-zero value to
det(D). Moreover, every such contribution is bounded by βs1 ≤ βn, which
gives the bound n! · βn on det(D). It follows that if Az = a has a positive
solution, then it has a positive solution where every entry is bounded by
(m+ 1) · n! · βn.

By substituting every entry of z by (m + 1)n! · βn in Cz + c, it follows
that if the set L in (1) is non-empty, then it contains a vector with all entries
bounded by β + n! ·m · (m+ 1) · βn+1.
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8 Exponent equations in graph groups

The aim of this section is to prove the following two statements, where G is
a fixed graph group:

• The set of solutions of an exponent equation over G is (effectively)
semilinear.

• Solvability of compressed exponent equations over G belongs to NP.

We start with some definitions. As usual, we fix an independence alphabet
(A, I). In the following we will consider reduction rules on sequences of
traces. For better readability we separate the consecutive traces in such a
sequence by commas. Let u1, u2, . . . , un ∈ IRR(A±1, I) be irreducible traces.
The sequence u1, u2, . . . , un is I-freely reducible if the sequence u1, u2, . . . , un
can be reduced to the empty sequence ε by the following rules:

• ui, uj → uj , ui if uiIuj

• ui, uj → ε if ui = u−1j in G(A, I)

• ui → ε if ui = ε.

A concrete sequence of these rewrite steps leading to the empty sequence
is a reduction of the sequence u1, u2, . . . , un. Such a reduction can be seen
as a witness for the fact that u1u2 · · ·un = 1 in G(A, I). On the other
hand, u1u2 · · ·un = 1 does not necessarily imply that u1, u2, . . . , un has a
reduction. For instance, the sequence a−1, ab, b−1 has no reduction. But
we can show that every sequence which multiplies to 1 in G can be refined
(by factorizing the elements of the sequence) such that the resulting refined
sequence has a reduction. For getting an NP-algorithm, it is important to
bound the length of the refined sequence exponentially in the length of the
initial sequence.

Lemma 13. Let n ≥ 2 and u1, u2, . . . , un ∈ IRR(A±1, I). If u1u2 · · ·un = 1
in G(A, I), then there exist factorizations ui = ui,1 · · ·ui,ki such that the
sequence

u1,1, . . . , u1,k1 , u2,1, . . . , u2,k2 , . . . , un,1, . . . , un,kn

is I-freely reducible. Moreover,
∑n

i=1 ki ≤ 2n − 2.

Proof. We prove the lemma by induction on n. The case n = 2 is trivial
(we must have u2 = u−11 ). If n ≥ 3 then by Lemma 4 we can factorize
u1 and u2 as u1 = ps and u2 = s−1t such that v := pt is irreducible.
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Hence, vu3 · · ·un = 1 in G(A, I). By induction, we obtain factorizations
pt = v = v1 · · · vk and ui = vi,1 · · · vi,ki (3 ≤ i ≤ n) such that the sequence

v1, . . . , vk, v3,1, . . . , v3,k3 , . . . , vn,1, . . . , vn,kn (2)

is I-freely reducible. Moreover,

k +

n∑
i=3

ki ≤ 2n−1 − 2.

By applying Levi’s lemma to the identity pt = v1v2 · · · vk, we obtain factor-
izations vi = ui,1ui,2 such that p = u1,1 · · ·uk,1, t = u1,2 · · ·uk,2, and ui,2Iuj,1
for 1 ≤ i < j ≤ k.

Fix a concrete reduction of the sequence (2). We now consider the fol-
lowing sequence

u1,1, . . . , uk,1, s, s
−1, u1,2, . . . , uk,2, ṽ3,1, . . . , ṽ3,k3 , . . . , ṽn,1, . . . , ṽn,kn , (3)

where the subsequence ṽi,j is u−1l,2 , u
−1
l,1 if vi,j cancels against vl in our fixed

reduction of (2) (which, in particular implies that vi,j = v−1l = u−1l,2 u
−1
l,1 ).

Otherwise (i.e., if vi,j does not cancel against any vl in our fixed reduction),
we set ṽi,j = vi,j .

Note that u1,1 · · ·uk,1s = ps = u1, s
−1u1,2 · · ·uk,2 = s−1t = u2 and

the concatenation of all traces in ṽi,1, . . . , ṽi,ki is ui for 3 ≤ i ≤ n. Hence,
it remains to show that the sequence (3) is I-freely reducible. First of
all, u1,1, . . . , uk,1, s, s

−1, u1,2, . . . , uk,2 reduces to u1,1, . . . , uk,1, u1,2, . . . , uk,2,
which can be rearranged to u1,1, u1,2, u2,1, u2,2, . . . , uk,1, uk,2 using the fact
that ui,2Iuj,1 for 1 ≤ i < j ≤ k. Finally, the sequence

u1,1u1,2, u2,1u2,2, . . . , uk,1uk,2, ṽ3,1, . . . , ṽ3,k3 , . . . , ṽn,1, . . . , ṽn,kn

is I-freely reducible. The definition of ṽi,j allows to basically apply the fixed
reduction of (2) to this sequence.

The number of traces in the sequence (3) can be estimated as

2k + 2 + 2 ·
n∑
i=3

ki ≤ 2 · (2n−1 − 2) + 2 = 2n − 2.

This concludes the proof of the lemma.

We now come to the main technical result of this paper. Let α ≤ |A| be the
size of a largest clique of the complementary graph (A, I)c = (A, (A×A)\I).
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Theorem 14. Let u1, u2, . . . , un ∈ G(A, I) \ {1}, v0, v1, . . . , vn ∈ G(A, I)
and let x1, . . . , xn be variables (we may have xi = xj for i 6= j) ranging over
N. Then, the set of solutions of the exponent equation

v0u
x1
1 v1u

x2
2 v2 · · ·u

xn
n vn = 1

is semilinear. Moreover, if there is a solution, then there is a solution with
xi ∈ O((αn)! · 22α2n(n+3) · µ8α(n+1) · ν8α|A|(n+1)), where

• µ ∈ O(|A|α · 22α2n · λα),

• ν ∈ O(λα), and

• λ = max{|u1|, |u2|, . . . , |un|, |v0|, |v1|, . . . , |vn|}.

