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Abstract

We apply so-called tree straight-line programs to the problem of
universal source coding for binary trees. We derive an upper bound
on the maximal pointwise redundancy (or worst-case redundancy) that
improve previous bounds on the average case redundancy obtained by
Zhang, Yang, and Kieffer using directed acyclic graphs. Using this, we
obtain universal codes for new classes of tree sources.

1 Introduction

Universal source coding for finite sequences over a finite alphabet Σ (i.e.,
strings over Σ) is a well-established topic of information theory. Its goal is
to find prefix-free lossless codes that are universal (or optimal) for classes
of information sources. In a series of papers, Cosman, Kieffer, Nelson, and
Yang developed grammar-based codes that are universal for the class of
finite state sources [8, 9, 10, 16]. Grammar-based compression works in
two steps: In a first step, from a given input string w ∈ Σ∗ a context-free
grammar Gw that produces only the string w is computed. Context-free
grammars that produce exactly one string are also known as straight-line
programs, briefly SLPs, and are currently an active topic in text compression
and algorithmics on compressed texts, see [12] for a survey. In a second
step, the SLP Gw is encoded by a binary string B(Gw). There exist several
algorithms that compute from a given input string w of length n an SLP Gw
of size O(n/ log n) (the size of an SLP is the total number of symbols in all
right-hand sides of the grammar) [8]; the best known example is probably
the LZ78 algorithm [18]. By combining any of these algorithms with the
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binary encoder B for SLPs from [8], one obtains a grammar-based encoder
E : Σ∗ → {0, 1}∗, whose worst case redundancy for input strings of length
n is bounded by O(log log n/ log n) for every finite state information source
over the alphabet Σ. Here, the worst case redundancy for strings of length
n is defined as

max
w∈Σn,P (w)>0

n−1 · (|E(w)|+ log2 P (w)),

where P (w) is the probability that the finite state information source emits
w. Thus, the worst case redundancy measures the maximal additive devia-
tion of the code length from the self information, normalized by the length
of the source string.

Over the last few years, we have seen increasing efforts aiming to extend
universal source coding to structured data like trees [11, 14, 17] and graphs
[2, 7]. In this paper, we are concerned with universal source coding for
trees. In their recent paper [17], Kieffer, Yang, and Zhang started to extend
their work on grammar-based source coding from strings to binary trees.
For this, they first represent the input tree t by its minimal directed acyclic
graph Dt (the minimal DAG of t). This is the directed acyclic graph obtained
by removing multiple occurrences of the same subtree from t. In a second
step, the minimal DAG Dt is encoded by a binary string B(Dt); this step is
similar to the binary coding of SLPs from [8]. Combining both steps yields
a tree encoder Edag : T → {0, 1}∗, where T denotes the set of all binary
trees. In order to define universality of such a tree encoder, the classical
notion of an information source on finite sequences is replaced in [17] by
the notion of a structured tree source. The precise definition can be found
in Section 2.2; for the moment the reader can think about a collection of
probability distributions (Pn)n∈N, where every Pn is a distribution on a finite
non-empty subset Fn, and these sets partition T . The main cases considered
in [17] as well as in this paper are: (i) Fn is the set of all binary trees with
n leaves (leaf-centric sources) and (ii) Fn is the set of all binary trees of
depth n (depth-centric sources). Then, the authors of [17] introduce two
properties on binary tree sources: (i) the domination property (see Section 3,
where it is called the weak domination property) and (ii) the representation
ratio negligibility property. The latter states that

∑
t∈Fn

Pn(t) · |Dt|/|t| (the
average compression ratio achieved by the minimal DAG) converges to zero
for n → ∞, where the size |t| of the binary tree is defined as its number of
leaves. The technical main result of [17] states that for every structured tree
source (Pn)n∈N satisfying the domination property and the representation
ratio negligibility property the average case redundancy∑

t∈Fn,Pn(t)>0

|t|−1 · (|Edag(t)|+ log2 Pn(t)) · Pn(t)

converges to zero for n→∞. Finally, two classes of tree sources having the
domination property and the representation ratio negligibility property are
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presented in [17]. One is a class of leaf centric sources, the other one is a class
of depth centric sources. Both sources have the property that every tree with
a non-zero probability is balanced in a certain sense, the precise definitions
can be found in Section 3.3 and Section 3.4. As a first contribution, we
show that for these sources not only the average case redundancy but also
the worst case redundancy

max
t∈Fn,Pn(t)>0

|t|−1 · (|Edag(t)|+ log2 Pn(t)) (1)

converges to zero for n → ∞. More precisely, we show that (1) is bounded
by O(log log n/ log n) (respectively, O((log log n)2/ log n)) for the presented
class of leaf-centric tree sources (respectively, depth-centric tree sources).
To prove this, we use results from [5, 6] according to which the minimal
DAG of a suitably balanced binary tree of size n is bounded by O(n/ log n),
respectively O(n · log log n/ log n).

Our second main contribution is the application of tree straight-line pro-
grams, briefly TSLPs, for universal tree coding. A TSLP is a context-free
tree grammar that produces exactly one tree, see Section 2.3 for the pre-
cise definition and [13] for a survey. TSLPs can be viewed as the proper
generalization of SLPs for trees. Whereas DAGs only have the ability to
share repeated subtrees of a tree, TSLPs can also share repeated tree pat-
terns with a hole (so-called contexts). In [5], the authors presented a linear
time algorithm that computes for a given binary tree t of size n a TSLP Gt
of size O(n/ log n). This shows the main advantage of TSLPs over DAGs:
There exist trees of any size n for which the minimal DAG has size n as
well. In Section 4.2 we define a binary encoding B of TSLPs similar to
the ones for SLPs [8] and DAGs [17]. We then consider the combined tree
encoder Etslp : T → {0, 1}∗ with Etslp(t) = B(Gt), and prove that its worst
case redundancy (that is defined as in (1) with Edag replaced by Etslp) is
bounded by O(log log n/ log n) for every structured tree source that satisfies
the strong domination property defined in Section 4.3. The strong domina-
tion property is a strengthening of the domination property from [17], and
this is what we have to pay extra for our TSLP-based encoding in contrast
to the DAG-based encoding from [17]. On the other hand, our approach has
two main advantages over [17]:

• The representation ratio negligibility property from [17] is no longer
needed.

• We get bounds on the worst case redundancy instead of the average
case redundancy.

Both advantages are based on the fact that the grammar-based compressor
from [5] computes a TSLP of worst case size O(n/ log n) for a binary tree of
size n.
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Finally, we present a class of leaf-centric sources (Section 3.3) as well as
a class of depth-centric sources (Section 3.4) having the strong domination
property. These classes are orthogonal to the classes considered in [17].

