
Sliding windows over context-free languages
Moses Ganardi
Universität Siegen
Germany
ganardi@eti.uni-siegen.de

Artur Jeż
University of Wrocław
Poland
aje@cs.uni.wroc.pl

Markus Lohrey
Universität Siegen
Germany
lohrey@eti.uni-siegen.de

Abstract
We study the space complexity of sliding window streaming algorithms that check membership
of the window content in a fixed context-free language. For regular languages, this complexity
is either constant, logarithmic or linear [4]. We prove that every context-free language whose
sliding window space complexity is log2(n)− ω(1) must be regular and has constant space com-
plexity. Moreover, for every c ∈ N, c ≥ 1 we construct a (nondeterministic) context-free language
whose sliding window space complexity is O(n1/c) \ o(n1/c). Finally, we give an example of
a deterministic one-counter language whose sliding window space complexity is Θ((logn)2).

2012 ACM Subject Classification Theory of computation → Grammars and context-free lan-
guages, Theory of computation → Streaming models

Keywords and phrases sliding windows, streaming algorithms, context-free languages

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.15

1 Introduction

In many streaming applications, data items are outdated after a certain time and the sliding
window model is a simple way to model this: Sliding window algorithms process an input
sequence a1a2 · · · am from left to right and have at time t only direct access to the current
symbol at. Moreover, at each time instant t the algorithm is required to compute a value
that depends on the last n symbols. The value n is called the window size and the last n
symbols form the active window at time t. A general goal in the area of sliding window
algorithms is to avoid the explicit storage of the window content (which requires Ω(n) bits),
and, instead, to work in considerably smaller space, e.g., polylogarithmic space in the window
size n. An introduction into the sliding window model can be found in [1, Chapter 8].

In our recent papers [3, 4] we initiated the study of sliding window algorithms for regular
languages. In general, a sliding window algorithm for a language L ⊆ Σ∗ decides, at every
time instant, whether the word in the active window belongs to L. In [4] we proved that
for every regular language L the optimal space bound for a sliding window algorithm for
L is either constant, logarithmic or linear in the window size. In [3] we also gave several
characterizations for the three space classes: A regular language has a sliding window
algorithm with space bound O(logn) (resp., O(1)) if and only if it belongs to the Boolean
closure of regular left ideals and regular length languages (resp., the Boolean closure of

© M. Ganardi, A. Jeż, M. Lohrey;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 15; pp. 15:1–15:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ganardi@eti.uni-siegen.de
mailto:aje@cs.uni.wroc.pl
mailto:lohrey@eti.uni-siegen.de
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.15
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

15:2 Sliding windows over context-free languages

suffix-testable languages and regular length languages); see [3] for the formal definition of
these language classes.

In this paper we investigate to which extent the results from [3, 4] can be generalized to
context-free languages. Our first main result (Theorem 2) states that if L is a context-free
language that has a sliding window algorithm with space bound log2(n)− ω(1) (recall that
f(n) ∈ ω(1) iff ∀c > 0∃m ∀n ≥ m : f(n) ≥ c) then L must be regular. By the results from
[3, 4] this implies that L has a constant space sliding window algorithm and is a Boolean
combination of suffix-testable languages and regular length languages. Our proof uses a
variant of the classical pumping lemma. The crucial observation is that taking a reversed
Greibach normal form grammar for G, we can ensure that pumping in a word of length n
does not affect a suffix of length o(n).

Theorem 2 shows that, analogously to regular languages, there is a gap between O(1)
and O(logn) in the space complexity spectrum for context-free languages. This leads to the
question whether there is also a gap between O(logn) and O(n) (as it is the case for regular
languages). We answer this question negatively. For this we construct from a linear bounded
automaton (LBA) a context-free language, whose sliding window space complexity is related
to the time complexity of the LBA in a certain way. The precise technical statement can
be found in Theorem 9. From this result we obtain for every c ∈ N a context-free language,
whose optimal sliding window algorithm uses space O(n1/c) (Theorem 10).

The context-free languages from the proof of Theorem 9 are non-deterministic. They are
obtained by taking the complement of all accepting computations of an LBA on an input
from a∗ (as usual, a computation is encoded by a sequence of configuration words). These
complements are context-free since one can guess errors, but they are not deterministic context-
free. This leads to the question whether there exist deterministic context-free languages for
which the optimal sliding window algorithm has space complexity o(n) \O(logn). We answer
this question positively by constructing a deterministic one-counter language whose optimal
sliding window algorithm uses space O((logn)2) (Theorem 15).

