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Universal Tree Source Coding Using
Grammar-Based Compression

Moses Ganardi, Danny Hucke, Markus Lohrey, and Louisa Seelbach Benkner

Abstract—The problem of universal source coding for binary
trees is considered. Zhang, Yang, and Kieffer derived upper
bounds on the average-case redundancy of codes based on
Directed Acyclic Graph (DAG) compression for binary tree
sources with certain properties. In this paper, a natural class
of binary tree sources is presented such that the demanded
properties are fulfilled. Moreover, for both subclasses considered
in the paper of Zhang, Yang, and Kieffer, their result is improved
by deriving bounds on the maximal pointwise redundancy (or
worst-case redundancy) instead of the average-case redundancy.
Finally, using context-free tree grammars instead of DAGs, upper
bounds on the maximal pointwise redundancy for certain binary
tree sources are derived. This yields universal codes for new
classes of binary tree sources.

Index Terms—Grammar-based compression, minimal DAG
representation, binary trees, universal source coding, lossless
compression.

I. INTRODUCTION

Universal source coding for finite sequences over a finite
alphabet Σ (i.e., strings over Σ) is a well-established topic
of information theory. Its goal is to find prefix-free lossless
codes that are universal (or optimal) for classes of information
sources. In a series of papers, Cosman, Kieffer, Nelson, and
Yang developed grammar-based codes that are universal for the
class of finite state sources [16], [17], [18], [27]. Grammar-
based compression works in two steps: In a first step, from a
given input string w ∈ Σ∗ a context-free grammar Gw that pro-
duces only the string w is computed. Context-free grammars
that produce exactly one string are also known as straight-line
programs, briefly SLPs, and are currently an active topic in
text compression and algorithmics on compressed texts, see
[20] for a survey. In a second step, the SLP Gw is encoded by
a binary string B(Gw). There exist several algorithms which
compute from a given input string w of length n an SLP Gw
of size O(n/ log n) (the size of an SLP is the total number
of symbols in all right-hand sides of the grammar) [16]; the
best known example is probably the LZ78 algorithm [29]. By
combining any of these algorithms with the binary encoder
B for SLPs from [16], one obtains a grammar-based encoder
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E : Σ∗ → {0, 1}∗, whose worst-case redundancy for input
strings of length n is bounded by O(log log n/ log n) for every
finite state information source over the alphabet Σ. Here, the
worst-case redundancy for strings of length n is defined as

max
w∈Σn,P (w)>0

1

n
· (|E(w)|+ log2 P (w)),

where P (w) is the probability that the finite state information
source emits w. Thus, the worst-case redundancy measures the
maximal additive deviation of the code length from the self
information, normalized by the length of the source string.

Over the last few years, we have seen increasing efforts
aiming to extend universal source coding to structured data
like trees [19], [23], [28] and graphs [4], [15]. In this paper,
we are concerned with universal source coding for binary trees.
Binary trees are ubiquitous in computer science. They appear
in various efficient data structures (e.g., binary search trees,
Cartesian trees, red-black trees, AVL-trees; see [3] for details).
Large binary trees are also obtained when unranked trees (e.g.,
XML document trees) are encoded using the first-child next-
sibling encoding. The resulting trees turned out to be highly
compressible with so called tree straight-line programs [22];
more on them later. In their recent paper [28], Kieffer, Yang,
and Zhang started to extend their work on grammar-based
source coding from strings to binary trees. For this, they
first represent the input tree t by its minimal directed acyclic
graph Dt (the minimal DAG of t). This is the directed acyclic
graph obtained by identifying multiple occurrences of the same
subtree from t. In a second step, the minimal DAG Dt is
encoded by a binary string B(Dt); this step is similar to the
binary coding of SLPs from [16]. Combining both steps yields
a tree encoder Edag : T → {0, 1}∗, where T denotes the set of
all binary trees. In order to define universality of such a tree
encoder, the classical notion of an information source on finite
sequences is replaced in [28] by the notion of a structured
tree source. While the shortened term ”tree source” is also
used in the literature to describe a different concept in source
coding (see e.g. [26]), we follow the definition in [28] where
it describes a collection of probability distributions (Pn)n∈N,
where every Pn is a distribution on a finite non-empty subset
Fn ⊆ T , and these sets partition T . The main cases considered
in [28] as well as in this paper are:
• leaf-centric sources, where Fn is the set of all binary

trees with n leaves, and
• depth-centric sources, where Fn is the set of all binary

trees of depth n.
Then, the authors of [28] introduce two properties on binary
tree sources:
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(i) the domination property (see Section III, where it is
called the weak domination property) and

(ii) the representation ratio negligibility property.
The latter states that

∑
t∈Fn

Pn(t) · |Dt|/|t| (the average
compression ratio achieved by the minimal DAG) converges
to zero for n → ∞, where the size |t| of the binary tree
is defined as its number of leaves. The technical main result
of [28] states that for every structured tree source (Pn)n∈N
satisfying the domination property and the representation ratio
negligibility property the average-case redundancy∑

t∈Fn,Pn(t)>0

1

|t|
· (|Edag(t)|+ log2 Pn(t)) · Pn(t) (1)

converges to zero for n → ∞. Finally, two classes of tree
sources having the domination property and the representation
ratio negligibility property are presented in [28]. One is a class
of leaf-centric sources, the other one is a class of depth-centric
sources. Both classes have the property that every tree with a
non-zero probability is balanced in a certain sense, the precise
definitions can be found in Section III-C and Section III-D. As
a first contribution, we show that for these sources not only the
average-case redundancy but also the worst-case redundancy

max
t∈Fn,Pn(t)>0

1

|t|
· (|Edag(t)|+ log2 Pn(t)) (2)

converges to zero for n → ∞. More precisely, we show
that (2) is bounded by O(log log n/ log n) (respectively,
O((log logn)2/ log n)) for the presented class of leaf-centric
tree sources (respectively, depth-centric tree sources). To prove
this, we use results from [11], [13] according to which the
size of the minimal DAG of a suitably balanced binary tree
of size n is bounded by O(n/ log n), respectively O(n ·
log log n/ log n).

As a second main contribution we introduce a new class of
leaf-centric tree sources having the domination property and
the representation ratio negligibility property. More precisely,
the average compression ratio achieved by the minimal DAG
is bounded by O(1/ log n). Intuitively, these leaf-centric tree
sources produce balanced trees with higher probabilities than
unbalanced ones, but nevertheless (and in contrast to the two
specific classes of tree sources studied in [28]) may produce
every tree (also unbalanced ones) with non-zero probability.
Examples for such tree sources are the binary search tree
model and the binomial random tree model, see [19] and
Example 5. Together with the results from [28] we obtain
the upper bound of O(log log n/ log n) for the average-case
redundancy (1) for these tree sources.

Our third main contribution is the application of tree
straight-line programs, briefly TSLPs, for universal tree cod-
ing. A TSLP is a context-free tree grammar that produces
exactly one tree, see Section II-C for the precise definition
and [21] for a survey. TSLPs can be viewed as the proper
generalization of SLPs for trees. Whereas DAGs only have
the ability to share repeated subtrees of a tree, TSLPs can also
share repeated tree patterns with a hole (so-called contexts).
In [11], the authors presented a linear time algorithm that
computes for a given binary tree t of size n a TSLP Gt of
size O(n/ log n). This shows the main advantage of TSLPs

over DAGs: There exist trees of any size n for which the
minimal DAG has size n as well. In Section IV-B we define a
binary encoding B of TSLPs similar to the ones for SLPs
[16] and DAGs [28]. We then consider the combined tree
encoder Etslp : T → {0, 1}∗ with Etslp(t) = B(Gt), and prove
that its worst-case redundancy (that is defined as in (2) with
Edag replaced by Etslp) is bounded by O(log log n/ log n) for
every structured tree source that satisfies the strong domination
property defined in Section IV-C. The strong domination
property is a strengthening of the domination property from
[28], and this is what we have to pay extra for our TSLP-based
encoding in contrast to the DAG-based encoding from [28].
On the other hand, our approach has two main advantages over
[28]:
• The representation ratio negligibility property from [28]

is no longer needed.
• We get bounds on the worst-case redundancy instead of

the average-case redundancy.
Both advantages are based on the fact that the grammar-based
compressor from [11] computes a TSLP of worst-case size
O(n/ log n) for a binary tree of size n.

Finally, we present a class of leaf-centric sources (Sec-
tion III-C) as well as a class of depth-centric sources (Sec-
tion III-D) having the strong domination property. These
classes are orthogonal to the classes considered in [28].

II. PRELIMINARIES

In this section, we introduce some basic definitions con-
cerning information theory (Section II-A), binary trees (Sec-
tion II-B) and tree straight-line programs (Section II-C). The
latter are our key formalism for the compression of binary
trees.

With N we denote the natural numbers including 0. We use
the standard O-notation and if b is a constant, then we just
write O(log n) for O(logb n). For the unit interval {r ∈ R |
0 ≤ r ≤ 1} we write [0, 1].

A. Empirical distributions and empirical entropy

Let a = (a1, a2, . . . , an) be a tuple of elements that are from
some (not necessarily finite) set A. The empirical distribution
pa : {a1, a2, . . . , an} → R of a is defined by

pa(a) =
|{i | 1 ≤ i ≤ n, ai = a}|

n
.

We use this definition also for words over some alphabet
by identifying a word w = a1a2 · · · an with the tuple
(a1, a2, . . . , an). The unnormalized empirical entropy of a is

H(a) = −
n∑
i=1

log2 pa(ai).