2 Preliminaries

In this section, we introduce some basic definitions concerning information
theory (Section 2.1), binary trees (Section 2.2) and tree straight-line pro-
grams (Section 2.3). The latter are our key formalism for the compression
of binary trees.

With N we denote the natural numbers including 0. We use the standard
O-notation and if b is a constant, then we just write O(log n) for O(logb n).
For the unit interval {r ∈ R | 0 ≤ r ≤ 1} we write [0, 1].

2.1 Empirical distributions and empirical entropy

Let a = (a1, a2, . . . , an) be a tuple of elements that are from some (not
necessarily finite) set A. The empirical distribution pa : {a1, a2, . . . , an} → R
of a is defined by

pa(a) =
|{i | 1 ≤ i ≤ n, ai = a}|

n
.

We use this definition also for words over some alphabet by identifying a
word w = a1a2 · · · an with the tuple (a1, a2, . . . , an). The unnormalized
empirical entropy of a is

H(a) = −
n∑
i=1

log pa(ai).

A well-known generalization of Shannon’s inequality states that for all real
numbers p1, . . . , pk, q1, . . . qk > 0, if

∑k
i=1 pi = 1 ≥

∑k
i=1 qi then

k∑
i=1

−pi log2(pi) ≤
k∑
i=1

−pi log2(qi)

see [1] for a proof. As a consequence, for a tuple a = (a1, a2, . . . , an) with
a1, . . . , an ∈ A and real numbers q(a) > 0 (a ∈ A) with

∑n
i=1 q(ai) ≤ 1 we

have
n∑
i=1

− log2(pa(ai)) ≤
n∑
i=1

− log2(q(ai)). (2)
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2.2 Trees, tree sources, and tree compressors

With T we denote the set of all binary trees. We identify T with the
set of terms that are built from the binary symbol f and the constant a.
Formally, T is the smallest set such that (i) a ∈ T and (ii) if t1, t2 ∈ T
then also f(t1, t2) ∈ T . With |t| we denote the number of occurrences of the
constant a in t. This is the number of leaves of t. Let Tn = {t ∈ T | |t| = n}
for n ≥ 1. The depth d(t) of the tree t is recursively defined by d(a) = 0 and
d(f(t1, t2)) = max{d(t1), d(t2)}+ 1. Let T d = {t ∈ T | d(t) = d} for d ∈ N.

Occasionally, we will consider a binary tree t as a graph with nodes and
edges in the usual way. Note that a tree t ∈ Tn has 2n− 1 nodes in total: n
leaves and n − 1 internal nodes. For a node v we write t[v] for the subtree
rooted at v in t.

A context is a binary tree t, where exactly one leaf is labelled with the
special symbol x (called the parameter); all other leaves are labelled with
a. For a context t we define |t| to be the number of a-labelled leaves of t
(which is the number of leaves of t minus 1). We denote with C the set of all
contexts and define Cn = {t ∈ C | |t| = n} for n ∈ N. For a tree or context
t ∈ T ∪ C and a context s ∈ C, we denote by s(t) the tree or context which
results from s by replacing the parameter x by t. For example s = f(a, x)
and t = f(a, a) yields s(t) = f(a, f(a, a)). The depth d(t) of a context t ∈ C
is defined as the depth of the tree t(a).

A tree source is a pair ((Fi)i∈N, P ) such that the following conditions
hold:

• Fi ⊆ T is non-empty and finite for every i ≥ 0,

• Fi∩Fj = ∅ for i 6= j and
⋃
i≥0Fi = T , i.e., the sets Fi form a partition

of T ,

• P : T → [0, 1] and
∑

t∈Fi
P (t) = 1 for every i ≥ 0, i.e., P restricted to

Fi is a probability distribution.

In this paper, we consider only two cases for the partition (Fi)i∈N: either
Fi = Ti+1 for all i ∈ N (note that there is no tree of size 0) or Fi = T i for all
i ∈ N. Tree source of the former (resp., latter) type are called leaf-centric
(resp., depth-centric).

A tree encoder is an injective mapping E : T → {0, 1}∗ such that the
range E(T ) is prefix-free, i.e., there do not exist t, t′ ∈ T with t 6= t′ such
that E(t) is a prefix of E(t′). We define the worst-case redundancy of E with
respect to the tree source S = ((Fi)i∈N, P ) as the mapping i 7→ R(E,S, i)
(i ∈ N) with

R(E,S, i) = max
t∈Fi,P (t)>0

1

|t|
· (|E(t)|+ log2 P (t))

The worst-case redundancy is also known as the maximal pointwise redun-
dancy.
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2.3 Tree straight-line programs

We now introduce tree straight-line programs for binary trees. Let V be a
finite ranked alphabet, where each symbol A ∈ V has an associated rank
0 or 1. The elements of V are called nonterminals. We assume that V
contains at least one element of rank 0 and that V is disjoint from the set
{f, a, x}, which are the labels used for binary trees and contexts. We use
V0 (respectively, V1) for the set of nonterminals of rank 0 (resp. of rank
1). The idea is that nonterminals from V0 (respectively, V1) derive to trees
from T (respectively, contexts from C). We denote by TV the set of trees
over {f, a} ∪ V , i.e. each node in a tree t ∈ TV is labelled with a symbol
from {f, a} ∪ V and the number of children of a node corresponds to the
rank of its label. With CV we denote the corresponding set of all contexts,
i.e., the set of trees over {f, a, x}∪V , where the parameter symbol x occurs
exactly once and at a leaf position. Formally, we have T ⊂ TV and C ⊂ CV .
A tree straight-line program G, or short TSLP, is a tuple (V,A0, r), where
A0 ∈ V0 is the start nonterminal and r : V → (TV ∪CV ) is the function which
assigns each nonterminal its unique right-hand side. It is required that if
A ∈ V0 (respectively, A ∈ V1), then r(A) ∈ TV (respectively, r(A) ∈ CV ).
Furthermore, the binary relation {(A,B) ∈ V × V | B is a label in r(A)}
needs to be acyclic. These conditions ensure that exactly one tree is derived
from the start nonterminal A0 by using the rewrite rules A → r(A) for
A ∈ V . To define this formally, we define valG(t) ∈ T for t ∈ TV and
valG(t) ∈ C for t ∈ CV inductively by the following rules:

• valG(a) = a and valG(x) = x,

• valG(f(t1, t2)) = f(valG(t1), valG(t2)) for t1, t2 ∈ TV ∪ CV (and t1 ∈ TV
or t2 ∈ TV since there is at most one parameter in f(t1, t2)),

• valG(A) = valG(r(A)) for A ∈ V0,

• valG(A(s)) = valG(r(A))(valG(s)) for A ∈ V1, s ∈ TV ∪ CV (note that
valG(r(A)) is a context t′, so we can built t′(valG(s))).

