
Automata theory on sliding windows∗

Moses Ganardi1, Danny Hucke1, Daniel König1, Markus Lohrey1,
and Konstantinos Mamouras2

1 Universität Siegen, Germany
{ganardi,hucke,koenig,lohrey}@eti.uni-siegen.de

2 University of Pennsylvania, Philadelphia, USA
mamouras@seas.upenn.edu

Abstract
In a recent paper we analyzed the space complexity of streaming algorithms whose goal is to
decide membership of a sliding window to a fixed language. For the class of regular languages
we proved a space trichotomy theorem: for every regular language the optimal space bound
is either constant, logarithmic or linear. In this paper we continue this line of research: We
present natural characterizations for the constant and logarithmic space classes and establish
tight relationships to the concept of language growth. We also analyze the space complexity
with respect to automata size and prove almost matching lower and upper bounds. Finally, we
consider the decision problem whether a language given by a DFA/NFA admits a sliding window
algorithm using logarithmic/constant space.

1998 ACM Subject Classification F.1.1 Models of Computation, F.4.3 Formal Languages

Keywords and phrases regular languages, sliding window algorithms

Digital Object Identifier 10.4230/LIPIcs.STACS.2018.32

1 Introduction

Streaming algorithms process an input sequence a1a2 · · · am from left to right and have at
time t only direct access to the current data value at. Such algorithms have received a lot of
attention in recent years; see [1] for an introduction. The general goal of streaming algorithms
is to avoid the explicit storage of the whole data stream. Ideally, a streaming algorithm
works in constant space, in which case it reduces to a deterministic finite automaton (DFA),
but polylogarithmic space with respect to the input length might be acceptable, too. These
small space requirements are motivated by the current explosion in the size of the input data,
which makes random access to the input often infeasible. Such a scenario arises for instance
when searching in large databases (e.g., genome databases or web databases), analyzing
internet traffic (e.g. click stream analysis), and monitoring networks.

The first papers on streaming algorithms are usually attributed to Munro and Paterson
[28] and Flajolet and Martin [17], although the principle idea goes back to the work on online
machines by Hartmanis, Lewis and Stearns from the 1960’s [27, 31]. Extremely influential
for the area of streaming algorithms was the paper of Alon, Matias, and Szegedy [2].

The sliding window model. Two streaming models can be found in the literature: In the
standard model the algorithm reads a data stream a1 · · · am from left to right. At time instant
t it outputs a value f(a1 · · · at) for a certain function f . In contrast, in the sliding window

∗ A full version of the paper with all proofs can be found in [19].

© Moses Ganardi, Danny Hucke, Daniel König, Markus Lohrey and Konstantinos Mamouras;
licensed under Creative Commons License CC-BY

35th Symposium on Theoretical Aspects of Computer Science (STACS 2018).
Editors: Rolf Niedermeier and Brigitte Vallée; Article No. 32; pp. 32:1–32:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2018.32
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

32:2 Automata theory on sliding windows

model the algorithm works on a sliding window. At time instant t, the active window is a
certain suffix at−n+1 · · · at of a1 · · · at and the algorithm outputs f(at−n+1 · · · at).

The sliding window model is the right approach for streaming applications, where data
items are outdated after a certain time. A typical example is the analysis of a time series
as it may arise in medical monitoring, web tracking, or financial monitoring. In all these
applications, data items are usually no longer important after a certain time. Two variants
of the sliding window model can be found in the literature; see e.g. [3]:

Fixed-size model: The size of the active window is a fixed constant (the window size). In
other words: at each time instant a new data value ai arrives and the oldest data value
from the sliding window expires.
Variable-size model: The active window at−n+1 · · · at is determined by an adversary. At
every time instant the adversary can either remove the first data value from the window
(expiration of a value) or add a new data value at the right end (arrival of a new value).

In the seminal paper of Datar et al. [15], where the fixed-size sliding window model was
introduced, the authors show how to maintain the number of 1’s in a sliding window of size n
over the alphabet {0, 1} in space 1

ε · log2 n if one allows a multiplicative error of 1± ε. This
is has been the starting point for a large number of further papers on the approximation of
statistical data over sliding windows. Let us mention the work on computation of the variance
and k-median [4], quantiles [3], and entropy [8] over sliding windows. Other computational
problems that have been considered for the sliding window model include optimal sampling
[9], various pattern matching problems [10, 11, 12, 13], database querying (e.g. processing
of join queries [22]) and graph problems (e.g. checking for connectivity and computation
of matchings, spanners, and spanning trees [14]). Further references on the sliding window
model can be found in [1, Chapter 8] and [7].

Language recognition in the streaming model. A natural problem that has been surpris-
ingly neglected for the streaming model is language recognition. The goal is to check whether
an input string belongs to a given language L. Let us quote Magniez, Mathieu, and Nayak
[26]: “Few applications [of streaming] have been made in the context of formal languages,
which may have impact on massive data such as DNA sequences and large XML files. For
instance, in the context of databases, properties decidable by streaming algorithm have been
studied [30, 29], but only in the restricted case of deterministic and constant memory space
algorithms.” For Magniez et al. this was the starting point to study language recognition in
the streaming model. Thereby they restricted their attention to the above mentioned stand-
ard streaming model. Note that in the standard model the membership problem for a regular
language is trivial to solve: one simply simulates a DFA on the stream and thereby only
store the current state. In [26] the authors present a randomized streaming algorithm for the
(non-regular) Dyck language Ds with s pairs of parenthesis that works in space O(

√
n logn)

and time polylog(n) per symbol. Further investigations on streaming language recognition
for various subclasses of context-free languages can be found in [5, 6, 18, 23, 24, 29, 30].
Let us emphasize that all these papers exclusively deal with the standard streaming model.
Language recognition problems for the sliding window model have been completely neglected
so far. This was the starting point for our previous paper [20].

Querying regular languages in the sliding window model. As mentioned above, in the
standard streaming model the membership problem for a regular language can be solved in
constant space by simulating a DFA. This solution does not work for the sliding window
model. The problem is the removal of the left-most symbol from the sliding window. In

M. Ganardi, D. Hucke, D. König, M. Lohrey, and K. Mamouras 32:3

order to check whether the active window belongs to a certain language L one has to know
this first symbol in general. In such a case one has to store the whole window content using
O(n) bits (where n is the window size). A simple regular language where this phenomenon
arises is the language a{a, b}∗ of all words that start with a. The point is that by repeatedly
checking whether the sliding window content belongs to a{a, b}∗, one can recover the exact
content of the sliding window, which implies that every sliding window algorithm for testing
membership in a{a, b}∗ has to use n bits of storage (where n is the window size).