Proof. Let us choose irreducible traces for u1, u2, . . . , un, v0, v1, . . . , vn; we
denote these traces with the same letters as the group elements. A trace u
is called cyclically reduced if there do not exist a ∈ A±1 and v such that
u = ava−1. For every trace there exist unique traces p, w such that u =
pwp−1 and w is cyclically reduced (since the reduction relation a−1xa → x
is terminating and confluent). These traces p and w can be computed in
polynomial time. Note that for a cyclically reduced irreducible trace w,
every power wn is irreducible. By replacing every uxii by piw

xi
i p
−1
i with ui =

piwip
−1
i and wi cyclically reduced, we can assume that all ui are cyclically

reduced and irreducible. In case one of the traces ui is not connected, we
can write ui as ui = ui,1ui,2 with ui,1Iui,2 and ui,1 6= 1 6= ui,2. Thus,
we can replace the power uxii by uxii,1u

xi
i,2. Note that ui,1 and ui,2 are still

irreducible and cyclically reduced. By doing this, the number n from the
theorem multiplies by at most α (which is the maximal number of pairwise
independent letters). In order to keep the notation simple we still use the
letter n for the number of ui, but at the end of the proof we have to multiply
n by α in the derived bound. Hence, for the further proof we can assume
that all ui are connected, irreducible and cyclically reduced. Let λ be the
maximal length of one of the traces u1, u2, . . . , un, v0, v1, . . . , vn, which does
not increase by the above preprocessing.

We now apply Lemma 13 to the equation

v0u
x1
1 v1u

x2
2 v2 · · ·u

xn
n vn = 1, (4)

where every uxii is viewed as a single factor. Note that by our preprocessing,
all factors ux11 , u

x2
2 , . . . , u

xn
n , v0, . . . , vn are irreducible (for all choices of the

xi). By taking a big disjunction over (i) all possible factorizations of the
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2n + 1 factors ux11 , u
x2
2 , . . . , u

xn
n , v0, . . . , vn into totally at most 22n+1 − 2

factors and (ii) all possible reductions of the resulting refined factorization
of v0u

x1
1 v1u

x2
2 v2 · · ·uxnn vn, it follows that (4) is equivalent to a disjunction of

statements of the following form: There exist traces yi,1, . . . , yi,ki (1 ≤ i ≤ n)
and zi,1, . . . , zi,li (0 ≤ i ≤ n) such that

(a) uxii = yi,1 · · · yi,ki (1 ≤ i ≤ n)

(b) vi = zi,1 · · · zi,li (0 ≤ i ≤ n)

(c) yi,jIyk,l for all (i, j, k, l) ∈ J1

(d) yi,jIzk,l for all (i, j, k, l) ∈ J2

(e) zi,jIzk,l for all (i, j, k, l) ∈ J3

(f) yi,j = y−1k,l for all (i, j, k, l) ∈M1

(g) yi,j = z−1k,l for all (i, j, k, l) ∈M2

(h) zi,j = z−1k,l for all (i, j, k, l) ∈M3

Here, the numbers ki and li sum up to at most 22n+1−2 (hence, some ki can
be exponentially large, whereas li can be bound by the length of vi, which
is at most λ). The tuple sets J1, J2, J3 collect all independences between
the factors yi,j , zk,l that are necessary to carry out the chosen reduction of
the refined left-hand side in (4). Similarly, the tuple sets M1,M2,M3 tell
us which of the factors yi,j , zk,l cancels against which of the factors yi,j , zk,l
in our chosen reduction of the refined left-hand side in (4). Note that every
factor yi,j (resp., zk,l) appears in exactly one of the identities (f), (g), (h)
(since in the reduction every factor cancels against another unique factor).

Next, we simplify our statements. Since the vi are concrete traces (of
length at most λ), we can take a disjunction over all possible factorizations
vi = vi,1 · · · vi,li (1 ≤ i ≤ n+ 1). This allows to replace every variable zi,j by
a concrete trace vi,j . Statements of the form vi,jIvk,l and vi,j = v−1k,l can, of

course, be eliminated. Moreover, if there is an identity yi,j = v−1k,l then we

can replace the variable yi,j by the concrete trace v−1k,l (of length at most λ).
In the next step, we replace statements of the form uxii = yi,1 · · · yi,ki

(1 ≤ i ≤ n). Note that some of the variables yi,j might have been replaced
by concrete traces of length at most λ. We apply to each of these equations
Lemma 6, or better Remark 7. This allows us to replace every equation
uxii = yi,1 · · · yi,ki (1 ≤ i ≤ n) by a disjunction of statements of the following
form: There exist numbers xi,j > 0 (1 ≤ i ≤ n, j ∈ Ki) such that
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• xi = ci +
∑

j∈Ki xi,j for all 1 ≤ i ≤ n,

• yi,j = pi,ju
xi,j
i si,j for all 1 ≤ i ≤ n, j ∈ Ki,

• yi,j = pi,jsi,j for all 1 ≤ i ≤ n, j ∈ [1, ki] \Ki.

Here, Ki ⊆ [1, ki], the ci are concrete numbers with ci ≤ |A| · (ki − 1),
and the pi,j , si,j are concrete traces of length at most |A| · (ki − 1) · |ui| ≤
|A| · (22n+1 − 3) · λ. Hence, the length of these traces can be exponential in
n.

Note that since xi > 0, we know the alphabet of yi,j = pi,ju
xi,j
i si,j (resp.,

yi,j = pi,jsi,j). This allows us to eliminate all independences of the form
yi,jIyk,l for (i, j, k, l) ∈ J1 (see (c)) and yi,jIzk,l for (i, j, k, l) ∈ J2 (see (d)).
Note that all variables zk,l have already been replaced by concrete traces. If
yi,j was already replaced by a concrete trace, then we can determine from
an equation yi,j = pi,ju

xi,j
i si,j the exponent xi,j . Since yi,j was replaced by

a trace of length at most λ (a small number), we get xi,j ≤ λ, and we can
replace xi,j in xi =

∑
j∈Ki xi,j + ci by a concrete number of size at most λ.