The results from Theorem 10 and 15 are also shown for a more general sliding window
model, which is known as the variable-size model in the literature. In the sliding window model
discussed so far, the window size is fixed and for every window size there exists a streaming
algorithm. In contrast, in the variable-size model, there is a single streaming algorithm and
the window can grow and shrink. In other words, the arrival of new symbols and expiration
of old symbols can happen independently. A formal definition can be found in Section 2.
The space complexity of a variable-size streaming algorithm is measured with respect to the
maximal window size seen in the past. In [4] it was shown that analogously to the fixed-size
model, the space complexity of a regular language with respect to the variable-size model is
either constant, logarithmic, or linear. Moreover, a regular language has space complexity
O(logn) in the variable-size model if and only if it has space complexity O(logn) in the
fixed-size model (on the other hand only trivial languages have constant space complexity in
the variable-size model). Corollary 13 states that there exists a deterministic one-counter
language whose optimal variable-size sliding window algorithm uses space Θ((logn)2).

Finally, we prove that our results for deterministic one-counter languages can be also
shown for the reversals of the latter (i.e., for languages that can be accepted by a deterministic
one-counter automaton that works from right to left). This is not obvious, since the reversal
of a deterministic context-free language is in general not deterministic context-free. Moreover,
the arguments for our space trichotomy result for regular languages [3, 4] mainly use a DFA
for the reverse language, hence one might think that these arguments extend to reversals of
deterministic context-free languages.

M. Ganardi, A. Jeż, M. Lohrey 15:3

2 Preliminaries

For a function f : N→ N, we use the standard Landau notations O(f), Ω(f), o(f) and Θ(f).
We assume that the reader is familiar with the basic notions of formal languages, in

particular regular languages, see e.g. [7] for more details. Let Σ be a finite alphabet of
symbols. With ε we denote the empty word. For a word w = a1 · · · am ∈ Σ∗ of length
|w| = m we define w[i] = ai and w[i : j] = ai · · · aj if i ≤ j and w[i : j] = ε if i > j. We define
w[i :] = w[i : m] and w[: j] = [1 : j]. Let Σn = {w ∈ Σ∗ : |w| = n}, Σ≤n = {w ∈ Σ∗ : |w| ≤ n},
and Σ≥n = {w ∈ Σ∗ : |w| ≥ n}. A word v ∈ Σ∗ is a prefix (resp., suffix) of the word w if
there exists a word u ∈ Σ∗ such that w = vu (resp., w = uv). With prefix(w) we denote
the set of all prefixes of w. For a word w = a1a2 · · · am let rev(w) = am · · · a2a1 denotes the
word w read from right to left.

2.1 Automata and streaming algorithms

We use standard definitions from automata theory. A deterministic automaton is a tuple
A = (Q,Σ, q0, δ, F), where Q is a possibly infinite set of states, Σ is an alphabet, q0 ∈ Q
is the initial states, δ : Q × Σ → Q is the transition relation, and F is the set of final
states. The transition function δ is extended to a function δ : Q× Σ∗ → Q in the usual way
and we set A(x) = δ(q0, x) for all x ∈ Σ∗. The language accepted from a state q ∈ Q is
denoted by L(A, q) = {x ∈ Σ∗ | δ(q, x) ∈ F} and the language accepted by A is defined by
L(A) = L(A, q0). If Q is finite, then A is a deterministic finite automaton (DFA).

A data stream is a finite sequence of data values. We make the assumption that these
data values are from a finite set Σ. Thus, a data stream is a finite word w = a1a2 · · · am ∈ Σ∗.
A streaming algorithm reads the symbols of a data stream from left to right. At time
instant t the algorithm has only access to the symbol at and the internal storage, which
is encoded by a bit string. The goal of the streaming algorithm is to compute a certain
function f : Σ∗ → A into some domain A, which means that at time instant t the streaming
algorithm outputs the value f(a1a2 · · · at). In this paper, we only consider the Boolean
case A = {0, 1}; in other words, the streaming algorithm tests membership in a fixed
language. Thus, a streaming algorithm over Σ can be seen as a deterministic (possibly
infinite) automaton A = (S,Σ, s0, δ, F). Furthermore, we abstract away from the actual
computation and only analyze the space requirement, which in particular means that we
encode the states of A by bit strings. We describe this encoding by an injective function
enc: S → {0, 1}∗. The space function space(A, ·) : Σ∗ → N specifies the space used by A on
a certain input: For w ∈ Σ∗ let space(A, w) = max{|enc(A(u))| : u ∈ prefix(w)}. We also
say that A is a streaming algorithm for the accepted language L(A).

2.2 Sliding window streaming models

In the above streaming model, the output value of the streaming algorithm at time t depends
on the whole past a1a2 · · · at of the data stream. However, in many practical applications
one is only interested in the relevant part of the past. Two formalizations of “relevant past”
can be found in the literature:

Only the suffix of a1a2 · · · at of length n is relevant. Here, n is a fixed constant. This
streaming model is called the fixed-size sliding window model.
The relevant suffix of a1a2 · · · at is determined by an adversary. In this model, at every
time instant the adversary can either remove the first symbol from the active window

MFCS 2018

15:4 Sliding windows over context-free languages

(expiration of a data value), or add a new symbol at the right end (arrival of a new data
value). This streaming model is also called the variable-size sliding window model.