For a function s(n) let Freg(s(n)) be the class of all languages L with the following
property: For every window size n there exists an algorithm that reads a data stream, uses
only space s(n) and correctly decides at every time instant whether the active window (the
last n symbols from the stream) belongs to L. Note that this is a non-uniform model: for
every window size n we use a separate algorithm. The class Vreg(s(n)) of languages that
have variable-size sliding window algorithms with space complexity s(n) is defined similarly,
see page 6 for details. Our main result from [20] is a space trichotomy for regular languages:
1. Vreg(o(n)) = Freg(o(n)) = Freg(O(logn)) = Vreg(O(logn))
2. Freg(o(logn)) = Freg(O(1))
3. Vreg(o(logn)) = Vreg(O(1)) = all trivial languages (empty and universal languages)
Each of the three cases is characterized in terms of the syntactic homomorphism and the left
Cayley graph of the syntactic monoid of the regular language. The precise characterizations
are a bit technical; see [20] for details.

In this paper we continue our investigation of sliding-window algorithms for regular
languages. As a first contribution, we present very natural characterizations of the above
language classes in 1. and 2.: The languages in 1. are exactly the languages that are reducible
with a Mealy machine (working from right to left) to a regular language of polynomial growth.
The regular languages of polynomial growth are exactly the bounded regular languages
[33]. A language L is bounded if L ⊆ w∗1w∗2 · · ·w∗n for words w1, w2, . . . , wn. In addition, we
show that the class 1. is the Boolean closure of regular left ideals (regular languages L with
Σ∗L ⊆ L) and regular length languages (regular languages where |u| = |v| implies that u ∈ L
iff v ∈ L). The class 2. is characterized as the Boolean closure of suffix-testable languages
(languages L where membership in L only depends on a suffix of constant length) and regular
length languages. A natural example for the classes above is the problem of testing whether
the sliding window contains a fixed pattern w as a factor (or as a suffix) since we can check
membership of the left ideal Σ∗wΣ∗ (or of the suffix-testable language Σ∗w).

We also consider the sliding-window space complexity of regular languages in a uniform
setting, where the size m (number of states) of an automaton for the regular language is
also taken into account. In [20], we asked whether for DFAs of size m that accept languages
in Freg(O(logn)) = Vreg(O(logn)), there exists a sliding-window streaming algorithm with
space complexity poly(m) · logn. Here, we give a negative answer by proving a lower bound
of the form Ω(2m · logn). Moreover, we also show almost matching upper bounds.

Finally, we prove that one can test in nondeterministic logspace (NL) and hence in
deterministic polynomial time whether for a given DFA A the language L(A) belongs to the
above class 1. (resp., 2.). For NFAs these problems become Pspace-complete.

2 Preliminaries

For an alphabet Σ and n ≥ 0 let Σ≤n = {x ∈ Σ∗ : |x| ≤ n}. The set of all prefixes of x ∈ Σ∗
is Pref(x) = {u ∈ Σ∗ : ∃v ∈ Σ∗ : x = uv} and the reversal of x = a1 · · · an is xR = an · · · a1.
For a language L ⊆ Σ∗ let Pref(L) =

⋃
x∈L Pref(x) and LR = {xR : x ∈ L}. The reversal of

STACS 2018

32:4 Automata theory on sliding windows

a function τ : Σ∗ → Γ∗ is defined as τR(x) = τ(xR)R. Thus, τ(u) = v iff τR(uR) = vR.
We use log x as an abbreviation for blog2 xc. Note that if (wi)i≥0 is the length-lexicographic

enumeration of {0, 1}∗ then |wi| ≤ log i. We use the following well-known bounds for binomial
coefficients, where 1 ≤ k ≤ n and e is Euler’s constant: (n/k)k ≤

(
n
k

)
≤ (e · n/k)k.

We use standard definitions from automata theory. A nondeterministic finite automaton
(NFA) is a tuple A = (Q,Σ, I,∆, F) where Q is a finite set of states, Σ is an alphabet, I ⊆ Q
is the set of initial states, ∆ ⊆ Q× Σ×Q is the transition relation and F ⊆ Q is the set of
final states. A deterministic finite automaton (DFA) A = (Q,Σ, q0, δ, F) has a single initial
state q0 ∈ Q instead of I and a transition function δ : Q× Σ→ Q instead of the transition
relation ∆. A deterministic automaton has the same format as a DFA, except that the state
set Q is not required to be finite. If A is deterministic, the transition function δ is extended
to a function δ : Q× Σ∗ → Q in the usual way and we define A(x) = δ(q0, x) for x ∈ Σ∗ and
L(A) = {x ∈ Σ∗ : A(x) ∈ F} (the language accepted by A).

Let L ⊆ Σ∗ be a language. The left quotient of x ∈ Σ∗ is x−1L = {z ∈ Σ∗ : xz ∈ L}.
The Myhill-Nerode congruence ∼L is the equivalence relation on Σ∗ defined by x ∼L y if
and only if x−1L = y−1L. It is a right congruence on Σ∗, i.e. x ∼L y implies xz ∼L yz for
all x, y, z ∈ Σ∗. If A is a (not necessarily finite) deterministic automaton for a language
L ⊆ Σ∗, then A(x) = A(y) implies x ∼L y. The minimal deterministic automaton for L is
AL = (Σ∗/∼L, Σ, [ε]∼L

, δ, {[x]∼L
: x ∈ L}) with δ([x]∼L

, a) = [xa]∼L
. Clearly, L(AL) = L.

For an NFA A we denote with AD the corresponding deterministic power set automaton
(restricted to those states that are reachable from the initial state) and with AR the NFA
obtained from A by reversing all transitions and swapping the set of initial states and the
set of final states. Moreover, we define ARD = (AR)D. Thus, L(AR) = L(ARD) = L(A)R. If
an NFA A has m states, then both AD and ARD have at most 2m states.

3 Streaming algorithms

A data stream is just a finite sequence of data values. We make the assumption that these
data values are from a finite set Σ. Thus, a data stream is a finite word w = a1 · · · am ∈ Σ∗.
A streaming algorithm reads the symbols of a data stream from left to right. At time
instant t the algorithm has only access to the symbol at and the internal storage, which
is encoded by a bit string. The goal of the streaming algorithm is to compute a certain
function f : Σ∗ → A into some domain A, which means that at time instant t the streaming
algorithm outputs the value f(a1 · · · at). In this paper, we only consider the Boolean case
A = {0, 1}; in other words, the streaming algorithm tests membership in a fixed language.
Furthermore, we abstract away from the actual computation and only analyze the space
requirement. Formally, a streaming algorithm for L ⊆ Σ∗ is a deterministic (possibly infinite)
automaton A = (S,Σ, s0, δ, F) with L = L(A), where the states are encoded by bit strings.
We describe this encoding by an injective function enc: S → {0, 1}∗. The space function
space(A, ·) : Σ∗ → N specifies the space used by A on a certain input: For w ∈ Σ∗ let
space(A, w) = max{|enc(A(u))| : u ∈ Pref(w)}.