Finally, if yi,j was replaced by a concrete trace, and we have an equation of
the form yi,j = pi,jsi,j , then the resulting identity is either true or false and
can be eliminated.

After this step, we obtain a big disjunction of statements of the following
form: There exist numbers xi,j > 0 (1 ≤ i ≤ n, j ∈ K ′i) such that

(a’) xi = ci +
∑

j∈K′i
xi,j for all 1 ≤ i ≤ n, and

(b’) pi,ju
xi,j
i si,j = s−1k,l (u

−1
k )xk,lp−1k,l for all (i, j, k, l) ∈M .

Here, K ′i ⊆ Ki is a set of size at most ki ≤ 22n+1−2, ci ≤ |A|·(ki−1)+λ·ki <
(|A|+ λ) · (22n+1− 2), and the pi,j , si,j are concrete traces of length at most
|A| · (22n+1 − 3) · λ. The set M specifies a matching in the sense that for
every exponent xa,b (1 ≤ a ≤ n, b ∈ K ′i) there is a unique (i, j, k, l) ∈ M
such that (i, j) = (a, b) or (k, l) = (a, b). Note that

|M | = 1

2

n∑
i=1

|K ′i| ≤
1

2

n∑
i=1

ki ≤
1

2
(22n+1 − 2) = 22n − 1.

We now apply Lemma 11 to the identities pi,ju
xi,j
i si,j = s−1k,l (u

−1
k )xk,lp−1k,l .

Each such identity can be replaced by a disjunction of constraints

(xi,j , xk,l) ∈ {(ai,j,k,l + bi,j,k,l · zi,j,k,l, ci,j,k,l + di,j,k,l · zi,j,k,l) | zi,j,k,l ∈ N}.
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For the numbers ai,j,k,l, bi,j,k,l, ci,j,k,l, di,j,k,l we obtain the bound

ai,j,k,l, bi,j,k,l, ci,j,k,l, di,j,k,l ∈ O(µ8 · ν8|A|)

(the alphabet of the traces is A±1 which has size 2|A|, therefore, we have to
multiply in Lemma 11 |A| by 2), where, by Lemma 3,

µ = max{ρ(pi,j), ρ(pk,l), ρ(si,j), ρ(sk,l)} ∈ O(|A|α · 22αn · λα) (5)

and
ν = max{ρ(ui), ρ(uk)} ∈ O(λα). (6)

Note that ρ(t) = ρ(t−1) for every trace t. The above equation (a’) for xi can
be now written as

xi = ci +
∑

(i,j,k,l)∈M

(ai,j,k,l + bi,j,k,l · zi,j,k,l) +
∑

(k,l,i,j)∈M

(ck,l,i,j + dk,l,i,j · zk,l,i,j).

Note that the two sums in this equation contain in total |K ′i| ≤ 22n+1

many summands (since for every j ∈ K ′i there is a unique pair (k, l) with
(i, j, k, l) ∈M or (k, l, i, j) ∈M).

Hence, after a renaming of symbols, the initial equation (4) becomes
equivalent to a finite disjunction of statements of the form: There exist
z1, . . . , zm ∈ N (these zi are the above zi,j,k,l and m = |M |) such that

xi = ai +
m∑
j=1

ai,jzj for all 1 ≤ i ≤ n. (7)

Moreover, we have the following size bounds:

• m = |M | ≤ 22n − 1,

• ai ∈ O(ci+|K ′i|·µ8·ν8|A|) ⊆ O(22n(|A|+λ+µ8·ν8|A|)) ⊆ O(22n·µ8·ν8|A|)

• ai,j ∈ O(µ8 · ν8|A|)

Recall that some of the variables xi can be identical. W.l.o.g. assume that
x1, . . . , xk are pairwise different and for all k + 1 ≤ i ≤ n, xi = xf(i), where
f : [k + 1, n]→ [1, k]. Then, the system of equations (7) is equivalent to

xi = ai +

m∑
j=1

ai,jzj for all 1 ≤ i ≤ k

ai − af(i) =
m∑
j=1

(af(i),j − ai,j)zj for all k + 1 ≤ i ≤ n.
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The set of all (x1, . . . , xk) ∈ Nk for which there exist z1, . . . , zm ∈ N satisfying
these equalities is semilinear by Lemma 12, and if it is non-empty then it
contains a vector (x1, . . . , xk) ∈ Nk such that

xi ∈ O(n!·m2·22n(n+1)·µ8(n+1)·ν8|A|(n+1)) ⊆ O(n!·22n(n+3)·µ8(n+1)·ν8|A|(n+1)).

Recall that in this bound we have to replace n by α · n due to the initial
preprocessing. This proves the theorem.

Theorem 15. Let (A, I) be a fixed independence alphabet. Solvability of
compressed exponent equations over the graph group G(A, I) is in NP.

Proof. Consider a compressed exponent equation

E = (v0u
x1
1 v1u

x2
2 v2 · · ·u

xn
n vn = 1),

where ui = val(Gi) and vi = val(Hi) for given SLPs G1, . . . ,Gn,H0, . . . ,Hn.
Let m = max{|G1|, . . . , |Gn|, |H0|, . . . , |Hn|}. By Theorem 14 we know that
if there exists a solution for E then there exists a solution σ with σ(xi) ∈
O((αn)! · 22α2n(n+3) · µ8α(n+1) · ν8α|A|(n+1)), where

• µ ∈ O(|A|α · 22α2n · λα),

• ν ∈ O(λα),

• λ = max{|u1|, |u2|, . . . , |un|, |v0|, |v1|, . . . , |vn|} ∈ 2O(m), and

• α ≤ |A|.