The tree defined by G is val(G) = valG(A0) ∈ T . Moreover, for A ∈ V1 we
also write valG(A) for valG(A(x)).

Example 1. Let G = ({A0, A1, A2}, A0, r) be a TSLP with A0, A1 ∈ V0, A2 ∈
V1 and

r(A0) = f(A1, A2(a)), r(A1) = A2(A2(a)), r(A2) = f(x, a).

We get valG(A2) = f(x, a), valG(A1) = f(f(a, a), a) and val(G) = valG(A0) =
f(f(f(a, a), a), f(a, a)).

In this paper, we will consider two classes of syntactically restricted
TSLPs: (i) DAGs (directed acyclic graphs) and (ii) TSLPs in normal form.
Let us start with the former; normal form TSLPs will be introduced in
Section 4.1.
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3 Tree compression with DAGs

In this section we sharpen some of the results from [17], where universal
source coding of binary trees using minimal DAGs (directed acyclic graphs)
is investigated. In [17], only bounds on the average redundancy for certain
classes of tree sources were shown. Here we extend these bounds (for the
same classes of tree sources) to the worst-case redundancy.

3.1 Directed acyclic graphs (DAGs)

A DAG is a TSLP D = (V,A0, r) such that V = {A0, A1, . . . , An−1} for
some n ∈ N, n ≥ 1, V = V0 (i.e., all nonterminals have rank 0), and
for every Ai ∈ V , the right-hand side r(Ai) is of the form f(α1, α2) with
α1, α2 ∈ {a,Ai+1, . . . , An−1}. Note that a TSLP of this form generates a
tree with at least two leaves. In order to include the tree a with a single
leaf, we also allow the TSLP Ga = ({A0}, A0, A0 7→ a). We define the size
of a DAG as |D| = n+ 1.

In contrast to general TSLPs, every binary tree t has a unique (up to
renaming of nonterminals) minimal DAG Dt, whose size is the number of
different (pairwise non-isomorphic) subtrees of t. The idea is to introduce
for every subtree f(t1, t2) of size at least two a nonterminal Ai with r(Ai) =
f(α1, α2), where αi = a if ti = a and αi is the nonterminal corresponding to
the subtree ti if |ti| ≥ 2 (i = 1, 2). We will only use this minimal DAG Dt
in the sequel.

Example 2. Consider the tree tn = f(f(f(· · · f(a, a), · · · a), a), a), where
f occurs n times. We have |tn| = n + 1. The minimal DAG of tn is
({A0, A1, . . . , An−1}, A0, rn), where rn(Ai) = f(Ai+1, a) for 0 ≤ i ≤ n − 2
and rn(An−1) = f(a, a) and its size is n+ 1.

The above example shows that in the worst-case, the size of the minimal
DAG is not smaller than the size of the tree.

3.2 Universal source coding with DAGs

The following condition on a tree source was introduced in [17], where it is
called the domination property (later, we will introduce a strong domination
property): Let ((Fi)i∈N, P ) be a tree source as defined in Section 2.2. We say
that ((Fi)i∈N, P ) has the weak domination property if there exists a mapping
λ : T → R>0 with the following properties:

(i) λ(t) ≥ P (t) for every t ∈ T .

(ii) λ(f(s, t)) ≤ λ(s) · λ(t) for all s, t ∈ T

(iii) There are constants c1, c2 such that
∑

t∈Tn λ(t) ≤ c1 ·nc2 for all n ≥ 1.
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In [17], the authors define a binary encoding B(Dt) ∈ {0, 1}∗, such that
B(Dt) is not a prefix of B(Dt′) for all binary trees t, t′ with t 6= t′. The precise
definition of B(Dt) is not important for us; all we need is the following bound
from [17, Theorem 2], where Edag : T → {0, 1}∗ is the tree encoder with
Edag(t) = B(Dt).

Lemma 1. Assume that ((Fi)i∈N, P ) has the weak domination property. Let
t ∈ Tn with n ≥ 2 and P (t) > 0, and let Dt be the minimal DAG for t. We
have

1

n
· (|Edag(t)|+ log2(P (t))) ≤ O(|Dt|/n) +O(|Dt|/n · log2(n/|Dt|)).

This bound is used in [17] to show that for certain leaf-centric and depth-
centric tree sources the encoding Edag is universal in the sense that the
average redundancy converges to zero. Here, we want to show that for the
same tree sources already the worst-case redundancy converges to zero. Let
us first define the specific classes of tree sources studied in [17].

3.3 Leaf-centric binary tree sources

We recall the definition of a natural class of leaf-centric tree sources from
[17]: Let Σleaf be the set of all functions σ : (N \ {0}) × (N \ {0}) → [0, 1]
such that for all n ≥ 2: ∑

i,j≥1, i+j=n

σ(i, j) = 1. (3)

For σ ∈ Σleaf we define Pσ : T → [0, 1] inductively by:

Pσ(a) = 1, (4)

Pσ(f(s, t)) = σ(|s|, |t|) · Pσ(s) · Pσ(t). (5)

We have
∑

t∈Tn Pσ(t) = 1 and thus ((Ti)i≥1, Pσ) is a leaf-centric tree source.
The following result is implicitly shown in [17] (see also the proof of Theo-
rem 3).

Lemma 2. For every σ ∈ Σleaf, the leaf-centric tree source ((Ti)i≥1, Pσ) has
the weak domination property.

We say that a mapping σ ∈ Σleaf is leaf-balanced if there exists a constant
c such that for all (i, j) ∈ (N \ {0})× (N \ {0}) with σ(i, j) > 0 we have

i+ j

min{i, j}
≤ c.

In [17] it is shown that for a leaf-balanced σ ∈ Σleaf, the tree source ((Ti)i≥1, Pσ)
has the so called representation ratio negligibility property. This means
that the average compression ratio achieved by the minimal DAG (formally,∑

t∈Tn Pσ(t) · |Dt|/n) converges to zero for n→∞. Using a result from [5],
we show the following stronger property.
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Lemma 3. For every leaf-balanced mapping σ ∈∈ Σleaf, there exists a con-
stant α such that for every binary tree t ∈ Tn with Pσ(t) > 0 we have
|Dt| ≤ α · n/ log2 n.