In the above streaming model, the output value of the streaming algorithm at time
t depends on the whole past a1a2 · · · at of the data stream. However, in many practical
applications one is only interested in the “relevant part of the past”. Two formalizations of
this can be found in the literature:

Only the suffix of a1a2 · · · at of length n is relevant. Here, n is a fixed constant. This
streaming model is called the fixed-size sliding window model.
The relevant suffix of a1a2 · · · at is determined by an adversary. In this model, at every

M. Ganardi, D. Hucke, D. König, M. Lohrey, and K. Mamouras 32:5

time instant the adversary can either remove the first symbol from the active window
(expiration of a data value), or add a new symbol at the right end (arrival of a new data
value). This streaming model is also called the variable-size sliding window model.

Fixed-size sliding windows. Given a word w = a1a2 · · · am ∈ Σ∗ and a window length
n ≥ 0, we define the active window lastn(w) = am−n+1am−n+2 · · · am ∈ Σn, where we set
ai = a for i ≤ 0. Here a ∈ Σ is an arbitrary symbol, which fills the window initially. A
sequence A = (An)n≥0 is a fixed-size sliding window algorithm for L ⊆ Σ∗ if each An is
a streaming algorithm for {w ∈ Σ∗ : lastn(w) ∈ L}. Its space complexity is the function
fA : N→ N ∪ {∞} where fA(n) is the maximum encoding length of a state in An.

Note that for every language L and every n the language {w ∈ Σ∗ : lastn(w) ∈ L} is
regular, which ensures that An can be chosen to be a DFA and hence fA(n) <∞ for all n ≥ 0.
The trivial fixed-size sliding window algorithm for L is the sequence B = (Bn)n≥0, where Bn

is the DFA with state set Σn and the transition mapping δ(au, b) = ub for a, b ∈ Σ, u ∈ Σn−1.
States of Bn can be encoded with O(log |Σ| · n) bits. By minimizing each Bn, we obtain an
optimal fixed-size sliding window algorithm A for L. Finally, we define FL(n) = fA(n). Thus,
FL is the space complexity of an optimal fixed-size sliding window algorithm for L. Notice
that FL is not necessarily monotonic. For instance, take L = {au : u ∈ {a, b}∗, |u| odd}.
Then, we have FL(2n) ∈ Θ(n) and FL(2n+ 1) ∈ O(1). The above trivial algorithm B yields
FL(n) ∈ O(n) for every language L.

Note that the fixed-size sliding window is a non-uniform model: for every window size we
have a separate streaming algorithm and these algorithms do not have to follow a common
pattern. Working with a non-uniform model makes lower bounds stronger. In contrast, the
variable-size sliding window model that we discuss next is a uniform model in the sense that
there is a single streaming algorithm that works for every window length.

Variable-size sliding windows. For an alphabet Σ we define the extended alphabet Σ =
Σ ∪ {↓}. In the variable-size model the active window wnd(u) ∈ Σ∗ for a stream u ∈ Σ∗ is
defined as follows, where a ∈ Σ:

wnd(ε) = ε wnd(u↓) = ε if wnd(u) = ε

wnd(ua) = wnd(u)a wnd(u↓) = v if wnd(u) = av

A variable-size sliding window algorithm for a language L ⊆ Σ∗ is a streaming algorithm
A for {w ∈ Σ∗ : wnd(w) ∈ L}. Its space complexity is the function vA mapping a window
length n to the maximum number of bits used by A on inputs producing an active window
of size at most n. Formally, it is the monotonic function vA : N→ N ∪ {∞} with vA(n) =
max{space(A, u) : u ∈ Σ∗, |wnd(v)| ≤ n for all v ∈ Pref(u)}. This definition of vA(n)
slightly deviates from the one given in [20], where the space complexity is defined as v′A(n) =
max{|enc(A(u))| : u ∈ Σ∗, |wnd(u)| = n}. One easily sees that vA(n) = maxk≤n v

′
A(k) and

hence vA(n) = v′A(n) if v′A(n) is monotonic. An advantage of our definition of vA(n) is that
for every language an optimal variable-size sliding window algorithm exists. We obtain this
algorithm from the minimal deterministic automaton for {w ∈ Σ∗ : wnd(w) ∈ L}.

I Lemma 3.1. For every L ⊆ Σ∗ there exists a variable-size sliding window algorithm A
such that vA(n) ≤ vB(n) for every variable-size sliding window algorithm B for L and all n.

We define VL(n) = vA(n), where A is a space optimal variable-size sliding window algorithm
for L from Lemma 3.1. Since any algorithm in the variable-size model yields an algorithm in
the fixed-size model, we have FL(n) ≤ VL(n).

STACS 2018

32:6 Automata theory on sliding windows

Space complexity classes and closure properties. For a function s : N → N we define
the classes F(s) and V(s) of all languages L ⊆ Σ∗ which have a fixed-size (variable-size,
respectively) sliding window algorithm with space complexity bounded by s(n). For a class
C of functions we define X(C) =

⋃
s∈C X(s) for X ∈ {F,V}.

Several times we will exploit closure properties of the classes F(O(s)) and V(O(s)) (for
a function s(n)). We need the following definitions: A Mealy machineM = (Q,Σ,Γ, q0, δ)
consists of a finite set of states Q, an input alphabet Σ, an output alphabet Γ, an initial
state q0 ∈ Q and the transition function δ : Q× Σ→ Q× Γ. For every q ∈ Q the machine
computes a length-preserving transduction τq : Σ∗ → Γ∗ in the usual way: τq(ε) = ε and
if δ(p, a) = (q, b) then τp(au) = b τq(u). We call τR

q0
the ←-transduction computed by M.

Thus, a ←-transduction is computed by a Mealy machine that works on an input word from
right to left. If L is regular and τ is a ←-transduction, then τ(L) and τ−1(L) are regular as
well. A ←-transduction τ is called a ←-reduction from K ⊆ Σ∗ to L ⊆ Γ∗ if K = τ−1(L).

I Lemma 3.2. For any function s(n) the classes F(O(s)) and V(O(s)) are closed under (i)
Boolean operations and (ii) ←-reductions.

Space trichotomy for regular languages. In [20] we proved a trichotomy theorem on
sliding window algorithms for regular languages. We identified a partition of the class of
regular languages into three classes which completely characterize the sliding window space
complexity in both the fixed-size and the variable-size model. The definition of the three
classes is given in terms of the syntactic homomorphism and the left Cayley graph of the
syntactic monoid of the regular language, see [20].