Note that the bound on the σ(xi) is exponential in the input length (the sum
of the sizes of all Gi and Hi). Hence, we can guess in polynomial time the
binary encodings of numbers ki ∈ O((αn)! ·22α2n(n+3) ·µ8α(n+1) ·ν8α|A|(n+1))
(where ki = kj if xi = xj). Then, we have to verify whether

val(H0)val(G1)k1val(H1)val(G2)k2val(H2) · · · val(Gn)knval(Hn) = 1

in the graph group G(A, I). This is an instance of the so called compressed
word problem for G(A, I), where the input consists of an SLP G over the
alphabet A±1 and it is asked whether val(G) = 1 in G(A, I). Note that
the big powers val(Gi)ki can be produced with the productions of Gi and
additional dlog kie many productions (using iterated squaring). Since the
compressed word problem for a graph group can be solved in deterministic
polynomial time [31, 32], the statement of the theorem follows. For the last
step, it is important that (A, I) is fixed.
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Remark 16. Note that the bound on the exponents σ(xi) in the previous
proof is still exponential in the input length if the independence alphabet
(A, I) is part of the input as well. The problem is that we do not know
whether the uniform compressed word problem for graph groups (where the
input is an independence alphabet (A, I) together with an SLP over the ter-
minal alphabet A±1) can be solved in polynomial time or at least in NP.
The latter would suffice to get an NP-algorithm for solvability of compressed
exponent equations over a graph group that is part of the input.

9 Transfer results

In this section, we show that the property of having an NP-algorithm for the
knapsack problem (or compressed exponent equations) is preserved by cer-
tain transformations on groups. Specifically, we show that the class of groups
that admit an NP-algorithm for knapsack is closed under (i) finite extensions,
(ii) HNN-extensions with finite associated subgroups, and (iii) amalgamated
free products with finite identified subgroups. In the case of finite extensions,
the transfer also holds for compressed exponent equations.

Finite extensions and virtually special groups. Our first transfer
result concerns finite extensions. Together with our result on graph groups,
this will provide a large class of groups with an NP-algorithm for compressed
exponent equations. A group G is called virtually special if it is a finite
extension of a subgroup of a graph group. Recently, this class of groups
turned out to be very rich. It contains the following classes of groups:

• Coxeter groups [19]

• one-relator groups with torsion [45]

• fully residually free groups [45]

• fundamental groups of hyperbolic 3-manifolds [1]

The following is our transfer theorem for finite extensions.

Theorem 17. Let G and H be finitely generated groups such that H is a
finite extension of G. If knapsack (resp. solvability of compressed exponent
equations) belongs to NP for G, then the same holds for H.

From Theorem 15 it follows that solvability of compressed exponent equa-
tions belongs to NP for every subgroup of a graph group. Therefore, our
transfer theorem implies:
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Theorem 18. Solvability of compressed exponent equations belongs to NP
for every virtually special group. In particular, solvability of compressed
exponent equations belongs to NP for Coxeter groups, one-relator groups with
torsion, fully residually free groups, and fundamental groups of hyperbolic 3-
manifolds.

We need the following statement, which is shown implicitly in the proof of
[31, proof of Theorem 4.4].

Lemma 19. Let G and H be finitely generated groups such that H is a finite
extension of G and let C be a set of right coset representatives of G. Let
A (resp. B ⊇ A) be a finite generating set for G (resp., H). From a given
SLP H over the terminal alphabet B±1 one can compute in polynomial time
(i) the unique coset representative c ∈ C such that val(H) ∈ Gc and (ii) an
SLP G over the terminal alphabet A±1 such that val(G)c = val(H) holds in
the group H.

Proof of Theorem 17. In [28], it was shown that for each finitely generated
group, the knapsack problem and the solvability of exponential expressions
where each variable occurs only once (the latter is called generalized knap-
sack problem there) are polynomially inter-reducible. Therefore, we shall
prove that exponential expression over H can be reduced to exponential ex-
pressions over G. Moreover, the reduction preserves the property that each
variable occurs only once. We only describe the case that all inputs are
uncompressed; by means of Lemma 19, the compressed case can be treated
analogously.

Assume that [H : G] = m and let C be a set of coset representatives,
|C| = m. Let A be a finite generating set for G and let B ⊇ A be a finite
generating set for H. Suppose we are given an exponent equation

v0u
x1
1 v1 · · ·u

xn
n vn = 1 (8)

in H where the vi and the ui are represented as words over B±1. As a first
step, we guess which of the variables xi assume a value smaller than m. For
those that do, we can guess the value and merge the result in a neighboring
vi. This increases the size of the instance by at most a factor of m, which
is a constant. Hence, from now on, we only look for solutions to (8) where
xi ≥ m for 1 ≤ i ≤ n.

The next step of our NP algorithm is to guess the cosets occurring in
a solution. This means, we guess d0, c1, d1, . . . , cn, dn ∈ C and look for a
solution to (8) such that v0u

x1
1 v1 · · ·u

xi
i vi ∈ Gdi and v0u

x1
1 v1 · · ·u

xi
i ∈ Gci
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for 0 ≤ i ≤ n. This is equivalent to a solution where the elements

v0d
−1
0 , di−1u

xi
i c
−1
i , civid

−1
i , dn

all belong to G for 1 ≤ i ≤ n. We can verify in polynomial time that v0d
−1
0 ,

civid
−1
i (1 ≤ i ≤ n), and dn belong to G. Therefore, we want to check

whether there is a solution to (8) where di−1u
xi
i c
−1
i ∈ G for 1 ≤ i ≤ n.

Consider the function fi : C → C, which is defined so that for each
c ∈ C, fi(c) is the unique element d ∈ C with cuid

−1 ∈ G. Note that we can
compute fi in polynomial time. Then there are numbers 1 ≤ ki ≤ m such
that fm+ki

i (di−1) = fmi (di−1). With this notation, we have di−1u
xi
i c
−1
i ∈ G

if and only if fxii (di−1) = ci.
We may assume that there is an xi ≥ m with fxii (di−1) = ci: Otherwise,

there is no solution and we can terminate our branch. Therefore, there is a
0 ≤ ri < ki such that fm+ri

i (di−1) = ci. This means, we have fxii (di−1) = ci
for xi ≥ m if and only if xi = m + ki · yi + ri for some yi ≥ 0. This allows
us to construct an exponent equation over G.