Proof. In [5] the authors introduce the notion of β-balanced trees. Let v be
a non-leaf node in t ∈ T , i.e. t[v] = f(t1, t2) for binary trees t1 and t2. Then
v is β-balanced if |t1| ≤ β · |t2| and |t2| ≤ β · |t1|. The tree t is β-balanced if
for all non-leaf nodes u and v in t such that u is a child node of v, at least
one of the nodes u, v is β-balanced. It is shown in [5] that for every constant
β there exists a constant α (depending only on β) such that the minimal dag
Dt of a β-balanced tree t ∈ Tn has size at most α · n/ log2 n. It follows that
we only need to show that a tree t ∈ Tn with Pσ(t) > 0 is β-balanced for a
constant β. Since the mapping σ is leaf-balanced, every subtree f(t1, t2) of
t satisfies |t1|+ |t2| ≤ c ·min{|t1|, |t2|}, where c ≥ 1 is a constant. Without
loss of generality assume that |t1| ≤ |t2|. We get |t1| ≤ c · |t2| and

|t2| ≤ |t1|+ |t2| ≤ c ·min{|t1|, |t2|} = c · |t1|,

which shows that t is c-balanced.

Corollary 1. Let σ ∈ Σleaf be leaf-balanced, and let S = ((Ti)i≥1, Pσ) be
the corresponding leaf-centric tree source. Then, we have R(Edag,S, i) ≤
O(log log i/ log i).

Proof. Let α be the constant from Lemma 3. Let t ∈ Tn such that Pσ(t) > 0.
Lemma 3 implies |Dt| ≤ α · n/ log2 n. With Lemma 1 and 2 we get

1

n
· (|Edag(t)|+ log2(Pσ(t))) ≤ O(|Dt|/n) +O(|Dt|/n · log2(n/|Dt|))

≤ O(log log n/ log n)

This proves the corollary.

3.4 Depth-centric binary tree sources

We recall the definition of a natural class of depth-centric tree sources
from [17]: Let Σdepth be the set of all mappings σ : N × N → [0, 1] such
that for all n ≥ 1: ∑

i,j≥0, max(i,j)=n−1

σ(i, j) = 1. (6)

For σ ∈ Σdepth, we define Pσ : T → [0, 1] by

Pσ(a) = 1, (7)

Pσ(f(s, t)) = σ(d(s), d(t)) · Pσ(s) · Pσ(t). (8)

We have
∑

t∈T n Pσ(t) = 1 and thus ((T i)i≥0, Pσ) is a depth-centric tree
source.

The following result is again implicitly shown in [17] and can also be
found as a part of the proof of Theorem 4.
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Lemma 4. For every σ ∈ Σdepth, the depth-centric tree source ((Ti)i≥1, Pσ)
has the weak domination property.

We say the mapping σ ∈ Σdepth is depth-balanced if there exists a constant
c such that for all (i, j) ∈ N×N with σ(i, j) > 0 we have |i− j| ≤ c. In [17],
the authors define a condition on σ that is slightly stronger than depth-
balancedness, and show that for every such σ, the tree source ((T i)i≥0, Pσ)
has the representation ratio negligibility property. Similarly to Lemma 3,
we will show an even stronger property. To do so, we introduce β-depth-
balanced trees for β ∈ N. A tree t is called β-depth-balanced if for each
subtree f(t1, t2) of t we have |d(t1) − d(t2)| ≤ β. Note that for a depth-
balanced mapping σ ∈ Σdepth, there is a constant β such that every tree t
with Pσ(t) > 0 is β-depth-balanced. We will use the following lemma:

Lemma 5. Let β ∈ N and c = 1 + 1/(1 + β) (thus, 1 < c ≤ 2). For every
β-depth-balanced binary tree t, we have |t| ≥ cd(t).

Proof. We prove the lemma by induction on d(t). For the only tree t = a
of depth d(t) = 0, we have |t| = 1 = c0. Consider now a β-depth-balanced
tree t = f(t1, t2) of depth d(t) > 0. We assume d(t1) ≥ d(t2), the other case
is symmetric. Since t is β-depth-balanced, it follows that d(t2) ≥ d(t1)− β.
To estimate the size |t| = |t1|+ |t2|, we apply the induction hypothesis to t1
and t2, which yields

|t| = |t1|+ |t2| ≥ cd(t1) + cd(t2) ≥ cd(t1) + cd(t1)−β = cd(t1) ·
(

1 + c−β
)
.

Since d(t1) + 1 = d(t), it only remains to show that 1 + c−β ≥ c, which can
be easily done by induction on β ∈ N.

Lemma 5 together with results from [5, 6] implies:

Lemma 6. For every depth-balanced mapping σ ∈ Σdepth there exists a
constant α such that for every binary tree t ∈ Tn with Pσ(t) > 0 we have
|Dt| ≤ α · n · log2(log2 n)/ log2 n.

Proof. If Pσ(t) > 0, then there exists a constant β such that t and each
of its subtrees is β-depth-balanced. By Lemma 5 this implies that every
subtree t′ has depth at most c · log2 |t′| for a constant c that only depends
on σ. By [5, Theorem 12] (which was implicitly shown in [6]) it follows that
there exists a constant α (again, only dependent on σ) such that |Dt| ≤
α · n · log2(log2 n)/ log2 n.

Corollary 2. Let σ ∈ Σdepth be a depth-balanced mapping and let S =
((T i)i≥0, Pσ) be the corresponding leaf-centric tree source. Then, we have
R(Edag,S, i) ≤ O((log log i)2/ log i).
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Proof. Let α be the constant from Lemma 6. Let t ∈ T i such that Pσ(t) > 0.
Lemma 1 and 4 imply

1

|t|
· (|Edag(t)|+ log2(Pσ(t))) ≤ O(|Dt|/|t|) +O(|Dt|/|t| · log2(|t|/|Dt|)).

Consider the mapping g(x) = x · log2(1/x). It is monotonically increasing
for 0 ≤ x ≤ 1/e. Note that for all t ∈ T i we have |t| ≥ i + 1. Hence, if i is
large enough, then Lemma 6 yields for all t ∈ T i with Pσ(t) > 0 that

|Dt|/|t| ≤ α · log2(log2 |t|)/ log2 |t| ≤ log2(log2(i+ 1))/ log2(i+ 1) ≤ 1/e.

We obtain

1

|t|
· (|Edag(t)|+ log2(Pσ(t))) ≤ O((log log i)2/ log i).

This proves the corollary.

4 Tree compression with TSLPs

In this section, we will use general TSLPs for the compression of binary
trees. The limitations of DAGs for universal source coding can be best seen
for a tree source ((Fi)i∈N, P ) such that P (t) > 0 for all t ∈ T . Example 2
shows that for every n ≥ 1, there is a tree t ∈ Tn with |Dt| = n. In that case,
the bound stated in Lemma 1 cannot be used to show that the worst-case
redundancy converges to zero.

4.1 TSLPs in normal form

In this section, we will use TSLPs in a certain normal form, which we intro-
duce first.