For X ∈ {F,V} and a class C of functions we abbreviate X(C) ∩ REG by Xreg(C), where
REG is the class of all regular languages.

I Theorem 3.3 ([20]). The following holds:
Vreg(o(n)) = Freg(o(n)) = Freg(O(logn)) = Vreg(O(logn))
Freg(o(logn)) = Freg(O(1))
Vreg(o(logn)) = Vreg(O(1)) = all trivial languages (empty and universal languages)

Strictly speaking, [20, Theorem 7] only claims VL(n) /∈ O(1) for all non-trivial languages
L. However, the proof of [20, Theorem 7] does imply the stronger bound VL(n) /∈ o(logn).
This statement will also be reproved in the following section.

Let us comment on a subtle point. When making statements about the space complexity
functions VL(n) and FL(n) it is in general important to fix the underlying alphabet. For
instance according to the third point from Theorem 3.3 we have VL(n) ∈ O(1) for the
language L = {a}∗ if the underlying alphabet is {a}. On the other hand, if the underlying
alphabet is {a, b} then VL(n) 6∈ O(1) (in fact, L then belongs to Vreg(Θ(logn))).

4 Space complexity and language growth

In this section we reprove the space trichotomy (Theorem 3.3) for the variable-size model.
For this we relate the function VL(n) to the growth of a certain derived language and
then use the well known results about the growth of regular languages. We need the
following definition. For a language L ⊆ Σ∗ define the mapping ψL : Σ∗ → (Σ∗/∼L)∗ by
ψL(a1 · · · an) = [a1 · · · an]∼L

[a2 · · · an]∼L
· · · [an]∼L

. Notice that ψL is a length-preserving
mapping from Σ∗ to the set of words over the alphabet Σ∗/∼L. Although Σ∗/∼L may be
infinite (namely for non-regular L), the image ψL(Σ≤n) has at most |Σ|n+1 − 1 elements for
each n ≥ 0.

M. Ganardi, D. Hucke, D. König, M. Lohrey, and K. Mamouras 32:7

I Theorem 4.1. For every language ∅ (L (Σ∗ we have VL(n) = log |ψL(Σ≤n)|.

Proof sketch. We first exhibit a variable-size sliding window algorithm A with vA(n) =
log |ψL(Σ≤n)|. The idea is that on input w ∈ Σ∗ the algorithm A is in state A(w) =
ψL(wnd(w)). Consider an active window a1 · · · an ∈ Σ∗. Three observations are crucial:

ψL(a2 · · · an) is obtained from ψL(a1 · · · an) by removing the first ∼L-class [a1 · · · an]∼L
.

ψL(a1 · · · an) and a ∈ Σ determine ψL(a1 · · · ana) = [a1 · · · ana]∼L
· · · [ana]∼L

[a]∼L
, since

∼L is a right-congruence
The first ∼L-class in ψL(a1 · · · an) determines whether a1 · · · an ∈ L.

These remarks define a variable-size sliding window algorithm for L with state set ψL(Σ∗).
It is easy to define a binary encoding of the states such that this variable-size sliding window
algorithm has space complexity log |ψL(Σ≤n)|.

Conversely, consider a variable-size sliding window algorithm A for L with space com-
plexity v(n) = vA(n). To prove that v(n) ≥ log |ψL(Σ≤n)|, one shows that for every input
x = a1a2 · · · am ∈ Σ∗ of length m ≤ n, the state A(x) determines (i) m = |x| and (ii)
ψL(a1 · · · am). Hence, every value ψL(x) for x ∈ Σ≤n can be encoded by a bit string of
length at most v(n), namely enc(A(x)). Since there are |ψL(Σ≤n)| such values, it follows
that 2v(n)+1 − 1 ≥ |ψL(Σ≤n)|, which implies v(n) ≥ log |ψL(Σ≤n)|. J

Lemma 4.1 fails for L = ∅ or L = Σ∗, where VL(n) = 0 and log |ψL(Σ≤n)| = log(n+ 1).
We can use Lemma 4.1 to reprove the space trichotomy for regular languages in the

variable-size sliding window model. For this, we need the following simple lemma:

I Lemma 4.2. If L ⊆ Σ∗ is regular, then ψL is a ←-transduction. In particular, ψL(Σ∗)
and ψL(L) are regular. Furthermore ψL is a ←-reduction from L to ψL(L).

The growth of a language L ⊆ Σ∗ is the function g(n) = |{x ∈ L : |x| ≤ n}|. Since the
growth of every regular language is either Θ(nd) for some integer d ≥ 0 or Ω(rn) for some
r > 1 [21, Section 2.3], Lemma 4.1 and 4.2 reprove the trichotomy theorem for variable-size
windows: For a regular language L, VL(n) is either in O(1), Θ(logn) or Θ(n). Furthermore,
since |ψL(Σ≤n)| ≥ n+ 1 we have VL(n) ∈ Ω(logn) for every non-trivial language L.

Let us conclude this section with a result that bounds for all languages the fixed-size
space function FL(n) in terms of the growth of L.

I Theorem 4.3. If L ⊆ Σ∗ has growth g(n), then FL(n) ∈ O(log g(n) + logn).

5 Logspace sliding-window algorithms

In this section we will study the class Vreg(O(logn)). We will (i) give several new and very
natural characterizations of Vreg(O(logn)), (ii) will exhibit a new logspace sliding-window
algorithm that is more space efficient in terms of the automata size compared to our previous
algorithm from [20], and (iii) will match our new space bound by an almost tight lower
bound. Before we state the results, we have to introduce a couple of definitions.

A strongly connected component (SCC for short) of a DFA B = (Q,Σ, q0, δ, F) is an
inclusion-maximal subset C ⊆ Q such that for all p, q ∈ C there exist words u, v ∈ Σ∗ such
that δ(p, u) = q and δ(q, v) = p. An SCC C ⊆ Q is well-behaved if for all q ∈ C and u, v ∈ Σ∗
with |u| = |v| and δ(q, u), δ(q, v) ∈ C we have: δ(q, u) ∈ F if and only if δ(q, v) ∈ F . If every
SCC in B which is reachable from q0 is well-behaved, then B is called well-behaved.

A language L ⊆ Σ∗ is called a left ideal (right ideal) if Σ∗L ⊆ L (LΣ∗ ⊆ L). A language
L ⊆ Σ∗ is called a length language if for all n ∈ N, either Σn ⊆ L or L ∩ Σn = ∅. Clearly, L

STACS 2018

32:8 Automata theory on sliding windows

is a length language iff LR is a length language, and L is left ideal iff LR is a right ideal. In
this section we prove the main characterization theorem for the class Vreg(O(logn)):

I Theorem 5.1. Let L ⊆ Σ∗ be regular. The following statements are equivalent:
1. L ∈ F(O(logn))
2. L ∈ V(O(logn))
3. LR is recognized by a well-behaved DFA.
4. L is ←-reducible to a regular language of polynomial growth.
5. L is a Boolean combination of regular left ideals and regular length languages.