A well-known generalization of Shannon’s inequality states
that for all real numbers p1, . . . , pk, q1, . . . , qk > 0, if∑k
i=1 pi = 1 ≥

∑k
i=1 qi then

k∑
i=1

−pi log2(pi) ≤
k∑
i=1

−pi log2(qi);
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see [1] for a proof. As a consequence, for a tuple a =
(a1, a2, . . . , an) with a1, . . . , an ∈ A and real numbers
q(a) > 0 (a ∈ A) with

∑n
i=1 q(ai) ≤ 1 we have

n∑
i=1

− log2(pa(ai)) ≤
n∑
i=1

− log2(q(ai)). (3)

B. Trees, tree sources, and tree compressors

In the literature one finds several different definitions of
binary trees. In this paper, a binary tree is a finite rooted tree,
where every node is either a leaf or has a left and a right
child. With T we denote the set of all such binary trees. We
identify T with the set of terms that are built from the binary
symbol f and the constant a. That means that an internal
node of a binary tree is labelled with the symbol f and has
exactly two children whereas a leaf node is labelled with the
symbol a and has zero children. Formally, T is the smallest
set of terms such that (i) a ∈ T and (ii) if t1, t2 ∈ T then
also f(t1, t2) ∈ T . For example, the term f(a, a) is the tree
which has a root node labelled with f and the two children
of the root are both leaves labelled with a. Another example
is the tree f(f(f(a, a), a), f(a, a)), which is depicted on the
left of Figure 2. With |t| we denote the number of leaves of
t, i.e. the number of occurrences of the constant a in t. Let
Tn = {t ∈ T | |t| = n} for n ≥ 1. We have |Tn| = Cn−1,
where Ck is the kth Catalan number. These numbers satisfy
the following well-known asymptotic estimate:

Ck ∼
4k
√
πk

3
2

,

see e.g. [9]. In fact, we have Ck ≤ 4k for all k ≥ 0. The
depth d(t) of the tree t is recursively defined by d(a) = 0
and d(f(t1, t2)) = max{d(t1), d(t2)}+ 1. Let T d = {t ∈ T |
d(t) = d} for d ∈ N.

Occasionally, we will consider a binary tree t as a graph
with nodes and edges in the usual way. Note that a tree t ∈ Tn
has 2n− 1 nodes in total: n leaves and n− 1 internal nodes.
The leaf-size of a node v of t is the size of the subtree of t
with root node v.

A context is a binary tree t, where exactly one leaf is
labelled with the special symbol x (called the parameter); all
other leaves are labelled with a. Formally, the set of contexts
C is the smallest set such that (i) x ∈ C and (ii) if s ∈ C and
t ∈ T then also f(s, t), f(t, s) ∈ C. For example the term
f(a, x) is the context which has a root node labelled with f ,
the left child of the root is a leaf labelled with a and the right
child is the single leaf labelled with the parameter x. For a
context t we define |t| to be the number of a-labelled leaves
of t (which is the number of leaves of t minus 1). We define
Cn = {t ∈ C | |t| = n} for n ∈ N. For a tree or context
t ∈ T ∪ C and a context s ∈ C, we denote by s[t] the tree
or context which results from s by replacing the parameter x
by t. This can be inductively defined by the following rules,
where s′ ∈ C and t′ ∈ T : x[t] = t, f(s′, t′)[t] = f(s′[t], t′),
and f(t′, s′)[t] = f(t′, s′[t]). For example s = f(a, x) and
t = f(a, a) yields s[t] = f(a, f(a, a)). By induction on the
size of the context s it follows directly that |s[t]| = |s| + |t|.

Here, it is important that the unique occurrence of the pa-
rameter x does not count to the size of the context. The
depth d(t) of a context t ∈ C is defined as the depth of
the tree t[a]. We say that a context s occurs in a tree t if
there is a tree u such that s[u] is a subtree of t. For instance,
the context f(a, x) occurs in f(a, f(a, a)), and there are two
such occurrences (since f(a, x)[f(a, a)] = f(a, f(a, a)) and
f(a, x)[a] = f(a, a) are both subtrees of f(a, f(a, a))).

A tree source is a pair ((Fi)i∈N, P ) such that the following
conditions hold:
• Fi ⊆ T is non-empty and finite for every i ≥ 0,
• Fi ∩ Fj = ∅ for i 6= j and

⋃
i≥0 Fi = T , i.e., the sets

Fi form a partition of T ,
• P : T → [0, 1] and

∑
t∈Fi

P (t) = 1 for every i ≥ 0, i.e.,
P restricted to Fi is a probability distribution.

In this paper, we consider only two cases for the partition
(Fi)i∈N: either Fi = Ti+1 for all i ∈ N (note that there is
no tree of size 0) or Fi = T i for all i ∈ N. Tree sources
of the former (resp., latter) type are called leaf-centric (resp.,
depth-centric).

A tree encoder is an injective mapping E : T → {0, 1}∗
such that the range E(T ) is prefix-free, i.e., there do not exist
t, t′ ∈ T with t 6= t′ such that E(t) is a prefix of E(t′). We
define the worst-case redundancy of E with respect to the fixed
tree source S = ((Fi)i∈N, P ) as the mapping i 7→ R(E,S, i)
(i ∈ N) with

R(E,S, i) = max
t∈Fi,P (t)>0

1

|t|
· (|E(t)|+ log2 P (t))

(the maximum is taken over all trees t ∈ Fi such that
P (t) > 0). The worst-case redundancy is also known as
the maximal pointwise redundancy. Moreover, we define the
average-case redundancy of E with respect to the tree source
S = ((Fi)i∈N, P ) as the mapping i 7→ R∅(E,S, i) (i ∈ N)
with

R∅(E,S, i) =
∑

t∈Fi,P (t)>0

1

|t|
· (|E(t)|+ log2 P (t)) · P (t).

C. Tree straight-line programs

We now introduce tree straight-line programs for binary
trees. Let V = V0 ∪ V1 be a finite alphabet with V0 ∩ V1 = ∅.
Elements of V are called nonterminals, and elements of V0

(resp., V1) are called nonterminals of rank zero (resp., rank
one). We assume that V0 is not empty and that V is disjoint
from the set {f, a, x}, which are the labels used for binary
trees and contexts. We will consider trees, where every node
is labelled with a symbol from {f, a} ∪ V . Leaves have to be
labelled with symbols from V0 ∪ {a} and internal nodes have
to be labelled with symbols from V1 ∪ {f}. An internal node
that is labelled with f has exactly two children (as for trees
from T ), and an internal node that is labelled with a symbol
from V1 has exactly one child. Such trees can be conveniently
described by terms, as we did for trees from T . Formally, we
define the set of terms TV as the smallest set such that

(i) a ∈ TV ,
(ii) if A ∈ V0 then A ∈ TV ,

(iii) if A ∈ V1 and t ∈ TV then A(t) ∈ TV , and



4

f

B

f

A a

f

B

a

f

B

A

A

B

B

f

f

a x

B

A

Fig. 1. A tree from TV (left) and a context from CV (right), where V0 = {A},
V1 = {B} and V = V0 ∪ V1.

(iv) if t1, t2 ∈ TV then f(t1, t2) ∈ TV .
Note that A(t) denotes the tree whose root node is labelled
with A and the subtree rooted in the unique child of the root
is t.

With CV we denote the corresponding set of all contexts,
i.e., the set of trees obtained from a tree in TV by relabelling
exactly one leaf node by the parameter symbol x. Formally,
we can define CV as the smallest set of terms such that

(i) x ∈ CV ,
(ii) if A ∈ V1 and t ∈ CV then A(t) ∈ CV , and

(iii) if s ∈ CV and t ∈ TV then f(s, t), f(t, s) ∈ CV .
Note that T ⊆ TV and C ⊆ CV .

Example 1. Let V0 = {A}, V1 = {B} and V = V0 ∪ V1. An
example for a tree t ∈ TV is

t = f(B(f(A, a)), f(B(a), f(B(A), A))).

This tree is depicted on the left of Figure 1. An example for a
context c ∈ CV is c = B(B(f(f(a, x), B(A)))). This context
is depicted on the right of Figure 1.

A tree straight-line program G, TSLP for short, is a tuple
(V,A0, r), where A0 ∈ V0 is the start nonterminal and
r : V → (TV ∪ CV ) is a function which assigns to each
nonterminal its unique right-hand side. It is required that if
A ∈ V0 (respectively, A ∈ V1), then r(A) ∈ TV (respectively,
r(A) ∈ CV ). Furthermore, the binary relation

{(A,B) ∈ V × V | B is a label in r(A)}

needs to be acyclic. This allows to define for every t ∈ TV a
tree valG(t) ∈ T and for every t ∈ CV a context valG(t) ∈ C
inductively by the following rules (“val” stands for “evalua-
tion”):
• valG(a) = a and valG(x) = x,
• valG(f(t1, t2)) = f(valG(t1), valG(t2)) for t1, t2 ∈ TV ∪
CV (and t1 ∈ TV or t2 ∈ TV since there is at most one
parameter in f(t1, t2)),

• valG(A) = valG(r(A)) for A ∈ V0,
• valG(A(s)) = valG(r(A))[valG(s)] for A ∈ V1, s ∈ TV ∪
CV (note that valG(r(A)) is a context t′, so we can build
t′[valG(s)]).

The intuition behind this definition is as follows: To define
valG(t) for t ∈ TV or t ∈ CV one starts with the term t
and applies the rewrite rules A → r(A) for A ∈ V as long
as possible until all nonterminals are eliminated. Readers that

f

f

f

a a

a

f

a a

f

f

f

a

Fig. 2. A tree (left) and its minimal DAG (right).

are familiar with the notion of context-free tree grammars will
notice that a TSLP is a context-free tree grammar that produces
a unique tree.

The tree defined by G is val(G) = valG(A0) ∈ T (note that
A0 ∈ V0). Moreover, for A ∈ V1 we also write valG(A) for
the context valG(A(x)) (note that A itself is neither a context
nor a tree by our definition).