Let ei = fmi (di−1). Then, the elements di−1u
m
i e
−1
i , eiu

ki
i e
−1
i , and eiu

ri
i c
−1
i

all belong to G. Moreover, for xi = m+ ki · yi + ri, we have

v0u
x1
1 v1 · · ·u

xn
n vn = v0d

−1
0

n∏
i=1

di−1u
m+ki·yi+ri
i c−1i civid

−1
i

= (v0d
−1
0 )

n∏
i=1

(di−1u
m
i e
−1
i )(eiu

ki
i e
−1
i )yi(eiu

ri
i c
−1
i civid

−1
i )

and each term in parentheses belongs to G. This clearly yields an exponent
equation over G (with variables y1, . . . , yn) that is solvable if and only if
there is a solution of (8) of the kind we are looking for. It remains to verify
that the new instance is polynomial in size.

There is a constant ` such that given a word w representing h ∈ H
and elements c, d ∈ C such that chd−1 ∈ G, a word of length at most ` · |w|
representing chd−1 over A±1 is computable in linear time. Let si, tj ∈ (B±1)∗

represent vi and uj , respectively, for 0 ≤ i ≤ n and 1 ≤ j ≤ n. Then, the
new instance has size at most

`|s0|+
n∑
i=1

`(m+ ki + ri)|ti|+ `|si| ≤ 3m`(|s0|+ |t1|+ |s1|+ · · · |tn|+ |sn|)

which is linear in the size of the old instance.
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HNN-extensions and amalgamated products. The remaining trans-
fer results concern two constructions that are of fundamental importance in
combinatorial group theory [36], namely HNN-extensions and amalgamated
products. In their general form, HNN-extensions have been used to con-
struct groups with an undecidable word problem, which means they may
destroy desirable algorithmic properties. We consider the special case of
finite associated (resp. identified) subgroups, for which these constructions
already play a prominent role, for example, in Stallings’ decomposition of
groups with infinitely many ends [42] or the construction of virtually free
groups [10]. Moreover, these constructions are known to preserve a wide
range of important structural and algorithmic properties [2, 6, 20, 23, 24,
26, 27, 33, 34, 37].

Suppose G = 〈Σ | R〉 is a finitely generated group that has two iso-
morphic subgroups A and B with an isomorphism ϕ : A → B. Then the
corresponding HNN-extension is the group

H = 〈G, t | t−1at = ϕ(a) (a ∈ A)〉,

where t is a new letter not contained in G. In other words, H is the group
H = 〈Σ ∪ {t} | R ∪ {t−1at = ϕ(a) | a ∈ A}〉 with t /∈ Σ. Intuitively, H is
obtained from G by adding a new element t such that conjugating elements
of A with t applies the isomorphism ϕ. Here, t is called the stable letter
and the groups A and B are the associated subgroups. A basic fact about
HNN-extensions is that the group G embeds naturally into H [21].

Here, we only consider the case that A and B are finite groups, so that we
may assume that A ∪B ⊆ Σ. To exploit the symmetry of the situation, we
use the notation A(+1) = A and A(−1) = B. Then, we have ϕα : A(α) →
A(−α) for α ∈ {+1,−1}. By h : (Σ±1 ∪ {t, t−1})∗ → H, we denote the
canonical morphism that maps each word to the element of H it represents.

A word u ∈ (Σ±1 ∪ {t, t−1})∗ is called reduced if it does not contain a
factor t−αwtα with α ∈ {−1, 1}, w ∈ (Σ±1)∗, and h(w) ∈ A(α). Note that
the equation t−1at = ϕ(a), a ∈ A, allows us to replace such a factor t−αwtα

by ϕα(h(w)) ∈ A(−α) ⊆ Σ. Since this reduces the number of t’s in the
word, this allows us to turn every word into an equivalent reduced word.
The following well-known fact describes the reduced words representing the
identity [34, Lemma 5].

Lemma 20. If u ∈ (Σ±1 ∪ {t, t−1})∗ is a reduced word representing 1 ∈ H,
then u ∈ (Σ±1)∗.

Our algorithm for knapsack in HNN-extensions is an adaptation of the
saturation algorithm of Benois [3] for the membership problem for rational
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subsets of free groups. Here, for each path spelling aa−1, one adds a parallel
edge labeled with the empty word. Since knapsack is a special case of this
problem, we have to use a suitable subclass of automata that is preserved
by our saturation and corresponds to the knapsack problem.

Let G be a group with finite generating set Σ. A finite automaton over
G is an NFA A = (Q,Σ±1,∆, q0, F ). A (directed) cycle in A is a sequence
p1, . . . , pn of states such that there are edges (pi, ai, pi+1) for 1 ≤ i ≤ n− 1
and (pn, an, p1) with a1, . . . , an ∈ Σ±1. In particular, a single state with
a loop is regarded as a cycle. A sequence p1, . . . , pn is an induced cycle if
it is a cycle and there are no other edges among the states p1, . . . , pn. We
call A a knapsack automaton if every strongly connected component of A
is a singleton or an induced cycle. The membership problem for knapsack
automata over G is the following decision problem:

Input: A knapsack automaton A over G and a word w ∈ (Σ±1)∗.

Question: Does A accept a word w′ that represents the same element of G
as w?

Indeed, the membership problem for knapsack automata corresponds pre-
cisely to the knapsack problem in the following sense.

Lemma 21. For each finitely generated group, knapsack belongs to NP if
and only if membership for knapsack automata belongs to NP.

Proof. It is easy to turn a knapsack instance into a knapsack automaton:
Given words w1, . . . , wk, w ∈ (Σ±1)∗, one can clearly construct a knapsack
automaton accepting w∗1 · · ·w∗k. Then, the knapsack problem amounts to
deciding the membership problem for w.

Now, suppose we are given a knapsack automaton A over G and a word
w ∈ (Σ±1)∗. We can clearly turn A into a knapsack automaton that first
reads w−1 and then behaves like A. Therefore, it suffices to solve the mem-
bership problem in the case that w = ε.