Our proof of the direction from 3. to 2. will also yield a better space bound in terms of
automata size. In [20] we presented a variable-size sliding window algorithm using space
O(mm · (m · log(m) + log(n))) for a regular language that is given by a DFA with m states.

I Theorem 5.2. Let A be a DFA or NFA with m states such that ARD is well-behaved. There
are constants cm, dm that only depend on m such that the following holds for L = L(A):

If A is a DFA then VL(n) ≤ (2m ·m+ 1) · logn + cm for n large enough.
If A is an NFA then VL(n) ≤ (4m + 1) · logn + dm for n large enough.

Finally we prove a lower bound for the fixed-size model (and hence also for the variable-size
model) that almost matches the space bound in Theorem 5.2:

I Theorem 5.3. For all k ≥ 1 there exists a language Lk ⊆ {0, . . . , k}∗ recognized by a DFA
with k + 3 states such that Lk ∈ F(O(logn)) and FLk

(n) ≥ (2k − 1) · (logn− k).

We start with the proof of Theorem 5.2.

5.1 Proof of Theorem 5.2
We need one more definition for the proof of Theorem 5.2. Let B be a well-behaved DFA
with m states and let ρ be a run in B, which does not necessarily start in the initial state.
Let C1, . . . , Ck be the sequence of pairwise different SCCs that are visited by ρ in that
order. The path summary of ρ is the sequence S(ρ) = (p1, `1, p2, `2, . . . , pk, `k) where pi is
the first state in Ci visited by ρ, and `i ≥ 0 is the number of symbols read in ρ from the
first occurrence of pi until the first state from Ci+1 (or until the end for pk). The number of
different path summaries S(ρ), where ρ ranges over all runs in B of length n can be bounded
by (e is Euler’s constant)

mm ·
(
n+m− 1
m− 1

)
≤ mm ·

(
n+m

m

)
≤ mm ·

(
e · (n+m)

m

)m

≤ em · (n+m)m. (1)

Here, (i) mm is the number of sequences of m states (we can repeat the last state in a
path summary so that we have exactly m states) and (ii)

(
n+m−1

m−1
)
is the number of ordered

partitions of n into m summands.
We can now prove Theorem 5.2. Let L ⊆ Σ∗ be regular and given by a finite DFA or NFA

A. Let B = ARD, which is well-behaved. A set D ⊆ Σ∗ distinguishes L if for all x, y ∈ Σ∗
with x 6∼L y there exists z ∈ D such that exactly one of the words xz and yz belongs to L.
If A is a DFA with m states, then there are at most m distinct left quotients x−1L. Since
every family of m sets has a distinguishing set of size at most m− 1 [16], we get a set D of
size at most m− 1 that distinguishes L. If A is an NFA with m states, we can clearly choose
|D| ≤ 2m − 1 by determinizing A.

For a window content w = a1 · · · an we define a 0-1-matrix Aw : D × {1, . . . , n} → {0, 1}
by Aw(z, i) = 1 iff ai · · · anz ∈ L. Note that the i-th column Aw(·, i) determines [ai · · · an]∼L

,

M. Ganardi, D. Hucke, D. König, M. Lohrey, and K. Mamouras 32:9

and vice versa. Hence, the matrix Aw determines ψL(w) and vice versa, i.e., |ψL(Σ≤n)| =
|{Aw : w ∈ Σ≤n}|. By Lemma 4.1, it therefore suffices to bound |{Aw : w ∈ Σ≤n}|.

We can encode each row Aw(z, ·) of Aw succinctly as follows. Consider one row indexed
by z ∈ D. Let ρz be the run of B on the word (wz)R and ρ̃z be the subrun of ρz which only
reads the suffix wR of (wz)R. One can reconstruct Aw(z, ·) from the path summary S(ρ̃z).
Thus Aw can be encoded by |D| many path summaries. With (1) and the fact that B has at
most 2m states, we get the bound

|{Aw : w ∈ Σ≤n}| ≤
n∑

i=0
e2m|D| · (i+ 2m)2m|D| ≤ (n+ 1) · e2m|D| · (n+ 2m)2m|D|.

Hence, for the DFA case (where |D| ≤ m− 1) we have

VL(n) = log |ψL(Σ≤n)| ≤ log(n+1)+2m ·m ·(log e+log(n+2m)) ≤ (2m ·m+1) · logn + cm

for n large enough, where cm can be chosen as 1 + 2m ·m · log e+m2 · 2m. The calculation
for the NFA case (where |D| ≤ 2m − 1) is analogous.

5.2 Proof of Theorem 5.1
The equivalence of 1. and 2. is shown in [20] (its the only direction that we do not reprove),
and the direction from 3. to 2. is stated in Theorem 5.2. The implication from 2. to 4. follows
from Lemma 4.1 and 4.2. The direction from 2. to 3. is shown in the full version [19], where
we actually show that VL(n) ∈ Ω(n) if LR is recognized by a DFA that is not well-behaved.
To prove that 5. implies 3. we show in [19] that (i) the minimal DFA for a regular right ideal
or a regular length language is well-behaved, and (ii) that the class of languages accepted by
well-behaved DFAs is closed under Boolean operations.

It remains to show the implication from 4. to 5. First, a straightforward argument shows
that the class of Boolean combinations of regular left ideals and regular length languages
is closed under pre-images of ←-transductions (see [19]). Therefore, it suffices to prove
that every regular language of polynomial growth is a Boolean combination of regular left
ideals and regular length languages. Since a language L and its reversal LR have the same
growth, we can instead show that every regular language of polynomial growth is a Boolean
combination of regular right ideals and regular length languages. The idea is to decompose
every regular language of polynomial growth as a finite union of languages recognized by so
called linear cycle automata.

In the following we will allow partial DFAs A = (Q,Σ, q0, δ, F) where δ : Q× Σ→ Q is
a partial function. An SCC C of a partial DFA A = (Q,Σ, q0, δ, F) is called a cycle if for
every p ∈ C there exists at most one a ∈ Σ such that δ(p, a) ∈ C. Note that a singleton
SCC C = {p} such that δ(p, a) 6= p whenever δ(p, a) is defined is a cycle, too. Such a cycle is
called trivial. A partial DFA A = (Q,Σ, q0, δ, F) is a linear cycle automaton if

for all p, q ∈ Q there exists at most one symbol a ∈ Σ such that δ(p, a) = q,
every SCC C of A is a (possibly trivial) cycle,
there is an enumeration C1, . . . , Ck of the SCCs of A such that there is a unique transition
from Ci to Ci+1 for 1 ≤ i ≤ k − 1, and there is no transition from Ci to Cj for j > i+ 1,
q0 belongs to C1,
|F | = 1 and the unique final state belongs to Ck.