In the following we formally define these two models.

Fixed-size sliding windows Given a word w ∈ Σ∗ of length m and a window size n ≥ 0, we
define lastn(w) ∈ Σn by

lastn(w) =
{
w[m− n+ 1 :] if n ≤ m,
an−mw, if n > m,

which is called the active window. Here a ∈ Σ is an arbitrary, but fixed, symbol, which
fills the initial window. For a language L and n ≥ 0 let Ln = {w ∈ Σ∗ : lastn(w) ∈ L}.
A sequence A = (An)n≥0 is a fixed-size sliding window algorithm for a language L ⊆ Σ∗
if for each n the An is a streaming algorithm for Ln. Its space complexity is the function
fA : N→ N ∪ {∞} where fA(n) is the maximum encoding length of a state in An.

Note that for every language L and every n the language Ln is regular, which ensures
that An can be chosen to be a DFA and hence fA(n) < ∞ for all n ≥ 0. The trivial
fixed-size sliding window algorithm for L is the sequence B = (Bn)n≥0, where Bn is the
DFA with state set Σn and transitions au b−→ ub for a, b ∈ Σ, u ∈ Σn−1. States of Bn can
be encoded with O(log |Σ| · n) bits. Let An be the minimal DFA for Ln and encode each
state of An with at most blog2(an)c bits, where an is the number of states of An. Then
A = (An)n≥0 is an optimal fixed-size sliding window algorithm A for L. Finally, we define
FL(n) = fA(n) = blog2(an)c. Thus, FL is the space complexity of an optimal fixed-size
sliding window algorithm for L. Notice that FL is not necessarily monotonic. For instance,
for L = {au : u ∈ {a, b}∗, |u| odd} we have FL(2n) ∈ Θ(n) and FL(2n + 1) ∈ O(1). The
above trivial algorithm B yields FL(n) ∈ O(n) for every language L.

Note that the fixed-size sliding window is a non-uniform model: for every window size we
have a separate streaming algorithm and these algorithms do not have to follow a common
pattern. Working with a non-uniform model makes lower bounds stronger. In contrast, the
variable-size sliding window model that we discuss next is a uniform model in the sense that
there is a single streaming algorithm that works for every window size.

Variable-size sliding windows For an alphabet Σ we define the extended alphabet Σ =
Σ ∪ {↓}. In the variable-size model the active window wnd(u) ∈ Σ∗ for a stream u ∈ Σ∗ is
defined by

wnd(ε) = ε

wnd(ua) = wnd(u)a for a ∈ Σ
wnd(u↓) = ε if wnd(u) = ε

wnd(u↓) = v if wnd(u) = av for a ∈ Σ
A variable-size sliding window algorithm for a language L ⊆ Σ∗ is a streaming algorithm A
for {w ∈ Σ∗ : wnd(w) ∈ L}. Following [3], we define its space complexity as the function
vA : N → N ∪ {∞} mapping each window size n to the maximum number of bits used by
A on inputs producing an active window of size at most n. Formally, it is the monotonic
function vA(n) = max{space(A, u) : u ∈ Σ∗, |wnd(v)| ≤ n for all v ∈ prefix(u)}. By taking
the minimal (possibly infinite) deterministic automaton for {w ∈ Σ∗ : wnd(w) ∈ L} and
encoding states appropriately one can prove that there exists an optimal space bound:

I Lemma 1 ([3]). For every language L ⊆ Σ∗ there exists a variable-size sliding window
algorithm A for L such that vA(n) ≤ vB(n) for every variable-size sliding window algorithm
B for L and every n.

M. Ganardi, A. Jeż, M. Lohrey 15:5

We define VL(n) = vA(n), where A is a space optimal variable-size sliding window algorithm
for L from Lemma 1. Since any algorithm in the variable-size model yields an algorithm in
the fixed-size model, we have FL(n) ≤ VL(n).

3 Sliding windows over context-free languages: below logspace

The goal of this section is to prove the following result:

I Theorem 2. If L is a context-free language with FL(n) ∈ log2(n)−ω(1), then L is regular
and FL(n) ∈ O(1).