A TSLP G = (V,A0, r) is in normal form if the following conditions hold:

• V = {A0, A1, . . . , An−1} for some n ∈ N, n ≥ 1.

• For every Ai ∈ V0, the right-hand side r(Ai) is a term of the form
Aj(α), where Aj ∈ V1 and α ∈ V0 ∪ {a}.

• For every Ai ∈ V1 the right-hand side r(Ai) is a term of the form
Aj(Ak(x)), f(α, x), or f(x, α), where Aj , Ak ∈ V1 and α ∈ V0 ∪ {a}.

• For every Ai ∈ V define the word ρ(Ai) ∈ (V ∪ {a})∗ as follows:

ρ(Ai) =


Ajα if r(Ai) = Aj(α)

AjAk if r(Ai) = Aj(Ak(x))

α if r(Ai) = f(α, x) or f(x, α)
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Let ρG = ρ(A0)ρ(A1) · · · ρ(An−1) ∈ {a,A1, A2, . . . , An−1}∗. Then we
require that ρG is of the form ρG = A1u1A2u2 · · ·An−1un−1 with ui ∈
{a,A1, A2, . . . , Ai}∗.

• valG(Ai) 6= valG(Aj) for i 6= j

As for DAGs we also allow the TSLP Ga = ({A0}, A0, A0 7→ a) in order to
get the singleton tree a. In this case, we set ρGa = ρ(A0) = a.

Let G = (V,A0, r) be a TSLP in normal form with V = {A0, A1, . . . , An−1}
for the further definitions. We define the size of G as |G| = |ρG |. This is the
total number of occurrences of symbols from V ∪{a} in all right-hand sides of
G. Let ωG be the word obtained from ρG by removing for every 1 ≤ i ≤ n−1
the first occurrence of Ai from ρG . Thus, if ρG = A1u1A2u2 · · ·An−1un−1

with ui ∈ {a,A1, A2, . . . , Ai}∗, then ωG = u1u2 · · ·un−1. The entropy H(G)
of the normal form TSLP G is defined as the empirical unnormalized entropy
of the word ωG :

H(G) = H(ωG).

Example 3. Let G = ({A0, A1, A2, A3, A4}, A0, r) be the normal form TSLP
with A0, A2, A3 ∈ V0, A1, A4 ∈ V1 and

r(A0) = A1(A2), r(A1) = f(x,A3), r(A2) = A4(A3),

r(A3) = A4(a), r(A4) = f(x, a).

We have val(G) = f(f(f(a, a), a), f(a, a)), ρG = A1A2A3A4A3A4aa (u1 =
u2 = u3 = ε, u4 = A3A4aa), |G| = 8 and ωG = A3A4aa.

The derivation tree TG of G is a rooted tree, where every node is labelled
with a symbol from V ∪ {a}. The root is labelled with A0. Nodes labelled
with a are the leaves of TG. A node v that is labelled with a nonterminal Ai
has |ρ(Ai)| many children. If ρ(Ai) = α ∈ V0 ∪ {a} then the single child of
v is labelled with α. If ρ(Ai) = Ajα with α ∈ V ∪ {a} then the left (resp.,
right) child of v is labelled with Aj (resp., α). An initial subtree of TG is a
tree that can be obtained from TG as follows: Take a subset U of the nodes
of TG and remove from TG all proper descendants of nodes from U , i.e., all
nodes that are located strictly below a node from U . For such an initial
subtree we denote with valG(T ′) ∈ TV the tree that is derived from the start
nonterminal A0 by using the rules according to T ′. Formally, it is defined
by assigning to every node v of T ′ a tree or context tv ∈ TV ∪CV inductively
as follows:

• If v is labelled with a then tv = a.

• If v is labelled with Ai ∈ V0 and is a leaf of T ′, then tv = Ai.

• If v is labelled with Ai ∈ V1 and is a leaf of T ′, then tv = Ai(x).
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Figure 1: The derivation tree TG of the TSLP from Example 4 (left) and an
initial subtree T ′ of TG (right).

• If v is labelled with Ai ∈ V1 and has a single child node u, then
tv = r(Ai)(tu) (note that r(Ai) must be of the form f(x, α) or f(α, x)).

• If v has the left child u1 and the right child u2, then tv = tu1(tu2).

We finally set valG(T ′) = tv0 , where v0 is the root node of T ′.

Example 4. Let G be the normal form TSLP from Example 3. The deriva-
tion tree TG is shown in Figure 1 on the left; an initial subtree T ′ of it is
shown on the right. We have valG(T ′) = f(A4(A3), f(a, a)).

A grammar-based tree compressor is an algorithm ψ that produces for a
given tree t ∈ T a TSLP Gt in normal form. The compression ratio of ψ is
the mapping n 7→ γψ(n) with

γψ(n) = max
t∈Tn
|Gt|/n.

It is not hard to show that every TSLP can be transformed with a linear
size increase into a normal form TSLP that derives the same tree. For
example, the TSLP from Example 1 is transformed into the normal form
TSLP described in Example 3. We will not use this fact, since all we need
is the following theorem from [5]:

Theorem 1. There exists a grammar-based compressor ψ (working in linear
time) with γψ(n) ∈ O(1/ log n).

4.2 Binary coding of TSLPs in normal form

In this section we fix a binary encoding for normal form TSLPs. This en-
coding is similar to the one for SLPs [8] and DAGs [17]. Let G = (V,A0, r)
be a TSLP in normal form with n = |V | nonterminals. Let m = |G| = |ρG |
be the size of G. We define the type type(Ai) ∈ {0, 1, 2, 3} of a nonterminal
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Ai ∈ V as follows:

type(Ai) =


0 if ρ(Ai) ∈ V1(V0 ∪ {a})
1 if ρ(Ai) ∈ V1V1

2 if ρ(Ai) = f(α, x) for some α ∈ V0 ∪ {a}
3 if ρ(Ai) = f(x, α) for some α ∈ V0 ∪ {a}

We define the binary word B(G) = w0w1w2w3w4, where the words wi ∈
{0, 1}+, 0 ≤ i ≤ 4, are defined as follows:

• w0 = 0n−11,

• w1 = a0b0a1b1 · · · an−1bn−1, where ajbj is the 2-bit binary encoding of
type(Aj),

• Let ρG = A1u1A2u2 · · ·An−1un−1 with ui ∈ {a,A1, A2, . . . , Ai}∗. Then
w2 = 10|u1|10|u2| · · · 10|un−1|.

• For 1 ≤ i ≤ n− 1 let ki = |ρG |Ai ≥ 1 be the number of occurrences of
the nonterminalAi in the word ρG . Then w3 = 0k1−110k2−11 · · · 0kn−1−11.