I Lemma 5.4. If L is a regular language with polynomial growth, then L is a finite union
of languages recognized by linear cycle automata.

STACS 2018

32:10 Automata theory on sliding windows

Proof. Let A = (Q,Σ, q0, δ, F) be the minimal DFA for a regular language L ⊆ Σ∗ of
polynomial growth. We first remove from A all states from which no state in F is reachable;
then A becomes a partial DFA. By [21, Lemma 2] for every q ∈ Q there exists a word uq ∈ Σ∗
such that the language {w ∈ Σ∗ : δ(q, w) = q} is a subset of u∗q . Thus, for every SCC C of A
and every state q ∈ C there is at most one symbol a ∈ Σ with δ(q, a) ∈ C.

A path description is a sequence P = (q0, C0, p0, a0, q1, C1, p1, a2, . . . , qk, Ck, pk) where
C0, . . . , Ck is a chain in the partial ordering on the SCCs of A, qi, pi ∈ Ci for all 0 ≤ i ≤ k,
δ(pi, ai) = qi+1 for all 0 ≤ i < k and pk ∈ F . There are only finitely many path descriptions.
To every accepting run of A we assign a path description, which indicates the SCCs traversed
in the run and the transitions that lead from one SCC to the next SCC. We can write L(A)
as a finite union of languages over all path descriptions. For every path description P , we
take the set of all words accepted by a run of A whose path description is P .

Consider a single path description P = (q0, C0, p0, a0, q1, C1, p1, a2, . . . , qk, Ck, pk) and let
B be the restriction of A to the SCCs Ci. Furthermore all transitions between two distinct
SCCs are removed except for the transitions (pi, ai, qi+1). Finally, pk becomes the only final
state of B. Then B is indeed a linear cycle automaton. J

By the previous lemma, it suffices to decompose the language accepted by a linear cycle
automaton as a Boolean combination of regular length languages and regular right ideals.
By a simple pumping argument (see [19]) we can reduce to linear cycle automata, in which
each cycle has the same length. Let us consider such an automaton A and let L = L(A):
There are numbers p, q ≥ 0 such that each word in L has length p+ qn for some n ≥ 0. Here
q is the uniform length of the non-trivial cycles in A. We claim that L is the intersection of
the three languages

LΣ∗, which is a regular right ideal,
{x ∈ Σ∗ : Pref(x) ⊆ Pref(L)}, which is the complement of a regular right ideal,
Σp(Σq)∗, which is a length language.

Clearly L is contained in the described intersection. Conversely, consider a word x in the
intersection. We have x = yz where y ∈ L. Hence, |y| = p+qn for some n. Since |x| = p+qn′
for some n′, the length |z| is divided by q. Since y ∈ L, A(y) is the unique final state of A,
which belongs to the unique maximal SCC C of A. If C is non-trivial, then it is a cycle of
length q and also A(yz) is the final state, i.e., x ∈ L. If C is trivial, then y, yz ∈ L implies
z = ε and x is also accepted by A. This concludes the proof for the direction from 4. to 5.

5.3 Proof of Theorem 5.3
The languages Lk (k ≥ 0) from Theorem 5.3 are defined as

L0 = 0+ and Lk = Lk−1 ∪ Lk−1 k {0, . . . , k − 1}∗ for k ≥ 1.

Observe that a word a1 · · · an ∈ {0, . . . , k}∗ belongs to Lk if and only if n ≥ 1, a1 = 0 and for
each 1 ≤ i ≤ n it holds that ai = 0 or ai 6= max1≤j≤i−1 aj . We can construct a DFA Ak for
Lk with k + 3 states, which stores the maximum value seen so far in its state, see Figure 1.

To prove that each Lk belongs to V(O(logn)), we show that Lk is a Boolean combination
of regular left ideals. Given a word x = a1 · · · an ∈ Σ∗ and a language L ⊆ Σ∗, a position
1 ≤ i ≤ n is an L-alternation point, if exactly one of the words ai · · · an and ai+1 · · · an

belongs to L. Denote by altL(x) the number of L-alternation points in x. We need the
following two lemmas, which are proven in the full version [19].

I Lemma 5.5. Let L ⊆ Σ∗ be regular. Then L is a Boolean combination of at most k regular
left ideals if and only if altL(x) ≤ k for all x ∈ Σ∗.

M. Ganardi, D. Hucke, D. König, M. Lohrey, and K. Mamouras 32:11

0 1 2 · · · s t · · · k0

0

1

2

0

2

0, 1 t < s

t > s

0, . . . , k − 1

Figure 1 A DFA for Lk. Omitted transitions lead to a sink state. All non-sink states are final.

I Lemma 5.6. For all k ≥ 0 and x ∈ N∗ we have altLk
(x) ≤ 2k+2 − 2. Moreover,

VLk
(n) ≤ (2k+3 · (k + 3) + 1) · logn + ck for n large enough, where ck only depends on k.

For the proof of the if-direction in Lemma 5.5, one writes L as a Boolean combination of the
sets {x ∈ Σ∗ : altL(x) ≥ i} (1 ≤ i ≤ k). Lemma 5.6 is shown by induction on k.

We can now prove Theorem 5.3. Define the languages Z0 = 0∗ and Zk = Zk−1 k Zk−1
for k ≥ 1. An example word from Z3 is 0010002100300010020010. Note that every suffix of
x ∈ Zk that starts with 0 belongs to Lk and every suffix of x ∈ Zk that starts with a > 0 does
not belong to Lk. The former follows by induction on k; the latter holds since Lk ⊆ 0N∗.

Fix some k ≥ 1 and let B = (Bn)n≥0 be a fixed-size sliding window algorithm for Lk.
Consider a window size n. We claim that Bn(x) 6= Bn(y) for all x, y ∈ Zk with |x| = |y| = n

and x 6= y. To see this, write x = zau and y = zbv with a, b ∈ {0, . . . , k}, a 6= b. We must
have a = 0 and b > 0 or vice versa. Assume that a = 0 and b > 0. Thus, au ∈ Lk and
bv 6∈ Lk. Hence, we have wnd(x0|z|) = au0|z| ∈ Lk and wnd(y0|z|) = bv0|z| 6∈ Lk. But if
Bn(x) = Bn(y), then also Bn(x0|z|) = Bn(y0|z|), which yields a contradiction.

It follows that Bn has at least
(

n
2k−1

)
≥ (n/(2k − 1))2k−1 ≥ (n/2k)2k−1 many states,

which implies vB(n) ≥ (2k − 1) · (logn− k).