We start with some definitions. A language L ⊆ Σ∗ is k-suffix testable if it is a finite
Boolean combination of languages of the form Σ∗w where w ∈ Σ≤k. An equivalent condition
is: for all x, y, z ∈ Σ∗ with |z| = k we have xz ∈ L if and only if yz ∈ L. We call L suffix
testable if it is k-suffix testable for some k. Note that every suffix testable language is regular.
Let f : N → N be a function. A language L ⊆ Σ∗ is f-suffix definable if for all n ∈ N and
words u, v, w ∈ Σ∗ such that |uw| = |vw| = n and |w| = f(n) we have uw ∈ L if and only
if vw ∈ L. Similarly, one defines prefix testable and f -prefix definable languages. A length
language is a language L ⊆ Σ∗ such that for every n ≥ 0, either Σn ⊆ L or L ∩ Σn = ∅. We
prove Theorem 2 in two steps:

I Theorem 3. Every language L ⊆ Σ∗ is (2FL(n)+1 − 1)-suffix definable.

I Theorem 4. If a context-free language L is f-suffix definable for a function f(n) ∈ o(n),
then L is a finite Boolean combination of suffix testable languages and regular length languages.

Combining Theorem 3 and 4 yields Theorem 2: If a context-free language L satisfies
FL(n) ∈ log2(n)− ω(1) then L is f -suffix definable for a function f(n) ∈ o(n) by Theorem 3.
Theorem 4 implies that L is a finite Boolean combination of suffix testable languages and
regular length languages. Hence L is regular and FL(n) ∈ O(1). The rest of this section is
devoted to the proofs of Theorem 3 and 4.

3.1 Proof of Theorem 3
For two languages L1 and L2 we define their distance d(L1, L2) as follows: If L1 = L2,
then we set d(L1, L2) = 0, and otherwise d(L1, L2) = sup{|u| : u ∈ L14L2} + 1 where
L14L2 = (L1 \ L2) ∪ (L2 \ L1) denotes the symmetric difference of L1 and L2. Notice that
d(L1, L2) <∞ if and only if L14L2 is finite. If A = (Q,Σ, q0, δ, F) is a DFA, we define the
distance between two states p, q ∈ Q by d(p, q) = d(L(A, p), L(A, q)). We will use a result
from [5, Lemma 1] stating that d(p, q) <∞ implies that d(p, q) ≤ |Q|.

I Lemma 5. Let L ⊆ Σ∗ be regular and A = (Q,Σ, q0, δ, F) be its minimal DFA. We have:
(i) d(p, q) ≤ k if and only if δ(p, z) = δ(q, z) for all p, q ∈ Q and z ∈ Σk.
(ii) L is k-suffix testable if and only if d(p, q) ≤ k for all p, q ∈ Q.
(iii) If there exists k ≥ 0 such that L is k-suffix testable, then L is |Q|-suffix testable.

Proof. The proof of (i) is an easy induction: If k = 0, the statement is d(p, q) = 0 iff p = q,
which is true because A is minimal. For the induction step, we have d(p, q) ≤ k + 1 iff
d(δ(p, a), δ(q, a)) ≤ k for all a ∈ Σ iff δ(p, z) = δ(q, z) for all z ∈ Σk+1.

For (ii), assume that L is k-suffix testable and consider two states p = A(x) and q = A(y).
If z ∈ L(A, p)4L(A, q), then |z| < k because xz ∈ L iff yz /∈ L and L is k-suffix testable.
Now assume that d(p, q) ≤ k for all p, q ∈ Q and consider x, y ∈ Σ∗, z ∈ Σk. Since

MFCS 2018

15:6 Sliding windows over context-free languages

d(A(x),A(y)) ≤ k, (i) implies A(xz) = A(yz), and in particular xz ∈ L iff yz ∈ L. Therefore,
L is k-suffix testable.

Point (iii) follows from (ii) and the above mentioned result from [5, Lemma 1]. J

Proof of Theorem 3. Let n ≥ 0 and Ln = {w ∈ Σ∗ : lastn(w) ∈ L}. Let An be the minimal
DFA for Ln, which has at most f(n) := 2FL(n)+1 − 1 states. Since lastn(xy) = y for all
x ∈ Σ∗ and y ∈ Σn, the language Ln is n-suffix testable. Therefore Ln is f(n)-suffix testable
by Lemma 5(iii). This implies that L is f -suffix definable because for all words u, v, w ∈ Σ∗
such that |uw| = |vw| = n and |w| = f(n) we have uw ∈ L iff uw ∈ Ln iff vw ∈ Ln iff
vw ∈ L. J

3.2 Proof of Theorem 4
We prove the variant of Theorem 4 that talks about prefix-definability. This makes no
difference, since the reversal of a context-free languages is again context-free. Also note that
the requirement f(n) ∈ o(n) in Theorem 4 cannot be relaxed: For every k ≥ 1, the language
{xay : x, y ∈ {a, b}∗, |x| = k|ay|} is context-free and dn/(k+ 1)e-suffix definable but not even
regular.