Consider a run r in A from the initial to a final state. Let c1, . . . , cn be
the sequence of strongly connected components it visits. For each ci that
is not a singleton, let pi and qi be the state where r enters and leaves ci,
respectively. We call the sequence c1, . . . , cn, together with the pi and qi the
skeleton of r.

Our algorithm guesses a skeleton. Since A is a knapsack automaton,
from this skeleton, we can determine words v0, u1, v1, . . . , un, vn ∈ (Σ±1)∗

such that v0u
∗
1v1 · · ·u∗nvn is precisely the set of words labeling a path with

this skeleton. Hence, deciding the membership problem for A amounts to
checking whether there are x1, . . . , xn ∈ N with h0g

x1
1 h1 · · · gxnn hn = 1, where
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gi (hj , respectively) is the element represented by ui (vj , respectively). This
is an exponential equation with pairwise distinct variables and the solvability
of such equations is called the generalized knapsack problem in [28], where
it was shown to be polynomially inter-reducible with the knapsack problem.

Theorem 22. Let H be an HNN-extension of the finitely generated group
G with finite associated subgroups. If knapsack for G belongs to NP, then
the same holds for H.

Proof. According to Lemma 21, it suffices to prove that if membership for
knapsack automata over G belongs to NP, then the same holds for H. Hence,
let A be a knapsack automaton over H. As explained above, it suffices to
check membership for the group identity, i.e., to check whether A accepts a
word from h−1(1).

The basic idea of the proof is to saturate A, yielding a knapsack au-
tomaton that is saturated, meaning: For each path from p to q labeled with
a word t−αwtα with h(w) ∈ A(α), there is an edge from p to q labeled with
ϕα(h(w)) ∈ A(−α). We will then show that A accepts a word from h−1(1)
if and only if it accepts a word from h−1(1) ∩ (Σ±1)∗. This will allow us to
remove all t±1-edges and apply the algorithm for G. A path in a knapsack
automaton that is labeled by a word t−αwtα with w ∈ (Σ±1)∗ ∩ h−1(A(α))
is called a reduction path. Among other things, the algorithm will introduce
a shortcut edge for the reduction path, namely

p
ϕα(a)−−−→ q, (9)

where a = h(w) ∈ A(α). Observe that ϕα(a) ∈ A(−α) and ϕα(a) =
h(t−αwtα). By introducing intermediate states, we may assume that (i) there
is no edge between states that belong to distinct cycles and (ii) the initial
and the final state do not lie on a cycle.

Phase 1. The saturation proceeds in two phases. In the first phase, we
saturate the directed cycles, which are the strongly connected components.
This means, we modify the automaton so that there is no reduction path
between two states on a cycle. This is done as follows. We successively guess
tuples (p, α, a, q) where p and q are states from the same cycle, α ∈ {−1, 1},
and a ∈ A(α). Then, employing the NP algorithm for G, we can clearly
verify that there is a reduction path spelling t−αwtα from p to q with w ∈
(Σ±1)∗ and h(w) = a. Note that on this path, the first letter (t−α) occurs
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only once, meaning the path visits each state at most once (i.e. it makes at
most one round in the cycle). Let

p = r0
u1−→ r1 · · ·

un−→ rn = q (10)

be the reduction path and let

q = rn
un+1−−−→ rn+1 · · ·

um−−→ rm = r0 = p

be the rest of the cycle with u1, . . . , um ∈ Σ±1 ∪ {t, t−1} and u1 · · ·un =
t−αwtα. In particular, m is the length of the cycle. Let us now describe the
saturation step. We remove all edges from (10) and all states incident to
them, except for p and q. Instead, we add a shortcut edge (9). For each state
s not on the cycle and for which there is an edge (s, v, ri), 1 ≤ i ≤ n− 1, we
glue in a path

s
v−→ s0

ui+1−−−→ s1 · · ·
un−→ sn−i = q, (11)

where s0, . . . , sn−i−1 are new states. Analogously, for each state s not on
the cycle and for which there is an edge (ri, v, s), 1 ≤ i ≤ n− 1, we glue in
a path

p = s0
u1−→ s1 · · ·

ui−→ si
v−→ s, (12)

where s1, . . . , si are new states. Moreover, for each pair (s, s′) of states
not on the cycle and for which there are edges (s, v, ri) and (rj , v

′, s′) with
1 ≤ i < j ≤ n− 1, we glue in a path

s
v−→ s0

ui+1−−−→ s1 · · ·
uj−→ sj−i

v′−→ s′, (13)

where s0, . . . , sj−i are new states. This completes our saturation step.
Let A′ be the automaton resulting from one saturation step from A.

Then, A′ is clearly a knapsack automaton: We only connect states that
were connected before. Moreover, for states s, s′ that exists in A and in A′,
the set of group elements represented on paths from s to s′ does not change.
Indeed, a path that avoids our cycle still exists. A path that involves the
whole path (10) can use the shortcut edge (9). A path that either (i) enters
(10) after p and follows it until q or (ii) follows (10) partly and then leaves
before q can use the new paths (11) or (12), respectively. Finally, a path
that follows only a part of (10) that starts after p and ends before q can use
the new path (13) instead.

Let us estimate the number of added states during Phase 1. The degree
of a cycle is the number of edges entering or leaving the cycle. Let d be the
degree of our cycle. Let us first consider a single saturation step. The new
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states of type (11) or (12) are each at most d·n many. The new states of type
(13) are at most d2 ·n many. Hence, we add at most (d2+2d)n ≤ (d2+2d)m
states in this saturation step. Observe that in this step, the length of the
affected cycle decreases (t−αwtα has length ≥ 2 and h(t−αwtα) ∈ A(−α)
has length 1) and its degree is unchanged (the new edges from (11) and
(12) clearly preserve the degree and those of (13) do not increase the degree
because by our assumption that no edge connects two cycles, s and s′ do
not belong to a cycle). Now, we consider the whole phase. Suppose in the
beginning, A has c cycles of maximal degree d and maximal length `. Then,
each saturation step adds at most (d2 + 2d)` states. Moreover, there can be
at most `·c saturation steps, so that the first phase adds at most (d2+2d)`2c
states, which is polynomial in the size of the input automaton.