6 Constant space sliding-window algorithms

Lemma 4.1 implies that VL(n) ≥ logn if ∅ 6= L 6= Σ∗. Thus, only trivial languages have
a constant-space variable-size streaming algorithm. This changes in the fixed-size window
model. In [20] we characterized those regular languages L in F(O(1)) in terms of the left
Cayley graph of the syntactic monoid of L. Here we give a more natural characterization.

A language L ⊆ Σ∗ is called k-suffix testable if for all x, y ∈ Σ∗ and z ∈ Σk we have:
xz ∈ L ⇐⇒ yz ∈ L. Equivalently, L is a Boolean combination of languages of the form
Σ∗w where w ∈ Σ≤k. We call L suffix testable if it is k-suffix testable for some k ≥ 0. Clearly,
every finite language is suffix testable: if L ⊆ Σ≤k then L is (k+ 1)-suffix testable. The class
of suffix testable languages corresponds to the variety D of definite monoids [32]. Our main
result about the class F(O(1)) is the following; its proof can be found in the full version [19]:

I Theorem 6.1. A regular language L ⊆ Σ∗ belongs to F(O(1)) if and only if L is a finite
Boolean combination of suffix testable languages and regular length languages.

7 Deciding space complexity in the sliding window model

In this section, we consider the complexity of the following decision problems:
Dfa(1): Given a DFA A, does L(A) belong to F(O(1))?
Nfa(1): Given an NFA A, does L(A) belong to F(O(1))?
Dfa(logn): Given a DFA A, does L(A) belong to F(O(logn)) = V(O(logn))?
Nfa(logn): Given an NFA A, does L(A) belong to F(O(logn)) = V(O(logn))?

STACS 2018

32:12 Automata theory on sliding windows

p r

p0

p1

r0

r1

u0 u1

w0

w1

w0

w1

w1w0

w0

w1

w0

w1

w1w0

Figure 2 A critical tuple (u0, u1, w0, w1).

Recall that by Theorem 3.3, L(A) belongs to V(O(1)) iff L(A) is trivial. The latter problem
can be shown to be NL-complete (resp., Pspace-complete) if A is a DFA (resp., an NFA)
using standard constructions. The same complexity bounds hold for the above problems:

I Theorem 7.1. The following hold:
Dfa(1) and Dfa(logn) are NL-complete.
Nfa(1) and Nfa(logn) are Pspace-complete.

We only sketch the NL upper bound for Dfa(logn); the other parts of Theorem 7.1 are
shown in the full version [19]. We can assume that the input DFA A = (Q,Σ, q0, δ, F) is
minimal; see the argument for the NL upper bound for Dfa(1) in [19]. Let L = L(A). For
u, x0, x1 ∈ Σ∗ we define Q(u, x0, x1) = {A(ux) : x ∈ {x0, x1}∗}, which is the set of states of
A reachable from the initial state by first reading u and then an arbitrary product of copies
of x0 and x1. We call a tuple (u0, u1, w0, w1) of words critical, if (i) |u0| = |u1| ≥ 1, (ii) ui

is a suffix of wi for all i ∈ {0, 1} and (iii) Q(u0, w0, w1) ∩Q(u1, w0, w1) = ∅. Using critical
tuples, we can state another characterization of the class Vreg(logn):

I Lemma 7.2. We have L 6∈ Vreg(logn) if and only if there exists a critical tuple in A.

We show that if there exists a critical tuple, then there exists a critical tuple (u0, u1, w0, w1)
such that |Q(u0, w0, w1)| ≤ 3 ≥ |Q(u1, w0, w1)|. Assume that (u0, u1, w0, w1) is a critical
tuple. Let h : Σ∗ → M be the canonical homomorphism into the transition monoid M

of A, which right acts on Q via Q × M → Q, (q,m) 7→ q · m = m(q). Notice that
Q(ui, w0, w1) = {A(ui) ·m : m ∈ {h(w0), h(w1)}∗}, where X∗ denotes the submonoid of M
generated byX ⊆M . It suffices to define a new critical tuple (u0, u1, x0, x1) with the property
that h(xi)·h(xj) = h(xj) for all i, j ∈ {0, 1}. This implies {h(x0), h(x1)}∗ = {1, h(x0), h(x1)},
and hence, |Q(u0, x0, x1)| ≤ 3 ≥ |Q(u1, x0, x1)|.

Notice that if (u0, u1, w0, w1) is critical, then also (u0, u1, y0w0, y1w1) is critical for all
y0, y1 ∈ {w0, w1}∗. Let ω ≥ 1 be a number such that mω is idempotent for all m ∈ M .
By choosing e0 = (h(w0)ωh(w1)ω)ωh(w0)ω and e1 = (h(w0)ωh(w1)ω)ω we indeed obtain
eiej = ej for all i, j ∈ {0, 1}. Hence we define x0 = (wω

0w
ω
1)ωwω

0 and x1 = (wω
0w

ω
1)ω.

To decide whether L 6∈ Vreg(logn) it therefore suffices to check whether there is a critical
tuple (u0, u1, w0, w1) such that |Q(u0, w0, w1)| ≤ 3 ≥ |Q(u1, w0, w1)|. Figure 2 illustrates the
substructure we need to detect in A. We show that the existence of such a structure can be
verified in NL. To do so, we reduce to testing emptiness of one-counter automata, which is
known to be in NL [25]. For two states p, r ∈ Q let Ap,r = (Q,Σ, p, δ, {r}) be the automaton
A with initial state p and final state r, and let L(p, r) = L(Ap,r). The algorithm iterates over
all disjoint sets {p, p0, p1}, {r, r0, r1} ⊆ Q. For i ∈ {0, 1} let Ai be a DFA for the language
L(p, pi) ∩ L(p0, pi) ∩ L(p1, pi) ∩ L(r, ri) ∩ L(r0, ri) ∩ L(r1, ri). Now consider the language
{v0 #u0 # v1 #u1 : viui ∈ L(Ai) for i ∈ {0, 1}, |u0| = |u1| ≥ 1, u0 ∈ L(q0, p), u1 ∈ L(q0, r)}
for which one can construct in logspace a one-counter automaton. The counter is used to
verify the constraint |u0| = |u1|. The language above is empty if and only if A has a critical
tuple. This concludes the proof that Dfa(logn) belongs to NL.

M. Ganardi, D. Hucke, D. König, M. Lohrey, and K. Mamouras 32:13

References
1 Charu C. Aggarwal. Data Streams - Models and Algorithms. Springer, 2007.
2 Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the

frequency moments. J. Comput. Syst. Sci., 58(1):137–147, 1999.
3 Arvind Arasu and Gurmeet Singh Manku. Approximate counts and quantiles over sliding

windows. In Proceedings of PODS 2004, pages 286–296. ACM, 2004.
4 Brian Babcock, Mayur Datar, Rajeev Motwani, and Liadan O’Callaghan. Maintaining

variance and k-medians over data stream windows. In Proceedings of PODS 2003, pages
234–243. ACM, 2003.