First, we show that in the proof of Theorem 4 we can restrict ourselves to functions f with
the following property: A monotonic function f : N→ N has the increasing plateau property
if for every k ≥ 1 there exists an n0 such that for all n ≥ n0 we have: f(n+ k)− f(n) ≤ 1.
Clearly, if f has the increasing plateau property then f ∈ o(n).

I Lemma 6. Let f : N → R≥0. If f(n) ∈ o(n) then there exists a monotonic function
g : N→ N with the increasing plateau property and such that f(n) ≤ g(n) for all n ∈ N.

Proof. For a linear function g : R≥0 → R≥0 of the form g(x) = α · x+ β we call α the slope
of g. We will first define a sequence of natural numbers n1 < n2 < n3 · · · such that f is
bounded by a continuous piecewise linear function h : R≥0 → R≥0 that has slope 1/i on the
interval [ni, ni+1] and slope 0 on the interval [0, n1]. Then we show that g : N → N with
g(n) = dh(n)e has the properties from the lemma.

First, for every i ≥ 1 we define ni ∈ N and a linear function hi : R≥0 → R≥0 of slope 1/i
such that: (i) ni+1 > ni, (ii) for all natural numbers n ≥ ni we have f(n) ≤ hi(n), and (iii)
hi(ni+1) = hi+1(ni+1).

Let n1 ≥ 0 be the smallest natural number such that f(n) ≤ n for n ≥ n1 and f(n) ≤ n1
for n < n1. Clearly such an n1 exists, as f(n) ∈ o(n). Define h1 by h1(x) = x for all x ∈ R≥0.
Hence, we have f(n) ≤ h1(n) for all n ≥ n1.

For the induction step, assume that ni and the linear function hi : R≥0 → R≥0 (of
slope 1/i) are defined such that f(n) ≤ hi(n) for all n ≥ ni. Define the linear function
ui+1(x) = hi(ni) + (x − ni)/(i + 1), which has a slope 1/(i + 1) and ui+1(ni) = hi(ni).
Then there is a smallest natural ni+1 such that ni+1 > ni and ui+1(n) ≥ f(n) for each
n ≥ ni+1. This holds because f(n) ∈ o(n), and hence for any constants α > 0, β ∈ R
we have f(n) ≤ α · n + β for large enough n. Take this ni+1 and define the function
hi+1 by hi+1(x) = hi(ni+1) + (x − ni+1)/(i + 1). It has slope 1/(i + 1) and satisfies
hi+1(ni+1) = hi(ni+1). Finally, for all n ≥ ni+1 we have

hi+1(n) = hi(ni+1) + (n− ni+1)/(i+ 1)
= hi(ni) + (ni+1 − ni)/i+ (n− ni+1)/(i+ 1)
≥ hi(ni) + (ni+1 − ni)/(i+ 1) + (n− ni+1)/(i+ 1)
= hi(ni) + (n− ni)/(i+ 1) = ui+1(n) ≥ f(n).

M. Ganardi, A. Jeż, M. Lohrey 15:7

Hence, ni+1 and hi+1 have all the desired properties.
We now define the function h : R≥0 → R≥0:

h(x) =
{
n1 if x ∈ [0, n1]
hi(x) if x ∈ [ni, ni+1] for some i ≥ 1.

Since hi(ni+1) = hi+1(ni+1) and h1(n1) = n1, h is uniquely defined. Finally, let g(n) = dh(n)e
for all n ∈ N.

Since f(n) ≤ hi(n) for all n ≥ ni and f(n) ≤ f(n1) ≤ n1 for all n ≤ n1, we have
f(n) ≤ h(n) ≤ g(n) for all n ∈ N. Moreover, h is clearly monotonic, which implies that g is
monotonic, too. It remains to show that g has the increasing plateau property.

Let k ≥ 1 and n ≥ nk. Since h is continuous and piecewise linear with slopes ≤ 1/k on
[nk,∞), we have h(n+ k)− h(n) ≤ (n+ k− n)/k = 1. This implies g(n+ k)− g(n) ≤ 1. J

I Lemma 7. Let L be a context-free language and f : N → N \ {0} be monotonic with
f(n) ∈ o(n). There are constants n0 and c > 0 (only depending on L and f) such that the
following hold for every n ≥ n0:

n ≥ f(n) + c and
for all words u, v with uv ∈ L, |uv| = n, |u| = f(n), and |v| = n− f(n), there exist words
v′, v′′ with |v′| = |v| − c, |v′′| = |v|+ c, and uv′, uv′′ ∈ L.