• The word w4 encodes the word ωG using the well-known enumerative
encoding [3]. Every nonterminal Ai, 1 ≤ i ≤ n− 1, has η(Ai) := ki− 1
occurrences in ωG . The symbol a has η(a) := m − (k1 + · · · + kn−1)
many occurrences in ωG . Let S be the set of words over the alphabet
{a,A1, . . . , An−1} with η(a) occurrences of a and η(Ai) occurrences of
Ai for every 1 ≤ i ≤ n− 1. Hence,

|S| = (m− n+ 1)!

η(a)! ·
∏n−1
i=1 η(Ai)!

. (9)

Let v0, v1, . . . , v|S|−1 be the lexicographic enumeration of the words
from S with respect to the alphabet order a,A1, . . . , An−1. Then w4

is the binary encoding of the unique index i such that ωG = vi, where
|w4| = dlog2 |S|e (leading zeros are added to the binary encoding of i
to obtain the length dlog2 |S|e).

Example 5. Consider the normal from TSLP G from Example 3. We have
w0 = 00001, w1 = 0011000011, w2 = 11110000 and w3 = 110101. To com-
pute w4, note first that there are |S| = 12 words with two occurrences of a
and one occurrence of A3 and A4. It follows that |w4| = dlog2(12)e = 4. Fur-
ther, since the order of the alphabet is a,A3, A4, there are only three words
in S (A4A3aa, A4aA3a and A4aaA3), which are lexicographically larger than
ωG = A3A4aa. Hence, ωG = v8 and thus w4 = 1000.

Lemma 7. The set of code words B(G), where G ranges over all TSLPs in
normal form, is a prefix code.
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Proof. Let B(G) = w0w1w2w3w4 with wi defined as above. We show how to
recover the TSLP G. From w0 we can determine n = |V | and the factor w1

of B(G). Hence, we can determine the type of every nonterminal. Using the
types, we can compute |G| = |ρG |. Moreover, the types allow to compute
G from the word ρG. Hence, it remains to determine ρG . From |G| one
can compute w2. To compute ρG from w2, one only needs ωG . For this,
one determines the frequencies η(a), η(A1), . . . , η(An−1) of the symbols in
ωG from w3. Using these frequencies one computes the size |S| from (9) and
the length dlog2 |S|e of w4. From w4, one can finally compute ωG.

Note that |B(G)| ≤ O(|G|) + |w4|. By using the well-known bound on
the code length of enumerative encoding [4, Theorem 11.1.3], we get:

Lemma 8. For the length of the binary coding B(G) we have: |B(G)| ≤
O(|G|) +H(G).

4.3 Universal source coding based on TSLPs in normal form

Let ((Fi)i∈N, P ) be a tree source as defined in Section 2.2. We say that
((Fi)i∈N, P ) has the strong domination property if the there exists a mapping
λ : T ∪ C → R>0 with the following properties:

(i) λ(t) ≥ P (t) for every t ∈ T .

(ii) λ(f(s, t)) ≤ λ(s) · λ(t) for all s, t ∈ T

(iii) λ(s(t)) ≤ λ(s) · λ(t) for all s ∈ C and t ∈ T

(iv) There are constants c1, c2 such that
∑

t∈Tn∪Cn λ(t) ≤ c1 · nc2 for all
n ≥ 1.

The proof of the following lemma combines ideas from [8] and [17].

Lemma 9. Assume that ((Fi)i∈N, P ) has the strong domination property.
Let t ∈ Tn with n ≥ 2 and P (t) > 0, and let G = (V,A0, r) be a TSLP in
normal form with val(G) = t. We have

H(G) ≤ − log2 P (t) +O(|G|) +O(|G| · log2(n/|G|)).

Proof. Let m = |G| = |ρG | be the size of G, k = |V |, and ` := m+1−k ≤ m.
Let T = TG be the derivation tree of G. We define an initial subtree T ′

as follows: If v1 and v2 are non-leaf nodes of T that are labelled with the
same nonterminal and v1 comes before v2 in preorder, then we remove from
T all proper descendants of v2. Thus, for every Ai ∈ V there is exactly
one non-leaf node in T ′ that is labelled with Ai. Let t′ = valG(T ′). In the
derivation of t′ from A0, every rule of G is used exactly once. For the TSLP
from Example 3, the tree T ′ is shown in Figure 1 on the right, and the tree
t′ is computed in Example 4.
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Note that T ′ has exactly m+ 1 many nodes and k non-leaf nodes. Thus,
T ′ has ` leaves. Let v1, v2, . . . , v` be the sequence of all leaves of T ′ (w.l.o.g.
in preorder) and let αi ∈ {a,A1, . . . , Ak−1} be the label of vi. Let α =
(α1, α2, . . . , α`). Then |ωG |α = |α|α for every α ∈ {a,A1, . . . , Ak−1}, and
this is also the number of occurrences of α in the tree t′. Hence, pα and pωG
have the same empirical distribution. Let ti = valG(αi) ∈ T ∪ C. For the
TSLP from Example 3 we get α = (a, a,A4, A3). Since valG(Ai) 6= valG(Aj)
for all i 6= j and valG(Ai) 6= a for all i (this holds for every normal form
TSLP that produces a tree of size at least two), the tuple t = (t1, t2, . . . , t`)
satisfies pωG (αi) = pt(ti) for all 1 ≤ i ≤ `.

Using conditions (ii) and (iii) of the strong domination property, we get

λ(t) ≤
∏̀
i=1

λ(ti). (10)

For j ∈ N, j ≥ 1, let

Mj =
∑

u∈Tj∪Cj

λ(u) ≤ c1 · jc2 ,

where c1 and c2 are the constants from condition (iv) of the strong domina-
tion property. Let D := 6/π2 ≥ 1/2 and define for every u ∈ Tj ∪ Cj :

q(u) :=
D · λ(u)

Mj · j2
> 0. (11)

We get ∑
j≥1

∑
u∈Tj∪Cj

q(u) = D ·
∑
j≥1

1

j2
= 1.

Hence, we have q(t1) + q(t2) + · · · + q(t`) ≤ 1. Using Shannon’s inequality
(2) we get

H(G) = H(ωG) =
∑̀
i=1

− log2 pωG (αi) =
∑̀
i=1

− log2 pt(ti) ≤
∑̀
i=1

− log2 q(ti).