Phase 2. In the second phase, we consider reduction paths between states
that belong to distinct strongly connected components. Since here, adding
an edge that runs parallel to the reduction path cannot violate the property
of being a knapsack automaton, we may saturate by simply introducing new
edges.

Again, we successively guess tuples (p, α, a, q) where α ∈ {−1, 1}, and
a ∈ A(α). However, we require that p and q are not from the same strongly
connected component and that there is no shortcut edge (9) yet. As above,
we employ the NP algorithm for G to verify that there is a reduction path
spelling t−αwtα from p to q with w ∈ (Σ±1)∗ and h(w) = a. Then, we add
the shortcut edge (9). As before, we have h(t−αwtα) = ϕα(a) ∈ A(−α).
This is all we do in the saturation step. Since now, we only add edges (and
no states) and each correct guess leads to an increase in the number of edges,
our sequence of saturation steps must terminate after a polynomial number
of steps. This concludes the second phase and thus the saturation.

Finally, the algorithm applies the NP-algorithm for G. More precisely, we
remove all edges labeled {t, t−1}. This yields a knapsack automaton over G,
so that we can use the algorithm for G to check whether it accepts 1 ∈ G.
Then, we answer “yes” if and only if the algorithm for G does.

It remains to be shown that this algorithm is sound and complete. If we
answer “yes”, then the input automaton accepts 1 ∈ H. This is because each
saturation step preserves the set of accepted elements. On the other hand,
suppose the input automaton A accepts 1 ∈ H and consider the branch of
our nondeterministic algorithm that guesses in such a way that in the end,
there are no more reduction paths without a shortcut edge. Let B be the
resulting saturated knapsack automaton. Since A accepts 1 ∈ H, there is
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an accepting run in B that accepts 1 ∈ H. Consider such a run reading a
word u ∈ (Σ±1∪{t, t−1})∗ with a minimal number of occurrences of t. Since
B is saturated, this implies that u is reduced: Otherwise, u would have a
factor t−αwtα with w ∈ (Σ±1)∗ and h(w) ∈ A(α). This factor, however,
lies on a reduction path and we could have used the shortcut edge instead,
which would result in a run with fewer t’s. Since u is reduced and represents
1 ∈ H, it contains neither t nor t−1 (Lemma 20). Hence, our application of
the algorithm for G answers “yes” because of u.

In our last transfer theorem, we consider amalgamated free products. For
i ∈ {0, 1}, let Gi = 〈Σi | Ri〉 be a finitely generated group and let F
be a finite group that is embedded in each Gi, meaning that there are
injective morphisms ϕi : F → Gi for i ∈ {0, 1}. Then, the free product
with amalgamation with identified subgroup F is defined as

G0 ∗F G1 = 〈G0 ∗G1 | ϕ0(f) = ϕ1(f) (f ∈ F )〉.

Here, G0 ∗G1 denotes the free product G0 ∗G1 = 〈Σ0 ]Σ1 | R0 ]R1〉. Note
that the product depends on the morphisms ϕi, although they are omitted
in the notation G0∗FG1. Equivalently, G0∗FG1 is given by the presentation

〈Σ0 ] Σ1 | R ] S ∪ {ϕ0(f) = ϕ1(f) | f ∈ F}〉.

Let us consider the free product G0 ∗ G1. Let h : (Σ±10 ∪ Σ±11 )∗ → G0 ∗
G1 be the canonical morphism that maps a word to the group element it
represents. If w ∈ (Σ±10 ∪Σ±11 )∗, then a syllable of w is a factor of w that is
contained in (Σ±10 )+ ∪ (Σ±11 )+ and that is maximal with this property. The
definition of the free product immediately implies the following.

Lemma 23. If in the free product G0 ∗G1, a word represents 1 ∈ G0 ∗G1,
then it contains a syllable s with h(s) = 1.

The transfer theorem states that taking amalgamated products with
finite identified subgroups preserves NP membership of knapsack.

Theorem 24. Let G0 and G1 be finitely generated groups with a common
finite subgroup F . If knapsack for G0 and for G1 belongs to NP, then the
same holds for the amalgamated product G0 ∗F G1.

Proof. It is well-known [36, Theorem 2.6, p. 187] that G0 ∗F G1 can be
embedded into the HNN-extension

I = 〈G0 ∗G1, t | t−1ϕ0(f)t = ϕ1(f) (f ∈ F )〉

35



by way of the morphism Φ: G0 ∗F G1 → I with

Φ(g) =

{
t−1gt if g ∈ G0

g if g ∈ G1.

Since Theorem 22 already tells us that NP membership of knapsack is pre-
served by HNN-extensions with finite associated subgroups, it suffices to
show that free products preserve NP membership.

We use a slight modification of the nondeterministic algorithm from the
proof of Theorem 22 and show that if membership for knapsack automata
belongs to NP for G0 and G1, the same holds for G0 ∗ G1. During the
saturation, we maintain the following invariants:

(i) There is no edge between states that belong to distinct cycles.

(ii) The initial and the final states do not lie on a cycle.

(iii) Every edge entering a cycle is labeled with the empty word ε.

By introducing intermediate states, we can clearly achieve them in the be-
ginning. As in the proof of Theorem 22, we add shortcut edges for reduction
paths. For states p and q, a reduction path (from p to q) is a path labeled
by a word w ∈ (Σ±1i )+ for some i ∈ {0, 1} such that (a) h(w) = 1 and
(b) if p and q lie on a cycle, then this cycle also contains a letter in Σ±11−i.
Here, we need the additional condition (b) to make sure that short-cutting
a reduction path actually reduces the cycle (Without requiring (b), it could
happen that a reduction path occupies more than one round of a cycle.) A
shortcut edge is then simply (p, ε, q).