Example 2. Let G = ({A0, A1, A2}, A0, r) be a TSLP with
A0, A1 ∈ V0, A2 ∈ V1 and

r(A0) = f(A1, A2(a)),

r(A1) = A2(A2(a)),

r(A2) = f(x, a).

We get valG(A2) = f(x, a), valG(A1) = f(f(a, a), a) and
val(G) = valG(A0) = f(f(f(a, a), a), f(a, a)).

In the introduction it is mentioned that an advantage
of TSLPs is the ability to share repeated occurrences of
a context in a tree. In the above example one can see
that the context f(x, a) occurs three times in val(G) =
f(f(f(a, a), a), f(a, a)) (starting at each internal node except
the root node) and we use the nonterminal A2 to represent
those occurrences in the TSLP.

In this paper, we will consider two classes of syntactically
restricted TSLPs: (i) DAGs (directed acyclic graphs) and (ii)
TSLPs in normal form. Let us start with the former; normal
form TSLPs will be introduced in Section IV-A.

III. TREE COMPRESSION WITH DAGS

In this section we sharpen some of the results from [28],
where universal source coding of binary trees using minimal
DAGs (directed acyclic graphs) is investigated. In [28], only
bounds on the average-case redundancy for certain classes of
tree sources were shown. Here we extend these bounds (for
the same classes of tree sources) to the worst-case redundancy.

A. Directed acyclic graphs (DAGs)

A commonly used compact tree compression scheme is
obtained by writing down repeated subtrees only once. In
that case all occurrences except for the first are replaced by a
pointer to the first one. This leads to a node-labelled (minimal)
DAG for a tree. In Figure 2 the minimal DAG of the tree
considered in Example 2 is depicted. A DAG can be seen as a
TSLP where only nonterminals of rank 0 occur. In this case,
each node of the DAG (except the single a-labelled node) is
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represented by a nonterminal and the edges are represented by
the right-hand sides of the rules (see Example 3 for the TSLP
corresponding to Figure 2).

Formally, a DAG is a TSLP D = (V,A0, r) such that
V = {A0, A1, . . . , An−1} for some n ∈ N, n ≥ 1, V = V0

(i.e., all nonterminals have rank 0), and for every Ai ∈ V ,
the right-hand side r(Ai) is of the form f(α1, α2) with
α1, α2 ∈ {a,Ai+1, . . . , An−1}. Note that a TSLP of this
form generates a tree with at least two leaves. In order to
include the tree a with a single leaf, we also allow the TSLP
Ga = ({A0}, A0, A0 7→ a). We define the size of a DAG as
|D| = n+ 1.

Example 3. Consider the tree

t = f(f(f(a, a), a), f(a, a))

depicted in Figure 2. The minimal DAG of t is

D = ({A0, A1, A2}, A0, r)

with r(A0) = f(A1, A2), r(A1) = f(A2, a) and r(A2) =
f(a, a).

In contrast to general TSLPs, every binary tree t has a
unique (up to renaming of nonterminals) minimal DAG Dt
with val(Dt) = t. The size of Dt, denoted with |Dt|, is the
number of different (pairwise non-isomorphic) subtrees of t.
The idea is to introduce for every subtree f(t1, t2) of size at
least two a nonterminal Ai with r(Ai) = f(α1, α2), where
αj = a if tj = a and αj is the nonterminal corresponding to
the subtree tj if |tj | ≥ 2 (j ∈ {1, 2}). We will only use this
minimal DAG Dt in the sequel.

Example 4. Consider the tree

tn = f(f(f(· · · f(a, a), · · · a), a), a),

where f occurs n times. We have |tn| = n + 1. The minimal
DAG of tn is ({A0, A1, . . . , An−1}, A0, rn), where rn(Ai) =
f(Ai+1, a) for 0 ≤ i ≤ n − 2 and rn(An−1) = f(a, a) and
its size is n+ 1.

The above example shows that in the worst-case, the size
of the minimal DAG is not smaller than the size of the tree.

B. Universal source coding with DAGs

The following condition on a tree source was introduced
in [28], where it is called the domination property (later, we
will introduce a strong domination property): Let ((Fi)i∈N, P )
be a tree source as defined in Section II-B. We say that
((Fi)i∈N, P ) has the weak domination property if there exists
a mapping λ : T → R>0 with the following properties:

(i) λ(t) ≥ P (t) for every t ∈ T ,
(ii) λ(f(s, t)) ≤ λ(s) · λ(t) for all s, t ∈ T ,

(iii) There are constants c1, c2 such that
∑
t∈Tn λ(t) ≤ c1·nc2

for all n ≥ 1.
In [28], the authors define a binary encoding B(Dt) ∈

{0, 1}∗, such that B(Dt) is not a prefix of B(Dt′) for all
binary trees t, t′ with t 6= t′. The precise definition of B(Dt)
is not important for us; all we need is the following bound

from [28, Theorem 2], where Edag : T → {0, 1}∗ is the tree
encoder with Edag(t) = B(Dt).

Lemma 1. Assume that ((Fi)i∈N, P ) has the weak domination
property. Let t ∈ Tn with n ≥ 2 and P (t) > 0, and let Dt be
the minimal DAG for t. We have

1

n
(|Edag(t)|+ log2(P (t)))

≤ O(|Dt|/n) +O(|Dt|/n · log2(n/|Dt|)).

The following bound on the average-case redundancy was
derived in [28, Theorem 2] from Lemma 1:

Theorem 1. Consider the mapping g(x) = x · log2(1/x) and
assume that the tree source S = ((Fi)i∈N, P ) has the weak
domination property. There exists a positive real number C,
depending only on the tree source, such that for all i ∈ N we
have

R∅(Edag,S, i) ≤ C · g
(∑
t∈Fi

P (t) · |Dt|
|t|

)
.

This bound is used in [28] to show that for certain leaf-
centric and depth-centric tree sources the encoding Edag is
universal in the sense that the average-case redundancy con-
verges to zero. Here, we want to show that for the same tree
sources already the worst-case redundancy converges to zero.
Let us first define the specific classes of tree sources studied
in [28].

C. Leaf-centric binary tree sources

We recall the definition of a natural class of leaf-centric
tree sources from [28]: Let Σleaf be the set of all functions
σ : (N \ {0})× (N \ {0})→ [0, 1] such that for all n ≥ 2:

n−1∑
i=1

σ(i, n− i) = 1. (4)

For σ ∈ Σleaf we define Pσ : T → [0, 1] inductively by:

Pσ(a) = 1, (5)
Pσ(f(s, t)) = σ(|s|, |t|) · Pσ(s) · Pσ(t). (6)

We have
∑
t∈Tn Pσ(t) = 1 and thus ((Ti)i≥1, Pσ) is a leaf-

centric tree source.

Example 5. Here are three examples of leaf-centric tree
sources of the above form, which are also discussed in [19]
with respect to their entropy rates:
• The binary search tree model ((Ti)i≥1, Pσbst), where

σbst(k, n− k) = 1/(n− 1)

for all 1 ≤ k ≤ n− 1.
• The uniform model ((Ti)i≥1, Pσuni), where

σuni(k, n− k) =
Ck−1 · Cn−k−1

Cn−1

for all 1 ≤ k ≤ n − 1. Here, Pσuni yields the uniform
distribution on every Ti.
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• The binomial random tree model ((Ti)i≥1, Pσbin) where

σbin(k, n− k) =

(
n− 2

k − 1

)
· 1

2n−2

for all 1 ≤ k ≤ n− 1.

The following result is implicitly shown in [28] (see also
the proof of Theorem 5).

Lemma 2. For every σ ∈ Σleaf, the leaf-centric tree source
((Ti)i≥1, Pσ) has the weak domination property.

1) Worst-case redundancy: We say that a mapping σ ∈
Σleaf is leaf-balanced if there exists a constant c such that for
all (i, j) ∈ (N \ {0})× (N \ {0}) with σ(i, j) > 0 we have

i+ j

min{i, j}
≤ c.

In [28] it is shown that for a leaf-balanced σ ∈ Σleaf,
the tree source ((Ti)i≥1, Pσ) has the so called representa-
tion ratio negligibility property. This means that the average
compression ratio achieved by the minimal DAG (formally,∑
t∈Tn Pσ(t) · |Dt|/n) converges to zero for n→∞. Using a

result from [11], we show the following stronger property.

Lemma 3. For every leaf-balanced mapping σ ∈ Σleaf, there
exists a constant α such that for every binary tree t ∈ Tn with
Pσ(t) > 0 we have |Dt| ≤ α · n/ log2 n.

Proof. In [11] the authors introduce the notion of β-balanced
trees. Let v be a non-leaf node in t ∈ T and s be the subtree
of t with root node v. Since v is a non-leaf node we have
s = f(t1, t2) for binary trees t1 and t2. Then v is β-balanced
if |t1| ≤ β ·|t2| and |t2| ≤ β ·|t1|. The tree t is β-balanced if for
all non-leaf nodes u and v in t such that u is a child node of v,
at least one of the nodes u, v is β-balanced. It is shown in [11]
that for every constant β there exists a constant α (depending
only on β) such that the minimal DAG Dt of a β-balanced tree
t ∈ Tn has size at most α · n/ log2 n. It follows that we only
need to show that a tree t ∈ Tn with Pσ(t) > 0 is β-balanced
for a constant β. Since the mapping σ is leaf-balanced, every
subtree f(t1, t2) of t satisfies |t1| + |t2| ≤ c ·min{|t1|, |t2|},
where c ≥ 1 is a constant. Without loss of generality assume
that |t1| ≤ |t2|. We get |t1| ≤ c · |t2| and

|t2| ≤ |t1|+ |t2| ≤ c ·min{|t1|, |t2|} = c · |t1|,

which shows that t is c-balanced.