Using (11) and D ≥ 1/2 we obtain

H(G) ≤
∑̀
i=1

− log2

(
D · λ(ti)

M|ti| · |ti|2

)

= −` · log2D −
∑̀
i=1

log2 λ(ti) +
∑̀
i=1

log2M|ti| + 2
∑̀
i=1

log2 |ti|

≤ `−
∑̀
i=1

log2 λ(ti) +
∑̀
i=1

(log2 c1 + c2 log2 |ti|) + 2
∑̀
i=1

log2 |ti|

= (1 + log2 c1) · `−
∑̀
i=1

log2 λ(ti) + (2 + c2) ·
∑̀
i=1

log2 |ti|.
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From (10) and condition (i) of the strong domination property we get

∑̀
i=1

log2 λ(ti) ≥ log2 λ(t) ≥ log2 P (t).

Moreover, Jensen’s inequality gives

∑̀
i=1

log2 |ti| ≤ ` · log2

(
1

`
·
∑̀
i=1

|ti|
)

= ` · log2(n/`).

With ` ≤ m we obtain

H(G) ≤ (1 + log2 c1) · `− log2 P (t) + (2 + c2) · ` · log2(n/`)

≤ − log2 P (t) + (1 + log2 c1) ·m+ (2 + c2) ·m · log2(n/m).

This shows the lemma.

Let ψ : t 7→ Gt be a grammar-based tree compressor. We then consider
the tree encoder Eψ : T → {0, 1}∗ defined by Eψ(t) = B(Gt). Recall the
definition of the worst-case redundancy R(Eψ,S, i) from Section 2.2.

Theorem 2. Assume that S = ((Fi)i∈N, P ) has the strong domination
property. Let ψ be a grammar-based compressor such that γψ(n) ≤ γ(n)
for a monotonically decreasing function γ(n) with limn→∞ γ(n) = 0. Let
ni = min{|t| | t ∈ Fi} and assume that ni < ni+1 for all i ∈ N.1 Then, we
have

R(Eψ,S, i) ≤ O(γ(ni) · log2(1/γ(ni))).

Proof. Let t ∈ T and ψ(t) = Gt. With Lemma 8 and 9 we get

1

|t|
· (|B(Gt)|+ log2 P (t)) ≤ 1

|t|
· (H(Gt) +O(|Gt|) + log2 P (t))

≤ 1

|t|
· (O(|Gt|) +O(|Gt| · log2(|t|/|Gt|))

= O(|Gt|/|t|) +O(|Gt|/|t| · log2(|t|/|Gt|)).

Consider the mapping g with g(x) = x · log2(1/x). It is monotonically
increasing for 0 ≤ x ≤ 1/e. If i is large enough, we have for all t ∈ Fi that

|Gt|/|t| ≤ γψ(|t|) ≤ γ(|t|) ≤ γ(ni) ≤ 1/e.

Hence, we get

|Gt|/|t| · log2(|t|/|Gt|) = g(|Gt|/|t|) ≤ g(γ(ni)) = γ(ni) · log2(1/γ(ni)).

1This is the case for leaf-centric and depth-centric tree sources
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This implies

R(Eψ,S, i) = max
t∈Fi,P (t)>0

1

|t|
· (|B(Gt)|+ log2 P (t))

≤ O(γ(ni)) +O(γ(ni) · log(1/γ(ni)))

= O(γ(ni) · log(1/γ(ni))),

which proves the theorem.

Note that the minimal size of a tree in Ti+1 (resp. T i) is i + 1. Hence,
Theorem 1 and 2 yield:

Corollary 3. There exists a grammar-based tree compressor ψ (working in
linear time) such that R(Eψ,S, i) ≤ O(log log i/ log i) for every leaf-centric
or depth-centric tree source S having the strong domination property.

In the rest of the paper, we will present classes of leaf-centric and depth-
centric tree sources that have the strong domination property.

4.4 Leaf-centric binary tree sources

Recall the definition of the class of mappings Σleaf by equations (3), (4), and
(5) in Section 3.3 and the corresponding class of leaf-centric tree sources.
In this section, we state a condition on the mapping σ ∈ Σleaf that enforces
the strong domination property for the leaf-centric tree source ((Ti)i≥1, Pσ).
This allows to apply Corollary 3.

Theorem 3. If σ ∈ Σleaf satisfies σ(i, j) ≥ σ(i, j+1) and σ(i, j) ≥ σ(i+1, j)
for all i, j ≥ 1, then ((Ti)i≥1, Pσ) has the strong domination property.

Proof. First, we naturally extend Pσ to a context t ∈ C using equations (4)
and (5), where we set σ(0, k) = σ(k, 0) = 1 for all k ≥ 1 and Pσ(x) = 1.
Note that |x| = 0. Also note that Pσ is not a probability distribution on
Cn. We have for instance

∑
t∈C1 Pσ(t) = Pσ(f(x, a)) + Pσ(f(a, x)) = 2. We

denote by Cn the nth Catalan number. It is well-known that |Tn| = Cn for
all n ≥ 1. We set C0 = 1 and define λ : T ∪ C → R>0 by

λ(t) = max

{
1

C|t|
, Pσ(t)

}
.

We show the four points from the strong domination property for the map-
ping λ.

The first point of the strong domination property, i.e., λ(t) ≥ Pσ(t) for all
t ∈ T , is obviously true. We now prove the second point, i.e., λ(f(s, t)) ≤
λ(s) · λ(t) for all s, t ∈ T . Assume first that λ(f(s, t)) = 1/C|s|+|t|. The
inequality Cm+k ≥ Cm · Ck for all m, k ≥ 0 yields

1

C|s|+|t|
≤ 1

C|s|
· 1

C|t|
≤ λ(s) · λ(t). (12)
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On the other hand, if λ(f(s, t)) = Pσ(f(s, t)), then we have

Pσ(f(s, t)) = σ(|s|, |t|) · Pσ(s) · Pσ(t) ≤ Pσ(s) · Pσ(t) ≤ λ(s) · λ(t),

since 0 ≤ σ(i, j) ≤ 1 for all i, j.
We now consider the third point, i.e., λ(s(t)) ≤ λ(s) · λ(t) for all s ∈ C

and t ∈ T . Note first that the case λ(s(t)) = 1/C|s|+|t| follows again from
equation (12), since |s(t)| = |s|+ |t|. So we assume that λ(s(t)) = Pσ(s(t)).
Let k be the length (measured in the number of edges) from the root of s
to the unique x-labelled node in s.