Again, our saturation consists of two phases and in the first one, we
shortcut reduction paths inside of cycles. We guess tuples (p, i, q) such that
p and q lie on a cycle and i ∈ {0, 1}. Using the NP-algorithm for Gi, we
verify that there is a reduction path from p to q labeled with w ∈ (Σ±1i )+.
Then, we proceed as in the proof of Theorem 22 and replace the reduction
path with a shortcut edge and add new paths almost as in (11), (12), and
(13): The only difference is that the new paths of type (11) are are prolonged
with an ε-edge at the end so as to preserve invariant (iii).

While in the proof of Theorem 22, the length the cycle decreases in a
saturation step, this is not guaranteed here. This is because in the proof
of Theorem 22, we always remove edges labeled t and t−1. Here, it could
happen that the reduction path consists of one edge labeled a ∈ Σ±1i with
h(a) = 1. Then, the length of the cycle is unchanged. We do, however, re-
duce the number of letters on the cycle. Therefore, an analogous estimation
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of the number of introduced states applies and shows that it is polynomially
bounded.

The second phase works just as for Theorem 22. We guess triples (p, i, q)
such that p and q are not in the same strongly connected component but
there is no shortcut edge (p, ε, q) yet. Then, we verify that there is a reduc-
tion path from p to q with label w ∈ (Σ±1i )+. If this is the case, we add a
shortcut edge (p, ε, q).

In the end, we guess i ∈ {0, 1} and verify, using the NP-algorithm for Gi,
that the automaton, restricted to Σ±1i , accepts a word representing 1 ∈ Gi.

Let us show that this algorithm is sound and complete. As above, we
can argue that if it answers “yes”, then the input automaton clearly accepts
1 ∈ G0 ∗ G1. For the completeness, we have to argue slightly differently.
Suppose the input automaton accepts a word representing 1 ∈ G0 ∗G1. We
consider a branch of the nondeterministic algorithm that saturates every
reduction path. Let B be the resulting automaton. Since B also accepts a
word representing 1 ∈ G0 ∗G1, we consider such a word w ∈ (Σ±10 ∪ Σ±11 )∗

with a minimal number of syllables.
Suppose w has more than one syllable. By Lemma 23, it contains a

syllable s ∈ (Σ±1i )+ with h(s) = 1. Consider the accepting run r for w and
let p and q be the states occupied before and after reading s. The path
taken by r from p to q is not a reduction path, because otherwise we could
have taken a shortcut edge instead, in contradiction to the minimality of
w. This means, p and q lie on a cycle that contains only letters in Σ±1i .
Since s is a syllable, this implies that r enters this cycle at p. Let p′ be the
state occupied in r directly before p: Note that r cannot start in p because
of invariant (ii). Because of invariant (iii), the edge from p′ to p is labeled
with ε. Thus, the path taken by r from p′ to q is a reduction path, again
contradicting the minimality of w.

Hence, w has at most one syllable, which means w ∈ (Σ±1j )∗ for some
j ∈ {0, 1} and our application of the NP-algorithm for Gj answers “yes”.

10 Hardness results

Since knapsack for binary encoded integers is NP-complete, it follows that
the compressed knapsack problem is NP-hard for every group that contains
an element of infinite order. In this section, we prove that (uncompressed)
knapsack and subset sum are NP-complete for a direct product of two free
groups of rank at least two. This solves an open problem from [16].

With F (Σ) we denote the free group generated by the set Σ. Moreover,
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let F2 = F ({a, b}).

Theorem 25. The subset sum problem and the knapsack problem are NP-
complete for F2 × F2. For knapsack NP-hardness already holds for the vari-
ant, where the exponent variables are allowed to take values from Z (see
Remark 1).

Proof. In [40] it was shown that there exists a fixed set D ⊆ F2 × F2 such
that that the following problem (called the bounded submonoid problem) is
NP-complete:

Input: A unary encoded number n (i.e., n is given by the string an) and
an element g ∈ F2 × F2

Question: Do there exist g1, . . . gn ∈ D (not necessarily distinct) such that
g = g1g2 · · · gn in F2 × F2?

Let us briefly explain the NP-hardness proof, since we will reuse it. We start
with a finitely presented group 〈Σ, R〉 having an NP-complete word problem
and a polynomial Dehn function. Such a group was constructed in [7]. To
this group, the following classical construction by Mihăılova [38] is applied:
Let

D = {(rε, 1) | r ∈ R, ε ∈ {−1, 1}} ∪ {(a, a) | a ∈ Σ±1},

which is viewed as a subset of F (Σ) × F (Σ). Note that D is closed under
taking inverses. Let 〈D〉 ≤ F (Σ) × F (Σ) be the subgroup generated by D.
Mihăılova proved that for every word w ∈ (Σ±1)∗ the following equivalence
holds:

w = 1 in 〈Σ, R〉 ⇐⇒ (w, 1) ∈ 〈D〉 in F (Σ)× F (Σ).

Moreover, based on the fact that 〈Σ, R〉 has a polynomial Dehn function
p(n), the following equivalence was shown in [40], where q(n) = p(n) + 8(c ·
p(n) + n), c is the maximal length of a relator in R, and Dn is the set of all
products of n elements from D:

w = 1 in 〈Σ, R〉 ⇐⇒ ∃n ≤ q(|w|) : (w, 1) ∈ Dn in F (Σ)× F (Σ).

From these two equivalences it follows directly that the following three state-
ments are equivalent for all words w ∈ (Σ±1)∗, where D = {g1, g2, . . . , gk}:

• w = 1 in 〈Σ, R〉

• (w, 1) =
∏q(|w|)
i=1 (g

a1,i
1 g

a2,i
2 · · · gak,ik ) in F (Σ)× F (Σ) for aj,i ∈ {0, 1}

• (w, 1) =
∏q(|w|)
i=1 (g

a1,i
1 g

a2,i
2 · · · gak,ik ) in F (Σ)× F (Σ) for aj,i ∈ Z
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This shows that the subset sum problem and the knapsack problem are
NP-hard for the group F (Σ) × F (Σ), where for knapsack we allow integer
exponents. To get the same results for F2 × F2, we use the fact that F2

contains a copy of F (Σ).
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