Proof. Consider the following variant of the pumping lemma for context-free languages
(see also [7, Chapter 6.1]), which simultaneously considers all languages defined by various
nonterminals of the grammar; it can be shown in the same way as the standard variant:

Given a context-free grammar G with set of nonterminals N and productions P , let
LA denote the language generated by the grammar GA with productions P and the start
nonterminal A. Then there exists a natural number c1 depending only on G and not on
A, such that if w ∈ LA and |w| ≥ c1, then w can be written as w = w1w2w3w4w5 with:
w1w

k
2w3w

k
4w5 ∈ LA for every k ≥ 0, |w2w3w4| ≤ c1 and |w2w4| > 0. In particular, the word

w1w
1+c1!/|w2w4|
2 w3w

1+c1!/|w2w4|
4 w5 of length |w|+ c1! belongs to LA.

Let G be a grammar for L in Greibach normal form, i.e., all productions are of the form
A → aA1 · · ·Ak for k ≥ 0, nonterminals A,A1, . . . , Ak and a terminal a (such a grammar
exists for every context-free language); see also [7, Chapter 4.6]. Let r be the maximal length
of the productions’ right-hand sides in G, let N be the set of nonterminals, and let c1 be the
constant from the above pumping lemma for G. We can assume that r ≥ 2, otherwise L is
finite and the lemma holds. Define c = c1! and choose an n0 such that for all n ≥ n0 the
following three inequalities hold:

n

f(n) > 1 + (r − 1)r2|N |·(rc1|N |+1)! (1)

n

f(n) > 1 + c1(r − 1) (2)

n > f(n) + c

As the right-hand sides are constant and f(n) ∈ o(n), such an n0 exists. Hence, for all n ≥ n0
the following two inequalities hold ((1) is equivalent to (3) and (2) is equivalent to (4)):

logr
(

n− f(n)
f(n)(r − 1)

)
> 2|N |(rc1|N |+ 1)! (3)

n− f(n)
f(n)(r − 1) > c1 (4)

MFCS 2018

15:8 Sliding windows over context-free languages

Consider a string uv of length n ≥ n0 generated by G, where |u| = f(n). Fix a leftmost
derivation of uv and consider the first moment, at which the current sentential form has
u as a prefix. This happens after |u| = f(n) derivation steps since G is in Greibach
normal form. Apart from the prefix u, the rest of the sentential form has length at most
1 + f(n)(r − 2) ≤ f(n)(r − 1) and it derives the word v of length n− f(n). So one of the
nonterminals in the sentential form, say A, generates a word x with

|x| ≥ n− f(n)
f(n)(r − 1)

(4)
> c1 . (5)

The further analysis splits into several cases depending on the claim we want to prove.
We first show the second claim of the lemma, that there exists v′′ such that |v′′| = |v|+ c

and uv′′ ∈ L(G). Since |x| ≥ c1, we can apply the pumping lemma and replace in the
derivation of uv the word x by a word of length |x|+ c1! = |x|+ c. The resulting derivation
yields a word uv′′ with |v′′| = |v|+ c, as claimed.

So let us now prove that there is v′ such that uv′ ∈ L(G), where |v′| = |v| − c. Again,
consider the nonterminal A that generates a string x satisfying (5). Since the length of each
right-hand side is at most r, there is a path Π in the derivation tree of length at least

logr
(

n− f(n)
f(n)(r − 1)

)
> 2|N | · (rc1|N |+ 1)! ,

where the estimation follows from (3). We are going to color some nodes on the path Π black
or grey: if a node v on Π has a child that does not belong to Π and derives a string of length
at least c1, then we color v black. Then, as long as there are two uncolored nodes v, v′ on Π
(v above v′) such that (i) v and v′ are labelled with the same nonterminal, (ii) the path from
v to v′ has length at most |N |, and (iii) does not contain a black node, then we color v black
and v′ grey.

There can be at most |N | consecutive nodes on the path that are not colored and there
are at least as many black nodes as grey nodes. Thus, the number of black nodes is at least⌊

1
2

⌊
2|N | · (rc1|N |+ 1)!

|N |

⌋⌋
= (rc1|N |+ 1)!

For each black node we can shorten the derivation such that the derived word is shorter by
at least 1 and at most rc1|N | without affecting other colored nodes:

For the first type of black nodes this follows directly from the pumping lemma. Note that
we can apply the pumping lemma to a subtree that is disjoint from Π.
For the second kind of black nodes, let v and v′ be the corresponding nodes colored black
and grey, respectively. We can delete the subtree rooted in v and replace it with the one
rooted in v′. The length of the path is ≤ |N |, the arity of the rules ≤ r and each deleted
nonterminal derived a string of length ≤ c1 (otherwise it would be black).