5 Ajesh Babu, Nutan Limaye, Jaikumar Radhakrishnan, and Girish Varma. Streaming al-
gorithms for language recognition problems. Theoretical Computer Science, 494:13–23,
2013.

6 Ajesh Babu, Nutan Limaye, and Girish Varma. Streaming algorithms for some problems
in log-space. In Proceedings of TAMC 2010, volume 6108 of Lecture Notes in Computer
Science, pages 94–104. Springer, 2010.

7 Vladimir Braverman. Sliding window algorithms. In Encyclopedia of Algorithms, pages
2006–2011. Springer, 2016.

8 Vladimir Braverman and Rafail Ostrovsky. Smooth histograms for sliding windows. In
Proceedings of FOCS 2007, pages 283–293. IEEE Computer Society, 2007.

9 Vladimir Braverman, Rafail Ostrovsky, and Carlo Zaniolo. Optimal sampling from sliding
windows. J. Comput. Syst. Sci., 78(1):260–272, 2012.

10 Dany Breslauer and Zvi Galil. Real-time streaming string-matching. ACM Trans. Al-
gorithms, 10(4):22:1–22:12, 2014.

11 Raphaël Clifford, Allyx Fontaine, Ely Porat, Benjamin Sach, and Tatiana A. Starikovskaya.
Dictionary matching in a stream. In Proceedings of ESA 2015, volume 9294 of Lecture Notes
in Computer Science, pages 361–372. Springer, 2015.

12 Raphaël Clifford, Allyx Fontaine, Ely Porat, Benjamin Sach, and Tatiana A. Starikovskaya.
The k-mismatch problem revisited. In Proceedings of SODA 2016, pages 2039–2052. SIAM,
2016.

13 Raphaël Clifford and Tatiana A. Starikovskaya. Approximate hamming distance in a stream.
In Proceedings of ICALP 2016, volume 55 of LIPIcs, pages 20:1–20:14. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2016.

14 Michael S. Crouch, Andrew McGregor, and Daniel Stubbs. Dynamic graphs in the sliding-
window model. In Proceedings of ESA 2013, volume 8125 of Lecture Notes in Computer
Science, pages 337–348. Springer, 2013.

15 Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Maintaining stream
statistics over sliding windows. SIAM J. Comput., 31(6):1794–1813, 2002.

16 A. Policriti F. Parlamento and K. Rao. Witnessing differences without redundancies. Pro-
ceedings of the American Mathematical Society, 125(2):587–594, 1997.

17 Philippe Flajolet and G. Nigel Martin. Probabilistic counting algorithms for data base
applications. J. Comput. Syst. Sci., 31(2):182–209, 1985.

18 Nathanaël François, Frédéric Magniez, Michel de Rougemont, and Olivier Serre. Streaming
property testing of visibly pushdown languages. In Proceedings of ESA 2016, volume 57 of
LIPIcs, pages 43:1–43:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016.

19 Moses Ganardi, Danny Hucke, Daniel König, Markus Lohrey, and Konstantinos Mamouras.
Automata theory on sliding windows. Technical report, arXiv.org, 2018. https://arxiv.
org/abs/1702.04376.

20 Moses Ganardi, Danny Hucke, and Markus Lohrey. Querying regular languages over sliding
windows. In Proceedings of FSTTCS 2016, volume 65 of LIPIcs, pages 18:1–18:14. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2016.

STACS 2018

https://arxiv.org/abs/1702.04376
https://arxiv.org/abs/1702.04376

32:14 Automata theory on sliding windows

21 Pawel Gawrychowski, Dalia Krieger, Narad Rampersad, and Jeffrey Shallit. Finding the
growth rate of a regular or context-free language in polynomial time. International Journal
on Foundations of Computer Science, 21(4):597–618, 2010.

22 Lukasz Golab and M. Tamer Özsu. Processing sliding window multi-joins in continuous
queries over data streams. In Proceedings of VLDB 2003, pages 500–511. Morgan Kaufmann,
2003.

23 Christian Konrad and Frédéric Magniez. Validating XML documents in the streaming
model with external memory. ACM Trans. Database Syst., 38(4):27:1–27:36, 2013.

24 Andreas Krebs, Nutan Limaye, and Srikanth Srinivasan. Streaming algorithms for recog-
nizing nearly well-parenthesized expressions. In Proceedings of MFCS 2011, volume 6907
of Lecture Notes in Computer Science, pages 412–423. Springer, 2011.

25 Michel Latteux. Langages á un compteur. Journal of Computer and System Sciences,
26(1):14–33, 1983.

26 Frédéric Magniez, Claire Mathieu, and Ashwin Nayak. Recognizing well-parenthesized
expressions in the streaming model. SIAM J. Comput., 43(6):1880–1905, 2014.

27 Philip M. Lewis II, Richard Edwin Stearns, and Juris Hartmanis. Memory bounds for re-
cognition of context-free and context-sensitive languages. In Proceedings of SWCT (FOCS)
1965, pages 191–202. IEEE Computer Society, 1965.

28 J. Ian Munro and Mike Paterson. Selection and sorting with limited storage. Theor.
Comput. Sci., 12:315–323, 1980.

29 Luc Segoufin and Cristina Sirangelo. Constant-memory validation of streaming XML doc-
uments against dtds. In Proceedings of ICDT 2007, volume 4353 of Lecture Notes in
Computer Science, pages 299–313. Springer, 2007.

30 Luc Segoufin and Victor Vianu. Validating streaming XML documents. In Proceedings of
PODS 2002, pages 53–64. ACM, 2002.

31 Richard Edwin Stearns, Juris Hartmanis, and Philip M. Lewis II. Hierarchies of memory
limited computations. In Proceedings of SWCT (FOCS) 1965, pages 179–190. IEEE Com-
puter Society, 1965.

32 Howard Straubing. Finite semigroup varieties of the form V ∗ D. Journal of Pure and
Applied Algebra, 36:53–94, 1985.

33 Andrew Szilard, Sheng Yu, Kaizhong Zhang, and Jeffrey Shallit. Characterizing regular
languages with polynomial densities. In Proceedings of MFCS 1992, volume 629 of Lecture
Notes in Computer Science, pages 494–503. Springer, 1992.

	Introduction
	Preliminaries
	Streaming algorithms
	Space complexity and language growth
	Logspace sliding-window algorithms
	Proof of Theorem 5.2
	Proof of Theorem 5.1
	Proof of Theorem 5.3

	Constant space sliding-window algorithms
	Deciding space complexity in the sliding window model