Corollary 1. Let σ ∈ Σleaf be leaf-balanced, and let S =
((Ti)i≥1, Pσ) be the corresponding leaf-centric tree source.
Then, we have R(Edag,S, i) ≤ O(log log i/ log i).

Proof. Let α be the constant from Lemma 3. Let t ∈ Tn such
that Pσ(t) > 0. Lemma 3 implies |Dt| ≤ α · n/ log2 n. With
Lemma 1 and 2 we get

1

n
· (|Edag(t)|+ log2(Pσ(t)))

≤ O(|Dt|/n) +O(|Dt|/n · log2(n/|Dt|))
≤ O(log log n/ log n)

This proves the corollary.

2) Average-case redundancy: In this subsection we present
another class of leaf-centric binary tree sources Σm

leaf ⊆
Σleaf such that for every σ ∈ Σm

leaf the average-case re-
dundancy R∅(Edag,S, i) of the corresponding tree source
S = ((Ti)i≥1, Pσ) is bounded by O(log log i/ log i) and hence
converges to zero.

For σ ∈ Σleaf we define the mapping σ∗ : (N \ {0})× (N \
{0})→ [0, 1] by

σ∗(i, j) =
1

2
(σ(i, j) + σ(j, i)).

Note that σ∗(i, j) = σ∗(j, i) and
∑n−1
i=1 σ

∗(i, n− i) = 1. This
implies

n−1∑
i=k

σ∗(i, n− i) ≤ 1

2
(7)

for k > n/2.
Let Σm

leaf ⊆ Σleaf denote the set of mappings σ which satisfy

σ∗(k, n− k) ≤ σ∗(k + 1, n− k − 1)

for all integers n ≥ 1 and 1 ≤ k < bn2 c. Since the mapping σ∗

is symmetric in its first and second argument, this is equivalent
to

σ∗(k, n− k) ≥ σ∗(k + 1, n− k − 1)

for all integers n ≥ 1 and dn2 e ≤ k ≤ n−2. For the set of leaf-
centric binary tree sources induced by a mapping σ ∈ Σm

leaf
we find the following:

Theorem 2. Let σ ∈ Σm
leaf. The average size of the minimal

DAG of a binary tree t ∈ Tn with respect to the probability
mass function Pσ on Tn satisfies∑

t∈Tn

Pσ(t) · |Dt| ≤ O
(

n

log n

)
. (8)

In the terms and definitions of [28], Theorem 2 states that
the class of leaf-centric binary tree sources corresponding to a
mapping σ ∈ Σm

leaf satisfies the representation ratio neglibility
property.

Example 6. Recall the three leaf-centric binary tree sources
from Example 5. The mappings σbst and σbin belong to Σm

leaf.
Hence, for these sources the average size of the minimal DAG
is bounded by O(n/ log n). For the binary search tree model,
this bound was already shown in [8]; and a matching lower
bound was shown in [7]. In contrast, σuni does not belong
to Σm

leaf. In fact, in [10] (see also [2], [25]) it is shown that
under the uniform distribution on Tn, the average size of the
minimal DAG is Θ(n/

√
log n).

Our proof of Theorem 2 uses the cut-point argument which
is also applied in [8]: The size of the minimal DAG of a tree t
is bounded by (i) the number of nodes of t that have leaf size
larger than a carefully chosen cut-point b and (ii) the number
of all binary trees with at most b leaves (irrespective of their
(non)occurrence in t).

Let us start with some formal definitions. For a binary tree
t ∈ T and an integer k ≥ 1 let N(t, k) denote the number of
nodes of t of leaf-size greater than k. Moreover, for a mapping
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σ ∈ Σleaf and integers b ≥ 1 and n ≥ 1 let Eσ,b(n) denote
the expected value of N(t, b) with respect to the probability
mass function Pσ on the set of binary trees Tn :

Eσ,b(n) =
∑
t∈Tn

Pσ(t) ·N(t, b).

We find Eσ,b(n) = 0 if n ≤ b. Let t = f(u, v) ∈ Tn and let
b < n. The number of nodes of t of leaf-size greater than b
is composed of the number of nodes of the left subtree u of
leaf-size greater than b plus the number of nodes of the right
subtree v of leaf-size greater than b plus one (for the root):

N(t, b) = N(u, b) +N(v, b) + 1.

This yields the following recurrence relation for the expected
value Eσ,b(n) :

Eσ,b(n) = 1 +

n−1∑
k=b+1

(σ(k, n− k) + σ(n− k, k)) · Eσ,b(k).

(9)

Moreover, we find the following upper bound for Eσ,b(n):

Lemma 4. For a mapping σ ∈ Σm
leaf and integers n > b ≥ 1,

we have

Eσ,b(n) ≤ 2(n− 1)

b
− 1.

In the proof we use Chebyshev’s sum inequality, see e.g.
[12, Section 2.7]:

Lemma 5. If a1 ≤ a2 ≤ · · · ≤ an and b1 ≥ b2 ≥ · · · ≥ bn
then

n∑
i=1

aibi ≤
1

n
·
( n∑
i=1

ai

)
·
( n∑
i=1

bi

)
.

Proof of Lemma 4. We prove the statement by induction on
n ≥ b + 1. For the base case, let n = b + 1. A binary tree
t ∈ Tb+1 has exactly one node of leaf-size greater than b,
which is the root of t. Thus, Eσ,b(b+ 1) = 1.

For the induction step, assume that n > b + 1 is such that
Eσ,b(k) ≤ 2(k−1)

b − 1 for every integer b + 1 ≤ k ≤ n − 1.
We distinguish two cases:

Case 1: n < 2(b+ 1) and hence dn+1
2 e ≤ b+ 1. By equation

(9), we have

Eσ,b(n) = 1 + 2

n−1∑
k=b+1

σ∗(k, n− k) · Eσ,b(k).

For dn+1
2 e ≤ k ≤ n− 1 we define S(k) as

S(k) =

{
2(k−1)

b − 1 if k ≥ b+ 1

0 otherwise.

By the induction hypothesis, we have Eσ,b(k) ≤ S(k) for
every integer b+ 1 ≤ k ≤ n− 1. Thus, as σ∗ is non-negative,
we find

Eσ,b(n) ≤ 1 + 2

n−1∑
k=dn+1

2 e

σ∗(k, n− k) · S(k).

As σ ∈ Σm
leaf, we find that σ∗(k, n−k) ≥ σ∗(k+1, n−k−1)

for dn+1
2 e ≤ k ≤ n − 2. Moreover, S(k) is monotonically

increasing in k. We now obtain the following calculation where
the first inequality follows from Chebyshev’s sum inequality
(Lemma 5) and the second inequality follows from (7).

Eσ,b(n) ≤ 1 +
2⌊
n−1

2

⌋ n−1∑
k=dn+1

2 e

σ∗(k, n− k)

n−1∑
k=dn+1

2 e

S(k)

≤ 1 +
2

n− 2

n−1∑
k=dn+1

2 e
S(k)

= 1 +
2

n− 2

n−1∑
k=b+1

(
2(k − 1)

b
− 1

)
=

2(n− 1)

b
− 1.

The last equality follows by a straightforward computation.

Case 2: n ≥ 2(b+1). By rearranging the sum, we obtain from
equation (9):

Eσ,b(n) = 1 +

n−b−1∑
k=b+1

σ(k, n− k) (Eσ,b(k) + Eσ,b(n− k))

+ 2

n−1∑
k=n−b

σ∗(k, n− k)Eσ,b(k).

The induction hypothesis yields

Eσ,b(n) ≤ 1 +

n−b−1∑
k=b+1

σ(k, n− k)

(
2(n− 2)

b
− 2

)

+ 2

n−1∑
k=n−b

σ∗(k, n− k)

(
2(k − 1)

b
− 1

)
.

We set α :=
∑n−b−1
k=b+1 σ(k, n − k) with 0 ≤ α ≤ 1. In case

α = 1, the statement follows immediately. If α < 1, we get

Eσ,b(n) ≤ 1 + α

(
2(n− 2)

b
− 2

)
+

2(1− α)

n−1∑
k=n−b

σ∗(k, n− k)

1− α

(
2(k − 1)

b
− 1

)
.

As σ ∈ Σm
leaf, we find that σ∗(k, n−k) ≥ σ∗(k+1, n−k−1)

for n − b ≤ k ≤ n − 2 (note that n − b ≥ dn2 e). Applying
Chebyshev’s sum inequality, we obtain

Eσ,b(n) ≤ 1 + α

(
2(n− 2)

b
− 2

)
+

(1− α)

b

n−1∑
k=n−b

(
2(k − 1)

b
− 1

)
=

2n− α− 3

b
− 1

≤ 2n− 2

b
− 1,

as α ≥ 0. This finishes the proof.

With Lemma 4, we can prove Theorem 2 using the standard
cut-point argument:
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Proof of Theorem 2. Let t ∈ Tn, with n ≥ 2, and let 1 ≤ b <
n. The number of different subtrees of t can be upper bounded
by the sum of

(i) the number N(t, b) of nodes of leaf-size at least b + 1
and

(ii) the number of different subtrees of t with at most b
leaves.

The number (ii) is bounded by the number of all binary trees
with at most b leaves, which is

∑b−1
k=0 Ck, where Ck is the kth

Catalan number. Thus, we have

|Dt| ≤
b−1∑
k=0

Ck +N(t, b)

≤
b−1∑
k=0

4k +N(t, b)

≤ 1

3
4b +N(t, b).

Let b = 1
2blog4(n)c. We get |Dt| ≤ O

(
n

logn

)
+ N(t, b).

Furthermore, with Lemma 4 we have

Eσ,b(n) =
∑
t∈Tn

Pσ(t) ·N(t, b)

≤ 2(n− 1)

b
− 1

≤ O
(

n

log n

)
.