So for some m ∈ {1, 2, . . . , rc1|N |} there are (rc1|N |+1)!
rc1|N | > (rc1|N |)! different possibilities to

shorten the derived word by m letters. We choose (rc1|N |)!/m of them so that the word is
shortened by (rc1|N |)! letters. Thus we showed that there exists v′ such that uv′ ∈ L(G)
and |uv′| = n− (rc1|N |)!. As c = c1! divides (rc1|N |)!, by applying ((rc1|N |)!/c− 1) times
the already proved second claim of the lemma we can first obtain a word uz ∈ L(G) such
that |uz| = n+ (rc1|N |)!− c and then use the argument above to obtain a word uv′ ∈ L(G)
such that |uv′| = |uz| − (rc1|N |)! = |uv| − c. Here, we use monotonicity of f , which ensures
that the prefix u is not touched when using the above argument for the longer word uz. J

M. Ganardi, A. Jeż, M. Lohrey 15:9

I Lemma 8. Let L be a context-free language that is f-prefix definable for a function
f(n) ∈ o(n). Then there exists a constant α such that for every word u of length α and all
words v, w with |v| = |w| we have uv ∈ L if and only if uw ∈ L.

Proof. By Lemma 6 there exists a monotonic function g(n) ∈ o(n) having the increasing
plateau property and such that f(n) ≤ g(n) for all n ≥ 0. Hence, L is still g-prefix definable.
Moreover, let f ′ ∈ o(n) be defined by f ′(n) = g(n) + 1 for all n. Take the constants n0 and
c from Lemma 7 for L and f ′ (instead of f). Choose m such that (i) m ≥ n0 + c and (ii)
g(n)− g(n− c) ≤ 1 for all n ≥ m, which is possible by the increasing plateau property. We
take α = g(m). Heading for a contradiction, let us take words u, v, w such that |u| = α,
|v| = |w|, uv ∈ L and uw 6∈ L. We can assume that |v| = |w| is minimal with these properties.
Let n = |uv| = |uw| in the following. We now distinguish two cases.

Case 1. n ≤ m, which implies g(n) ≤ g(m) = |u|. Hence, uv and uw have the same prefix of
length g(n). Since L is g-prefix definable, we have uv ∈ L iff uw ∈ L, which is a contradiction.

Case 2. n > m, and thus n > n0 + c and g(n) ≥ g(m) = |u|. Since n− g(m) ≥ n− g(n) =
n − f ′(n) + 1 > c > 0, we can write v = v1av2 and w = w1bw2 such that a, b ∈ Σ and
|uv1| = |uw1| = g(n). Thus, |uv1a| = |uw1b| = f ′(n). By Lemma 7 there exists a word
v′2 with |v′2| = |v2| − c and uv1av

′
2 ∈ L. Take any word w′2 of length |w′2| = |w2| − c. By

the length-minimality of v and w we must have uw1bw
′
2 ∈ L (note that c > 0). Note that

|uw1bw
′
2| = |uw| − c = n− c > n0. Therefore, we can apply Lemma 7 to the word uw1bw

′
2.

Note that g(n)− g(n− c) ≤ 1 since n ≥ m. Thus, f ′(n− c) = g(n− c) + 1 ≥ g(n) and the
prefix of uw1bw

′
2 of length f ′(n− c) starts with uw1. We can conclude with Lemma 7 that

there is a word w′′2 such that uw1w
′′
2 ∈ L and |uw1w

′′
2 | = n. But since |uw1| = g(n) and

|uw1w
′′
2 | = n, the g-prefix definability of L implies that uw1y ∈ L for all words y of length

n− g(n). In particular, we get uw1bw2 = uw ∈ L, which is a contradiction. J

We can now prove (the prefix version of) Theorem 4:

Proof of Theorem 4. Let L be a f -prefix definable context-free language with f(n) ∈ o(n).
Let α be the constant from Lemma 8. For every word u of length α let Lu = {w : uw ∈ L}.
Each of these finitely many languages is context-free and by Lemma 8 it is a length language.
It is a direct consequence of Parikh’s theorem [8] (or the fact that every unary context-free
language is regular) that a context-free length language is regular. Hence, every Lu (for
|u| = α) is a regular length language. We can now decompose L as follows:

L = (L ∩ Σ<α) ∪
⋃
u∈Σα

uLu = (L ∩ Σ<α) ∪
⋃
u∈Σα

(uΣ∗ ∩ ΣαLu).

Since Lu is a regular length language, also ΣαLu is a regular length language. Moreover,
uΣ∗ is prefix testable. Finally, every finite language (and hence L ∩ Σ<α) is a finite Boolean
combination of prefix testable languages. This shows the theorem. J

4 Sliding windows over context-free languages: above logspace

In this section, we show that the trichotomy result for regular languages [4] does not carry
over the context-free languages. More precisely, we show that for every natural number
c ≥ 1 there exists a one-counter language Lc such that FLc(n) ∈ O(n1/c) \ o(n1/c) and
VLc(n) ∈ Θ(n1/c). Recall that a one-counter language is a language that can be accepted by
a nondeterministic pushdown automaton with a singleton pushdown alphabet (a so called
one-counter automaton). Also recall that a linear bounded automaton (LBA for short) is a

MFCS 2018

15:10 Sliding windows over context-free languages

Turing machine that only uses the space that is occupied by the input word; see also [7,
Chapter 9.3]. We first show the following technical result:

I Theorem 9. Let t(k) be a monotonically increasing function and M be an LBA which
halts on input ak after exactly t(k) steps. Let f(n) be the function with1

f(n) =
{
k if n = k(t(k) + 3) for some k
0 else

and let g(n) = max{f(m) : m ≤ n}. There is a one-counter language L such that FL(n) ∈
Θ(f(n)) and VL(n) ∈ Θ(g(n)).