We show Pσ(s(t)) ≤ Pσ(s) · Pσ(t) by induction over k ≥ 0. If k = 0
then s = x and we get Pσ(s(t)) = Pσ(t) = Pσ(x) · Pσ(t) = Pσ(s) · Pσ(t).
Let us now assume that k ≥ 1. Then, s must have the form s = f(u, v).
Without loss of generality assume that x occurs in u; the other case is of
course symmetric. Therefore, we have s(t) = f(u(t), v). The tree u(t) fulfills
the induction hypothesis and therefore Pσ(u(t)) ≤ Pσ(u) · Pσ(t). Moreover,
we have σ(|u(t)|, |v|) = σ(|u|+ |t|, |v|) ≤ σ(|u|, |v|). We get

Pσ(s(t)) = Pσ(f(u(t), v)) = Pσ(u(t)) · σ(|u(t)|, |v|) · Pσ(v)

≤ Pσ(t) · Pσ(u) · σ(|u|, |v|) · Pσ(v)

= Pσ(t) · Pσ(s).

For the fourth property we show
∑

t∈Tn∪Cn λ(t) ≤ 8n−2 for all n ≥ 1. First,
we have ∑

t∈Tn

λ(t) ≤
∑
t∈Tn

(
C−1
n + Pσ(t)

)
= 2. (13)

We show that
∑

t∈Cn λ(t) ≤ 8n − 4. Every tree t ∈ Tn has 2n − 1 nodes.
Let v be a node of t. We obtain two contexts from t and v by replacing in t
the subtree t[v] by either f(x, t[v]) or f(t[v], x). Let us denote the resulting
contexts by tv,1 and tv,2. We have λ(tv,1) = λ(tv,2) = λ(t) for every node
v of t. Moreover, for every context t ∈ Cn there exists a tree t′ ∈ Tn and a
node v of t′ such that t′v,1 = t or t′v,2 = t (depending on whether x is the left
or right child of its parent node in t). Hence, we get∑

t∈Cn

λ(t) ≤ (4n− 2) ·
∑
t∈Tn

λ(t). (14)

Together with equation (13) we have
∑

t∈Tn∪Cn λ(t) ≤ 8n− 2.

Example 6. An example for a leaf-centric tree source ((Ti)i≥1, Pσ), where
σ ∈ Σleaf satisfies σ(i, j) ≥ σ(i, j+1) and σ(i, j) ≥ σ(i+1, j) for all i, j ≥ 1,
is the famous binary search tree model; see [11] for an investigation in the
context of information theory. It is obtained by setting σ(i, j) = 1/(i+ j).
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4.5 Depth-centric binary tree sources

Recall the definition of the class of mappings Σdepth by equations (6), (7),
and (8) in Section 3.4, and the corresponding class of depth-centric tree
sources. In this section, we state a condition on the mapping σ ∈ Σdepth that
enforces the strong domination property for the depth-centric tree source
((Ti)i≥1, Pσ). This allows again to apply Corollary 3.

Theorem 4. If σ ∈ Σdepth satisfies σ(i, j) ≥ σ(i, j + 1) and σ(i, j) ≥ σ(i+
1, j) for all i, j ≥ 0, then ((T i)i≥0, Pσ) has the strong domination property.

Proof. Recall that the depth of a context t ∈ C is defined as the depth of
the tree t(a). Using this information, we extend Pσ to a context t ∈ C using
equations (7) and (8), where we set Pσ(x) = 1. Similarly to the proof of
Theorem 3 for leaf-centric tree sources, we define

λ(t) = max

{
1

C|t|
, Pσ(t)

}
.

The first point of the strong domination property, i.e., λ(t) ≥ Pσ(t) for all
t ∈ T , follows directly from the definition of λ. Now we prove the second
point, i.e., λ(f(s, t)) ≤ λ(s) · λ(t) for all s, t ∈ T . The case λ(f(s, t)) =
1/C|s|+|t| is covered by equation (12). If otherwise λ(f(s, t)) = Pσ(f(s, t)),
then

Pσ(f(s, t)) = σ(d(s), d(t)) · Pσ(s) · Pσ(t) ≤ Pσ(s) · Pσ(t) ≤ λ(s) · λ(t),

since 0 ≤ σ(i, j) ≤ 1 for all i, j.
Consider now the third point, i.e., λ(s(t)) ≤ λ(s) · λ(t) for all s ∈ C

and t ∈ T . Note that the case λ(s(t)) = 1/C|s|+|t| follows again from
equation (12). Hence, we can assume that λ(s(t)) = Pσ(s(t)). Again, we
prove Pσ(s(t)) ≤ Pσ(s) ·Pσ(t) by induction over the length k ≥ 0 (measured
in the number of edges) from the root of s to the unique x-labelled node
in s. If k = 0 then s = x and Pσ(s) = 1, which gives us Pσ(s(t)) =
Pσ(t) = Pσ(s) · Pσ(t). We now assume k ≥ 1 and s = f(u, v). Without
loss of generality assume that x occurs in u; the other case is symmetric.
Therefore, we have s(t) = f(u(t), v). We apply the induction hypothesis
to the tree u(t), which yields Pσ(u(t)) ≤ Pσ(u) · Pσ(t). Moreover, since
d(u) ≤ d(u(t)) we have σ(d(u(t)), d(v)) ≤ σ(d(u), d(v)). It follows that

Pσ(s(t)) = Pσ(f(u(t), v)) = Pσ(u(t)) · σ(d(u(t)), d(v)) · Pσ(v)

≤ Pσ(t) · Pσ(u) · σ(d(u), d(v)) · Pσ(v)

= Pσ(t) · Pσ(s).

For the fourth property we show
∑

t∈Tn∪Cn λ(t) ≤ 4n2 + 3n−1 for all n ≥ 1.
First, we have∑

t∈Tn

λ(t) ≤
∑
t∈Tn

(
C−1
n + Pσ(t)

)
= 1 +

∑
t∈Tn

Pσ(t). (15)
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Note that Pσ is not a probability distribution on Tn since this section deals
with depth-centric tree sources. But for each tree t ∈ Tn we have dlog2(n)e ≤
d(t) ≤ n− 1, which yields

∑
t∈Tn

Pσ(t) ≤
n−1∑

i=dlog2(n)e

∑
t∈T i

Pσ(t) = n− dlog2(n)e ≤ n.

Together with equation (15) we get
∑

t∈Tn λ(t) ≤ n + 1. The remaining
part

∑
t∈Cn λ(t) can be estimated with help of equation (14) from the cor-

responding part in the proof of Theorem 3. In total, we have∑
t∈Tn∪Cn

λ(t) ≤ (4n− 1)
∑
t∈Tn

λ(t) ≤ (4n− 1)(n+ 1) = 4n2 + 3n− 1.

5 Future research

We plan to investigate, whether the strong domination property can be
shown also for other classes of tree sources. An interesting class are the tree
sources derived from stochastic context-free grammars [15]. Another inter-
esting question is, whether convergence rate of O(log log i/ log i) in Corol-
lary 3 can be improved to O(1/ log i). In the context of grammar-based
string compression, such an improvement has been accomplished in [9].
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