Altogether, we get∑
t∈Tn

Pσ(t) · |Dt| ≤ O
(

n

log n

)
.

This concludes the proof.

Corollary 2. Let σ ∈ Σm
leaf, and let S = ((Ti)i≥1, Pσ) be the

corresponding leaf-centric tree source. Then, we have

R∅(Edag,S, i) ≤ O
(

log log i

log i

)
.

Proof. By Theorem 1 we have

R∅(Edag,S, i) ≤ C · g
(∑
t∈Ti

Pσ(t) · |Dt|
i

)
≤ C · g

(
1

log i

)
= C · log log i

log i
,

where the constant C > 0 only depends on S. This shows the
corollary.

The bound from the above corollary applies in particular
to the binary search tree model and the binomial random
tree model from Example 5. For the uniform model S =

((Ti)i≥1, Pσuni) we only get the weaker bound using the results
on the average size of DAGs in [10]:

R∅(Edag,S, i) ≤ C · g
(∑
t∈Ti

Pσuni(t) ·
|Dt|
i

)
≤ C · g

(
1√
log i

)
= C · log log i√

log i
.

D. Depth-centric binary tree sources

We recall the definition of a natural class of depth-centric
tree sources from [28]: Let Σdepth be the set of all mappings
σ : N× N→ [0, 1] such that for all n ≥ 1:∑

i,j≥0, max(i,j)=n−1

σ(i, j) = 1. (10)

For σ ∈ Σdepth, we define Pσ : T → [0, 1] by

Pσ(a) = 1, (11)
Pσ(f(s, t)) = σ(d(s), d(t)) · Pσ(s) · Pσ(t). (12)

We have
∑
t∈T n Pσ(t) = 1 and thus ((T i)i≥0, Pσ) is a depth-

centric tree source.
The following result is again implicitly shown in [28] and

can also be found as a part of the proof of Theorem 6.

Lemma 6. For every σ ∈ Σdepth, the depth-centric tree source
((T i)i≥0, Pσ) has the weak domination property.

We say the mapping σ ∈ Σdepth is depth-balanced if there
exists a constant c such that for all (i, j) ∈ N × N with
σ(i, j) > 0 we have |i − j| ≤ c. In [28], the authors
define a condition on σ that is slightly stronger than depth-
balancedness, and show that for every such σ, the tree source
((T i)i≥0, Pσ) has the representation ratio negligibility prop-
erty. Similarly to Lemma 3, we will show an even stronger
property. To do so, we introduce β-depth-balanced trees for
β ∈ N. A tree t is called β-depth-balanced if for each subtree
f(t1, t2) of t we have |d(t1) − d(t2)| ≤ β. Note that for a
depth-balanced mapping σ ∈ Σdepth, there is a constant β such
that every tree t with Pσ(t) > 0 is β-depth-balanced. We will
use the following lemma:

Lemma 7. Let β ∈ N and c = 1+1/(1+β) (thus, 1 < c ≤ 2).
For every β-depth-balanced binary tree t, we have |t| ≥ cd(t).

Proof. We prove the lemma by induction on d(t). For the only
tree t = a of depth d(t) = 0, we have |t| = 1 = c0. Consider
now a β-depth-balanced tree t = f(t1, t2) of depth d(t) > 0.
We assume d(t1) ≥ d(t2), the other case is symmetric. Since
t is β-depth-balanced, it follows that d(t2) ≥ d(t1) − β. To
estimate the size |t| = |t1| + |t2|, we apply the induction
hypothesis to t1 and t2, which yields

|t| = |t1|+ |t2|
≥ cd(t1) + cd(t2)

≥ cd(t1) + cd(t1)−β

= cd(t1) ·
(
1 + c−β

)
.
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Since d(t1)+1 = d(t), it only remains to show that 1+c−β ≥
c, which can be easily done by induction on β ∈ N.

Lemma 7 together with results from [11], [13] implies:

Lemma 8. For every depth-balanced mapping σ ∈ Σdepth

there exists a constant α such that for every binary tree t ∈ Tn
with Pσ(t) > 0 we have |Dt| ≤ α · n · log2(log2 n)/ log2 n.

Proof. If Pσ(t) > 0, then there exists a constant β such that
t and each of its subtrees is β-depth-balanced. By Lemma 7
this implies that every subtree t′ has depth at most c · log2 |t′|
for a constant c that only depends on σ. By [11, Theorem 12]1

(which was implicitly shown in [13]) it follows that there exists
a constant α (again, only dependent on σ) such that |Dt| ≤
α · n · log2(log2 n)/ log2 n.

Corollary 3. Let σ ∈ Σdepth be a depth-balanced mapping and
let S = ((T i)i≥0, Pσ) be the corresponding depth-centric tree
source. Then, we have

R(Edag,S, i) ≤ O
(

(log log i)2

log i

)
.

Proof. Let α be the constant from Lemma 8. Let t ∈ T i such
that Pσ(t) > 0. Lemma 1 and 6 imply

1

|t|
· (|Edag(t)|+ log2(Pσ(t)))

≤ O(|Dt|/|t|) +O(|Dt|/|t| · log2(|t|/|Dt|)).

Consider the mapping g(x) = x·log2(1/x). It is monotonically
increasing for 0 ≤ x ≤ 1/e. Note that for all t ∈ T i we have
|t| ≥ i+ 1. Hence, if i is large enough, then Lemma 8 yields
for all t ∈ T i with Pσ(t) > 0 that

|Dt|/|t| ≤ α · log2(log2 |t|)/ log2 |t|
≤ log2(log2(i+ 1))/ log2(i+ 1) ≤ 1/e.

We obtain

1

|t|
· (|Edag(t)|+ log2(Pσ(t))) ≤ O((log log i)2/ log i).

This proves the corollary.

IV. TREE COMPRESSION WITH TSLPS

In this section, we will use general TSLPs for the compres-
sion of binary trees. The limitations of DAGs for universal
source coding can be best seen for a tree source ((Fi)i∈N, P )
such that P (t) > 0 for all t ∈ T . Example 4 shows that for
every n ≥ 1, there is a tree t ∈ Tn with |Dt| = n. In that
case, the bound stated in Lemma 1 cannot be used to show
that the worst-case redundancy converges to zero.

1We remark that [11, Theorem 12] contains a typing error: “every subtree
s of t has depth at most α logn+ α” should be replaced by “every subtree
s of t has depth at most α log |s|+ α”.

A. TSLPs in normal form

In this section, we will use TSLPs in a certain normal form,
which we introduce first.

A TSLP G = (V,A0, r) is in normal form if the following
conditions hold:
• V = {A0, A1, . . . , An−1} for some n ∈ N, n ≥ 1.
• For every Ai ∈ V0, the right-hand side r(Ai) is a term

of the form Aj(α), where Aj ∈ V1 and α ∈ V0 ∪ {a}.
• For every Ai ∈ V1 the right-hand side r(Ai) is a

term of the form Aj(Ak(x)), f(α, x), or f(x, α), where
Aj , Ak ∈ V1 and α ∈ V0 ∪ {a}.

• For every Ai ∈ V define the word ρ(Ai) ∈ (V ∪ {a})∗
as follows:

ρ(Ai) =


Ajα if r(Ai) = Aj(α)

AjAk if r(Ai) = Aj(Ak(x))

α if r(Ai) = f(α, x) or f(x, α)

Moreover, define the word

ρG = ρ(A0)ρ(A1) · · · ρ(An−1),

which belongs to {a,A1, A2, . . . , An−1}∗. Then we re-
quire that ρG has the form A1u1A2u2 · · ·An−1un−1 with
ui ∈ {a,A1, A2, . . . , Ai}∗.

• valG(Ai) 6= valG(Aj) for i 6= j

We define the size of the normal form TSLP G as |G| =
|ρG |. This is the total number of occurrences of symbols from
V ∪ {a} in all right-hand sides of G. As for DAGs we also
allow the TSLP Ga = ({A0}, A0, A0 7→ a) in order to get
the singleton tree a. In this case, we set ρGa = ρ(A0) = a. It
is not hard to show that there is a linear time algorithm that
transforms a given TSLP G into a normal form TSLP G′ that
derives the same tree (we will not use this fact). For example,
the TSLP from Example 2 is transformed into the normal form
TSLP described in Example 7. Let G = (V,A0, r) be a TSLP
in normal form with V = {A0, A1, . . . , An−1} for the further
definitions.

Let ωG be the word obtained from ρG by removing for every
1 ≤ i ≤ n−1 the first occurrence of Ai from ρG . Thus, if ρG =
A1u1A2u2 · · ·An−1un−1 with ui ∈ {a,A1, A2, . . . , Ai}∗,
then ωG = u1u2 · · ·un−1. The entropy H(G) of the normal
form TSLP G is defined as the empirical unnormalized entropy
of the word ωG :

H(G) = H(ωG).

Example 7. Let G = ({A0, A1, A2, A3, A4}, A0, r) be the
normal form TSLP with A0, A2, A3 ∈ V0, A1, A4 ∈ V1 and

r(A0) = A1(A2),

r(A1) = f(x,A3),

r(A2) = A4(A3),

r(A3) = A4(a),

r(A4) = f(x, a).

Then G evaluates to val(G) = f(f(f(a, a), a), f(a, a)). More-
over, we have ρG = A1A2A3A4A3A4aa (u1 = u2 = u3 = ε,
u4 = A3A4aa), |G| = 8 and ωG = A3A4aa.
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Fig. 3. The derivation tree TG of the TSLP from Example 7 (left) and an
initial subtree T ′ of TG (right).

The derivation tree TG of the normal form TSLP G is a
rooted tree, where every node is labelled with a symbol from
V ∪ {a}. The root is labelled with A0. Nodes labelled with a
are the leaves of TG . A node v that is labelled with a nonter-
minal Ai has |ρ(Ai)| many children. If ρ(Ai) = α ∈ V0∪{a}
then the single child of v is labelled with α. If ρ(Ai) = Ajα
with α ∈ V ∪ {a} then the left (resp., right) child of v is
labelled with Aj (resp., α). For every node v of TG we define
the tree or context tv = valG(α) where α ∈ V ∪ {a} is the
label of v. If α ∈ V0 ∪ {a} then tv ∈ T and if α ∈ V1 then
tv ∈ C. The tv can be also inductively defined by the following
rules:

• If u is labelled with a then tu = a.
• If u is labelled with Ai ∈ V1 and has a single child node
v that is labelled with α ∈ V0 ∪ {a}, then tu = f(tv, x)
if r(Ai) = f(α, x) and tu = f(x, tv) if r(Ai) = f(x, α)
(note that r(Ai) must be of the form f(x, α) or f(α, x)
and that tv = valG(α)).

• If v has the left child u1 and the right child u2, then
tv = tu1

[tu2
] (note that if a node has two children in the

derivation tree, then the left child u1 is labelled with a
nonterminal from V1 and thus tu1

is a context from CV ).

An initial subtree of the derivation tree TG is a tree that can
be obtained from TG as follows: Take a subset U of the nodes
of TG and remove from TG all proper descendants of nodes
from U , i.e., all nodes that are located strictly below a node
from U .

Example 8. Let G be the normal form TSLP from Example 7.
The derivation tree TG is shown in Figure 3 on the left; an
initial subtree T ′ of it is shown on the right.

Lemma 9. Let T ′ be an initial subtree of TG and let v1, . . . , v`
be the sequence of all leaves of T ′ (in left-to-right order). Then
|val(G)| =

∑`
i=1 |tvi |.

Proof. Let u be a node of TG and let Tu be the subtree of TG
rooted in u. Let us first show by induction that |tu| = |Tu|
holds, where as for binary trees, |Tu| denotes the number of
leaves of Tu. Recall that |tu| is the number of a-labelled leaves
of tu; in particular the parameter x is not counted. If u is a
leaf of TG then we have tu = a and hence |tu| = 1 = |Tu|. If
u has two children u1 and u2 then tu = tu1 [tu2 ] and we get
|tu| = |tu1

[tu2
]| = |tu1

| + |tu2
| (see Section II-B for the last

equality). Hence, we get by induction |tu| = |Tu1
|+ |Tu2

| =
|Tu|. Finally, if the node u has a single child v in TG then
either tu = f(x, tv) or tu = f(tv, x). In both cases we get by

induction |tu| = |tv| = |Tv| = |Tu|.
Let us now conclude the proof of the lemma. Since T ′ is an

initial subtree of TG we get |val(G)| = |TG | =
∑`
i=1 |Tvi | =∑`

i=1 |tvi |.

A grammar-based tree compressor is an algorithm ψ that
produces for a given tree t ∈ T a TSLP Gt in normal form.
The compression ratio of ψ is the mapping n 7→ γψ(n) with

γψ(n) = max
t∈Tn
|Gt|/n.

A key result that we need in this paper is the following theorem
from [11]:

Theorem 3. There exists a grammar-based compressor ψ
(working in linear time) with γψ(n) ≤ O(1/ log n).

B. Binary coding of TSLPs in normal form

In this section we fix a binary encoding for normal form
TSLPs. This encoding is similar to the one for SLPs [16] and
DAGs [28]. Let G = (V,A0, r) be a TSLP in normal form
with n = |V | nonterminals. Let m = |G| = |ρG | be the size of
G. We define the type type(Ai) ∈ {0, 1, 2, 3} of a nonterminal
Ai ∈ V as follows:

type(Ai) =



0 if r(Ai) = Aj(α) for some Aj ∈ V1

and α ∈ V0 ∪ {a}
1 if r(Ai) = Aj(Ak(x))

for some Aj , Ak ∈ V1

2 if r(Ai) = f(α, x) for some α ∈ V0 ∪ {a}
3 if r(Ai) = f(x, α) for some α ∈ V0 ∪ {a}

We define the binary word B(G) = w0w1w2w3w4, where the
words wi ∈ {0, 1}∗, 0 ≤ i ≤ 4, are defined as follows:
• w0 = 1n−10,
• w1 = a0b0a1b1 · · · an−1bn−1, where ajbj is the 2-bit

binary encoding of type(Aj),
• Assume that ρG = A1u1A2u2 · · ·An−1un−1 with ui ∈
{a,A1, . . . , Ai}∗. Then w2 = 1|u1|01|u2|0 · · · 1|un−1|0,
which is ε in case n = 1. Note that |w2| = m.

• For 1 ≤ i ≤ n − 1 let ki = |ρG |Ai
≥ 1 be the number

of occurrences of the nonterminal Ai in the word ρG .
Then w3 = 1k1−101k2−10 · · · 1kn−1−10, which is ε in
case n = 1.

• The word w4 encodes the word ωG using the well-known
enumerative encoding [5]. Every nonterminal Ai, 1 ≤
i ≤ n − 1, has η(Ai) := ki − 1 occurrences in ωG . The
symbol a has η(a) := m − (k1 + · · · + kn−1) many
occurrences in ωG . Let S be the set of words over the
alphabet {a,A1, . . . , An−1} with η(a) occurrences of a
and η(Ai) occurrences of Ai for every 1 ≤ i ≤ n − 1.
Hence,

|S| = (m− n+ 1)!

η(a)! ·
∏n−1
i=1 η(Ai)!

. (13)

Let v0, v1, . . . , v|S|−1 be the lexicographic enumeration
of the words from S with respect to the alphabet order
a,A1, . . . , An−1. Then w4 is the binary encoding of
the unique index i such that ωG = vi, where |w4| =
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dlog2 |S|e (leading zeros are added to the binary encoding
of i to obtain the length dlog2 |S|e).

Example 9. Consider the normal form TSLP G from Ex-
ample 7. We have w0 = 11110, w1 = 0011000011, w2 =
00011110 and w3 = 001010. To compute w4, note first that
there are |S| = 12 words with two occurrences of a and one
occurrence of A3 and A4. It follows that |w4| = dlog2(12)e =
4. Further, since the order of the alphabet is a,A3, A4, there
are only three words in S (A4A3aa, A4aA3a and A4aaA3),
which are lexicographically larger than ωG = A3A4aa.
Hence, ωG = v8 and thus w4 = 1000.

Lemma 10. The set of code words B(G), where G ranges
over all TSLPs in normal form, is a prefix code.

Proof. Let B(G) = w0w1w2w3w4 with wi defined as above.
We show how to recover the TSLP G. From B(G) and the
fact that w0 = 1n−10 we can compute n = |V | and the
suffix w1w2w3w4. Since |w1| = 2n we can then determine
w1 and the suffix w2w3w4. The word w1 encodes the type of
every nonterminal. Since w2 = 1|u1|01|u2|0 · · · 1|un−1|0 and
we know n we can compute from w2w3w4 the word w2 and
the suffix w3w4. The word w2 allows to compute the positions
where we have deleted the nonterminals A1, A2, . . . , An−1

(in that order) from ρG during the computation of ωG .
Hence, in order to compute ρG , one only needs ωG . Since
w3 = 1k1−101k2−10 · · · 1kn−1−10 and we know n, we can
compute w3 and w4. The word w3 determines the frequencies
η(a), η(A1), . . . , η(An−1) of the symbols in ωG . Using these
frequencies one computes the size |S| from (13) and hence the
length dlog2 |S|e of w4. From w4, one can then compute ωG .
Finally, ρG together with the types of the nonterminals (which
are encoded by w1) completely determines G. The argument
shows also that B(G) cannot be a prefix of B(G′) for different
normal form TSLPs G and G′.

Note that |B(G)| ≤ O(|G|) + |w4|. By using the well-
known bound on the code length of enumerative encoding [6,
Theorem 11.1.3], we get:

Lemma 11. For the length of the binary coding B(G) we
have: |B(G)| ≤ O(|G|) +H(G).

C. Universal source coding based on TSLPs in normal form

Let ((Fi)i∈N, P ) be a tree source as defined in Section II-B.
We say that ((Fi)i∈N, P ) has the strong domination property
if there exists a mapping λ : T ∪C → R>0 with the following
properties:

(i) λ(t) ≥ P (t) for every t ∈ T ,
(ii) λ(f(s, t)) ≤ λ(s) · λ(t) for all s, t ∈ T ,

(iii) λ(s[t]) ≤ λ(s) · λ(t) for all s ∈ C and t ∈ T , and
(iv) there are constants c1, c2 such that

∑
t∈Tn∪Cn λ(t) ≤

c1 · nc2 for all n ≥ 1.
Recall the definition of the trees/contexts tu for a node u of
a derivation tree of a normal form TSLP from Section IV-A.

Lemma 12. Let λ : T ∪C → R>0 be a mapping that satisfies
the properties (ii) and (iii) of the strong domination property.
Let G = (V,A0, r) be a TSLP in normal form with val(G) = t

f

f

f

a a

a

f

a a

Fig. 4. The tree val(G) of the TSLP from Example 7. The canon-
ical occurrences of the trees/contexts in (a, a, valG(A4), valG(A3)) =
(a, a, f(x, a), f(a, a)) used in the proof of Lemma 12 are highlighted.

and let T ′ be an initial subtree of the derivation tree TG .
Let v1, . . . , v` be the sequence of leaves of T ′. Then λ(t) ≤∏`
i=1 λ(tvi).

Proof. Consider a node u of the derivation tree TG . The
tree/context tu clearly occurs in t. One can define a canonical
occurrence of tu in t which is identified with a set Vu of
nodes of t. For the root r, Vr is the set of all nodes of t. Now
consider a node u of TG for which Vu has been defined. If u
has two children u1 and u2 then tu = tu1 [tu2 ]. Then Vu1 and
Vu2 can be uniquely defined by the following conditions: there
is a node y ∈ Vu such that Vu2

contains all nodes z ∈ Vu that
are descendants of y in the tree t (including y), Vu1

= Vu\Vu2

and the nodes in Vui
induce an occurrence of ti in t. If the

node u has a single child v in TG then either tu = f(x, tv)
or tu = f(tv, x). Let y ∈ Vu be the root node of Vu. If
tu = f(tv, x) then Vv is the subtree of t rooted in the left
child of y and if tu = f(x, tv) then Vv is the subtree of t
rooted in the right child of y.

Now consider the nodes v1, . . . , v` from the lemma. Fig-
ure 4 shows the node sets Vv1 , Vv2 , Vv3 , Vv4 for the four leaf
nodes of the initial subtree T ′ from Figure 3. Since these nodes
are pairwise incomparable with respect to the ancestor relation
of TG , the node sets Vvi are pairwise disjoint. This allows us
to prove λ(t) ≤

∏`
i=1 λ(tvi) inductively. The case that t = a

is clear. Now assume that t = f(t1, t2). First assume that
the root node of t does not belong to some of the sets Vvi .
Then every set Vvi is either contained in the left subtree t1
or in the right subtree t2. W.l.o.g. assume that Vv1 , . . . , Vvk
are contained in t1 and Vvk+1

, . . . , Vv` are contained in t2. By
induction and condition (ii) of the strong domination property
we get

λ(t) ≤ λ(t1) · λ(t2) ≤
k∏
i=1

λ(tvi) ·
∏̀

i=k+1

λ(tvi).

Now assume that the root node of t belongs to a set Vvi .
W.l.o.g. assume that i = 1. If tv1 is a tree then we must have
t = tv1 and ` = 1 and the statement of the lemma holds.
Otherwise, tv1 is a context, t = tv1 [t′] and all Vv2 , . . . , Vv`
are contained in t′. By induction and condition (iii) of the
strong domination property we get

λ(t) ≤ λ(tv1) · λ(t′) ≤ λ(tv1) ·
∏̀
i=2

λ(tvi).

This concludes the proof of the lemma.
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The proof of the following lemma combines ideas from [16]
and [28].

Lemma 13. Assume that ((Fi)i∈N, P ) has the strong domi-
nation property. Let t ∈ Tn with n ≥ 2 and P (t) > 0, and let
G = (V,A0, r) be a TSLP in normal form with val(G) = t.
We have

H(G) ≤ − log2 P (t) +O(|G|) +O(|G| · log2(n/|G|)).

Proof. Let m = |G| = |ρG | be the size of G, k = |V |, and
` := m+ 1− k ≤ m. Let T = TG be the derivation tree of G.
We define an initial subtree T ′ as follows: we walk in preorder
(depth-first, left-to-right) over the tree T . Every time we visit
a non-leaf node v in T that is labelled with a nonterminal that
has been seen before during the preorder traversal, we remove
from T all proper descendants of v. Thus, for every Ai ∈ V
there is exactly one non-leaf node in T ′ that is labelled with
Ai. For the TSLP from Example 7, the tree T ′ is shown in
Figure 3 on the right.

Recall the definition of the words ρG and ωG from Sec-
tion IV-A. The word ρG can be obtained by writing down
for every node v of T the labels of v’s children. Moreover,
the word ωG is obtained by writing down (in the right order)
the labels of the leaves of T ′. Note that T ′ has exactly
m + 1 many nodes and k non-leaf nodes. Thus, T ′ has `
leaves. Let v1, v2, . . . , v` be the sequence of all leaves of
T ′ (w.l.o.g. in preorder) and let αi ∈ {a,A1, . . . , Ak−1}
be the label of vi. Let α = (α1, α2, . . . , α`). Then α is a
permutation of ωG . We therefore have |ωG |α = |α|α for every
α ∈ {a,A1, . . . , Ak−1}. Hence, the empirical distributions
pα and pωG are identical. For the TSLP from Example 7
we get α = (a, a,A4, A3) (this is the sequence of labels
of the leaf nodes for the tree in Figure 3 on the right). Let
ti = valG(αi) ∈ T ∪ C. Since valG(Ai) 6= valG(Aj) for
all i 6= j and valG(Ai) 6= a for all i (this holds for every
normal form TSLP that produces a tree of size at least two),
the tuple t = (t1, t2, . . . , t`) satisfies pωG (αi) = pt(ti) for
all 1 ≤ i ≤ `. For the TSLP from Example 7 we get
t = (a, a, valG(A4), valG(A3)) = (a, a, f(x, a), f(a, a)) (see
Figure 4).

Lemma 9 yields
l∑
i=1

|ti| = |t| = n (14)

since t ∈ Tn, whereas Lemma 12 yields

λ(t) ≤
∏̀
i=1

λ(ti). (15)

For j ∈ N, j ≥ 1, let

Mj =
∑

u∈Tj∪Cj

λ(u) ≤ c1 · jc2 ,

where c1 and c2 are the constants from condition (iv) of the
strong domination property. Let D := 6/π2 ≥ 1/2 and define
for every u ∈ Tj ∪ Cj :

q(u) :=
D · λ(u)

Mj · j2
> 0. (16)

We get ∑
j≥1

∑
u∈Tj∪Cj

q(u) = D ·
∑
j≥1

1

j2
= 1.

Hence, we have q(t1) + q(t2) + · · · + q(t`) ≤ 1. Using
Shannon’s inequality (3) we get

H(G) = H(ωG)

=
∑̀
i=1

− log2 pωG (αi)

=
∑̀
i=1

− log2 pt(ti) ≤
∑̀
i=1

− log2 q(ti).

Using (16) and D ≥ 1/2 we obtain

H(G) ≤
∑̀
i=1

− log2

(
D · λ(ti)

M|ti| · |ti|2

)

= −` · log2D −
∑̀
i=1

log2 λ(ti)

+
∑̀
i=1

log2M|ti| + 2
∑̀
i=1

log2 |ti|

≤ `−
∑̀
i=1

log2 λ(ti) +
∑̀
i=1

(log2 c1 + c2 log2 |ti|)

+ 2
∑̀
i=1

log2 |ti|

= (1 + log2 c1) · `−
∑̀
i=1

log2 λ(ti)

+ (2 + c2) ·
∑̀
i=1

log2 |ti|.

From (15) and condition (i) of the strong domination property
we get ∑̀

i=1

log2 λ(ti) ≥ log2 λ(t) ≥ log2 P (t).

Moreover, Jensen’s inequality and (14) gives∑̀
i=1

log2 |ti| ≤ ` · log2

(
1

`
·
∑̀
i=1

|ti|
)

= ` · log2(n/`).

With ` ≤ m we obtain

H(G) ≤ (1 + log2 c1) · `− log2 P (t)

+ (2 + c2) · ` · log2(n/`)

≤ − log2 P (t) + (1 + log2 c1) ·m
+ (2 + c2) ·m · log2(n/m).

This shows the lemma.

Let ψ : t 7→ Gt be a grammar-based tree compressor. We
then consider the tree encoder Eψ : T → {0, 1}∗ defined
by Eψ(t) = B(Gt). Recall the definition of the worst-case
redundancy R(Eψ,S, i) from Section II-B.
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Theorem 4. Assume that S = ((Fi)i∈N, P ) has the strong
domination property. Let ψ be a grammar-based compressor
such that γψ(n) ≤ γ(n) for a monotonically decreasing func-
tion γ(n) with limn→∞ γ(n) = 0. Let ni = min{|t| | t ∈ Fi}
and assume that ni < ni+1 for all i ∈ N.2 Then, we have

R(Eψ,S, i) ≤ O(γ(ni) · log2(1/γ(ni))).

Proof. Let t ∈ T and ψ(t) = Gt. With Lemma 11 and 13 we
get

1

|t|
· (|B(Gt)|+ log2 P (t))

≤ 1

|t|
· (H(Gt) +O(|Gt|) + log2 P (t))

≤ 1

|t|
· (O(|Gt|) +O(|Gt| · log2(|t|/|Gt|))

= O(|Gt|/|t|) +O(|Gt|/|t| · log2(|t|/|Gt|)).

Consider the mapping g with g(x) = x · log2(1/x). It is
monotonically increasing for 0 ≤ x ≤ 1/e. If i is large
enough, we have for all t ∈ Fi that

|Gt|/|t| ≤ γψ(|t|) ≤ γ(|t|) ≤ γ(ni) ≤ 1/e.

Hence, we get

|Gt|/|t| · log2(|t|/|Gt|) = g(|Gt|/|t|)
≤ g(γ(ni))

= γ(ni) · log2(1/γ(ni)).

This implies

R(Eψ,S, i) = max
t∈Fi,P (t)>0

1

|t|
· (|B(Gt)|+ log2 P (t))

≤ O(γ(ni)) +O(γ(ni) · log(1/γ(ni)))

= O(γ(ni) · log(1/γ(ni))),

which proves the theorem.

Note that the minimal size of a tree in Ti+1 (resp. T i) is
i+ 1. Hence, Theorem 3 and 4 yield:

Corollary 4. There exists a grammar-based tree compres-
sor ψ (working in linear time) such that R(Eψ,S, i) ≤
O(log log i/ log i) for every leaf-centric or depth-centric tree
source S having the strong domination property.

In the rest of the paper, we will present classes of leaf-
centric and depth-centric tree sources that have the strong
domination property.

D. Leaf-centric binary tree sources

Recall the definition of the class of mappings Σleaf by
equations (4), (5), and (6) in Section III-C and the corre-
sponding class of leaf-centric tree sources. In this section,
we state a condition on the mapping σ ∈ Σleaf that enforces
the strong domination property for the leaf-centric tree source
((Ti)i≥1, Pσ). This allows to apply Corollary 4.

2This is the case for leaf-centric and depth-centric tree sources.

Theorem 5. If σ ∈ Σleaf satisfies

σ(i, j) ≥ σ(i, j + 1) and σ(i, j) ≥ σ(i+ 1, j) (17)

for all i, j ≥ 1, then ((Ti)i≥1, Pσ) has the strong domination
property.

Proof. First, we naturally extend Pσ to a context t ∈ C using
equations (5) and (6), where we set σ(0, k) = σ(k, 0) = 1
for all k ≥ 1 and Pσ(x) = 1. Note that |x| = 0. Also note
that Pσ is not a probability distribution on Cn. We have for
instance

∑
t∈C1 Pσ(t) = Pσ(f(x, a)) + Pσ(f(a, x)) = 2. Let

Bn = |Tn| = Cn−1 (the (n− 1)th Catalan number) for n ≥ 1.
We set B0 = 1 and define λ : T ∪ C → R>0 by

λ(t) = max

{
1

B|t|
, Pσ(t)

}
.

We show the four points from the strong domination property
for the mapping λ.

The first point of the strong domination property, i.e.,
λ(t) ≥ Pσ(t) for all t ∈ T , is obviously true. We now
prove the second point, i.e., λ(f(s, t)) ≤ λ(s) · λ(t) for all
s, t ∈ T . Assume first that λ(f(s, t)) = 1/B|s|+|t|. The
inequality Bm+k ≥ Bm ·Bk for all m, k ≥ 0 yields

1

B|s|+|t|
≤ 1

B|s|
· 1

B|t|
≤ λ(s) · λ(t). (18)

On the other hand, if λ(f(s, t)) = Pσ(f(s, t)), then we have

Pσ(f(s, t)) = σ(|s|, |t|) · Pσ(s) · Pσ(t)

≤ Pσ(s) · Pσ(t)

≤ λ(s) · λ(t),

since 0 ≤ σ(i, j) ≤ 1 for all i, j.
We now consider the third point, i.e., λ(s[t]) ≤ λ(s)·λ(t) for

all s ∈ C and t ∈ T . Note first that the case λ(s[t]) = 1/B|s[t]|
follows again from equation (18), since |s[t]| = |s|+|t|. So we
assume that λ(s[t]) = Pσ(s[t]). Let k be the length (measured
in the number of edges) from the root of s to the unique x-
labelled node in s.

We show Pσ(s[t]) ≤ Pσ(s) · Pσ(t) by induction over k ≥
0. If k = 0 then s = x and we get Pσ(s[t]) = Pσ(t) =
Pσ(x) · Pσ(t) = Pσ(s) · Pσ(t). Let us now assume that k ≥
1. Then, s must have the form s = f(u, v). Without loss
of generality assume that x occurs in u; the other case is
of course symmetric. Therefore, we have s[t] = f(u[t], v).
The tree u[t] fulfills the induction hypothesis and therefore
Pσ(u[t]) ≤ Pσ(u) · Pσ(t). Moreover, we have σ(|u[t]|, |v|) =
σ(|u|+ |t|, |v|) ≤ σ(|u|, |v|). We get

Pσ(s[t]) = Pσ(f(u[t], v))

= Pσ(u[t]) · σ(|u[t]|, |v|) · Pσ(v)

≤ Pσ(t) · Pσ(u) · σ(|u|, |v|) · Pσ(v)

= Pσ(t) · Pσ(s).

For the fourth property we show
∑
t∈Tn∪Cn λ(t) ≤ 8n−2 for

all n ≥ 1. First, we have∑
t∈Tn

λ(t) ≤
∑
t∈Tn

(
B−1
n + Pσ(t)

)
= 2. (19)
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We show that
∑
t∈Cn λ(t) ≤ 8n − 4. Every tree t ∈ Tn has

2n−1 nodes. Let v be a node of t and tv the subtree of t rooted
at v. We obtain two contexts from t and v by replacing in t
the subtree tv by either f(x, tv) or f(tv, x). Let us denote
the resulting contexts by tv,1 and tv,2. We have λ(tv,1) =
λ(tv,2) = λ(t) for every node v of t. Moreover, for every
context t ∈ Cn there exists a tree t′ ∈ Tn and a node v of t′

such that t′v,1 = t or t′v,2 = t (depending on whether x is the
left or right child of its parent node in t). Hence, we have∑

t∈Cn

λ(t) ≤ (4n− 2) ·
∑
t∈Tn

λ(t). (20)

With equation (19) we get
∑
t∈Tn∪Cn λ(t) ≤ 8n− 2.

Example 10. Let us come back to the three leaf-centric tree
sources from Example 5. The mappings σbst and σuni satisfy the
condition from (17). Hence, the grammar-based compressor
Eψ achieves a worst-case redundancy of O(log log i/ log i)
for the binary search tree model and the uniform model by
Corollary 4. Recall that for the DAG-based compressor Edag

we only get an average-case redundancy of O(log log i/ log i)
for the binary search tree model by Corollary 2. For the
uniform model, Edag yields an average-case redundancy of
O(log log i/

√
log i)); see the remark after Corollary 2. The

mapping σbin does not satisfy condition (17).

E. Depth-centric binary tree sources

Recall the definition of the class of mappings Σdepth by
equations (10), (11), and (12) in Section III-D, and the corre-
sponding class of depth-centric tree sources. In this section, we
state a condition on the mapping σ ∈ Σdepth that enforces the
strong domination property for the depth-centric tree source
((Ti)i≥1, Pσ). This allows again to apply Corollary 4.

Theorem 6. If σ ∈ Σdepth satisfies σ(i, j) ≥ σ(i, j + 1) and
σ(i, j) ≥ σ(i + 1, j) for all i, j ≥ 0, then ((T i)i≥0, Pσ) has
the strong domination property.

Proof. Recall that the depth of a context t ∈ C is defined as
the depth of the tree t[a]. Using this information, we extend
Pσ to a context t ∈ C using equations (11) and (12), where
we set Pσ(x) = 1. Similarly to the proof of Theorem 5 for
leaf-centric tree sources, we define

λ(t) = max

{
1

B|t|
, Pσ(t)

}
.

The first point of the strong domination property, i.e., λ(t) ≥
Pσ(t) for all t ∈ T , follows directly from the definition of λ.
Now we prove the second point, i.e., λ(f(s, t)) ≤ λ(s) · λ(t)
for all s, t ∈ T . The case λ(f(s, t)) = 1/B|s|+|t| is covered
by equation (18). If otherwise λ(f(s, t)) = Pσ(f(s, t)), then

Pσ(f(s, t)) = σ(d(s), d(t)) · Pσ(s) · Pσ(t)

≤ Pσ(s) · Pσ(t)

≤ λ(s) · λ(t),

since 0 ≤ σ(i, j) ≤ 1 for all i, j.
Consider now the third point, i.e., λ(s[t]) ≤ λ(s) · λ(t) for

all s ∈ C and t ∈ T . Note that the case λ(s[t]) = 1/B|s[t]|

follows again from equation (18). Hence, we can assume that
λ(s[t]) = Pσ(s[t]). Again, we prove Pσ(s[t]) ≤ Pσ(s) · Pσ(t)
by induction over the length k ≥ 0 (measured in the number
of edges) from the root of s to the unique x-labelled node
in s. If k = 0 then s = x and Pσ(s) = 1, which gives us
Pσ(s[t]) = Pσ(t) = Pσ(s) · Pσ(t). We now assume k ≥ 1
and s = f(u, v). Without loss of generality assume that x
occurs in u; the other case is symmetric. Therefore, we have
s[t] = f(u[t], v). We apply the induction hypothesis to the tree
u[t], which yields Pσ(u[t]) ≤ Pσ(u) · Pσ(t). Moreover, since
d(u) ≤ d(u[t]) we have σ(d(u[t]), d(v)) ≤ σ(d(u), d(v)). It
follows that

Pσ(s[t]) = Pσ(f(u[t], v))

= Pσ(u[t]) · σ(d(u[t]), d(v)) · Pσ(v)

≤ Pσ(t) · Pσ(u) · σ(d(u), d(v)) · Pσ(v)

= Pσ(t) · Pσ(s).

For the fourth property we show∑
t∈Tn∪Cn

λ(t) ≤ 4n2 + 3n− 1

for all n ≥ 1. First, we have∑
t∈Tn

λ(t) ≤
∑
t∈Tn

(
B−1
n + Pσ(t)

)
= 1 +

∑
t∈Tn

Pσ(t). (21)

Note that Pσ is not a probability distribution on Tn since this
section deals with depth-centric tree sources. But for each tree
t ∈ Tn we have dlog2(n)e ≤ d(t) ≤ n− 1, which yields

∑
t∈Tn

Pσ(t) ≤
n−1∑

i=dlog2(n)e

∑
t∈T i

Pσ(t) = n− dlog2(n)e ≤ n.

Together with equation (21) we get
∑
t∈Tn λ(t) ≤ n + 1.

The remaining part
∑
t∈Cn λ(t) can be estimated with help

of equation (20) from the corresponding part in the proof of
Theorem 5. In total, we have∑

t∈Tn∪Cn

λ(t) ≤ (4n− 1)
∑
t∈Tn

λ(t)

≤ (4n− 1)(n+ 1)

= 4n2 + 3n− 1.

This proves the theorem.

V. FUTURE RESEARCH

We plan to investigate, whether the strong domination prop-
erty can be shown also for other classes of tree sources. An
interesting class are the tree sources derived from stochastic
context-free grammars [24]. Another interesting question is,
whether the convergence rate of O(log log i/ log i) in Corol-
lary 4 can be improved to O(1/ log i). In the context of
grammar-based string compression, such an improvement has
been accomplished in [17].
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