Proof. Let Γ be the tape alphabet of M and Q the set of states of M . A configuration of M
is encoded by a word from Γ∗(Q× Γ)Γ∗ over the alphabet ∆ := Γ∪ (Q× Γ). A computation
of M on an input ak (k ≥ 1) is a sequence of configurations c0 `M · · · `M ct(k) where |ci| = k

for all 1 ≤ i ≤ t(k), c0 = (q0, a)ak−1 is the start configuration on input ak, every ci+1 is
obtained from ci by applying a transition of M for 0 ≤ i ≤ t(k)− 1, and ct(k) is an accepting
computation. Let ∆′ = {x′ | x ∈ ∆} be a disjoint copy of ∆ and define w′ for a word w ∈ ∆∗
by applying the homomorphism x 7→ x′ (x ∈ ∆) to w. Finally, let K be the set of all words

c0 rev(c1)′ c2 rev(c3)′ · · · ct(k) s rev(s) or (6)
c0 rev(c1)′ c2 rev(c3)′ · · · rev(ct(k))′ s rev(s) (7)

such that k ≥ 1, c0 `M · · · `M ct(k) is a computation on input ak, s ∈ {0, 1}∗ is an arbitrary
word of length k (0 and 1 are arbitrary symbols not in ∆∪∆′), and t(k) even (resp., odd) in
case (6) (resp., (7)). Notice that the words in (6) and (7) have length k(t(k) + 3). We can
assume that M never goes back to the initial state q0. This ensures that every word has at
most one non-empty suffix that is a prefix of a word from K.

For the language L from the theorem, we take the complement of K. It is not hard to see
that L can be recognized by a nondeterministic one-counter automaton by guessing an error
in the input word w. Possible errors are the following, where we call a block of w a maximal
factor from ∆+ ∪ (∆′)+ ∪ {0, 1}+ in w, m is the number of blocks of w and ui denotes the
i-th block of w for 1 ≤ i ≤ m:
1. m < 2,
2. u1 is not an initial configuration, i.e., of the form (q0, a)ak−1 for some k ≥ 1,
3. for some odd i < m, ui is not a configuration,
4. for some even i < m, ui is not of the form c′ for a configuration c,
5. um−1 is not an accepting confiuration,
6. there exists 1 ≤ i < m− 1 with |ui| 6= |ui+1|,
7. |um| 6= 2|um−1|,
8. there exists 1 ≤ i < m− 1 odd such that ui `M rev(u) does not hold for u′ = ui+1,
9. there exists 1 ≤ i < m− 1 even such that rev(u) `M ui+1 does not hold for u′ = ui,

10. um is not a palindrome over the alphabet {0, 1}∗.
The conditions in points 1–5 are regular. Points 6–10 can be checked with a single counter.

The upper bound in the theorem has to be shown for the variable-size model. Since
FK(n) = FL(n) and VK(n) = VL(n), it is enough to show the bounds for the language K. Let
us first present a variable-size streaming algorithm with space complexity O(g(n)). Assume
that w is the active window. The algorithm stores the following data n, i, t, k, `, s:

1 Since t(k) is monotonically increasing, the number k in the first case is unique.

M. Ganardi, A. Jeż, M. Lohrey 15:11

n = |w| is the length of the active window.
i is the smallest position x such that w[x :] is a prefix of a word from K. If this prefix is
empty, then i = n+ 1.
t is the number of blocks in w[i :] minus 1 (where i is from the previous point); this tells
us the number of computation steps that M has executed.
k is the largest number y such that w[i :] starts with (q0, a)ay−1; hence, k tells us the
input length.
In case 1 ≤ t ≤ t(k), ` is the length of the last block of w[i :] (if t = 0 or t = t(k) + 1 we
store some dummy value in `).
In case t = t(k) + 1, s is the maximal suffix of w[i :] from {0, 1}∗. If the length of this
suffix exceeds k then s stores only its prefix of length k.

It is easy to see that these variables can be updated. The main observation is that in case
1 ≤ t ≤ t(k) and ` < k then the algorithm internally simulates M for t steps on input ak. In
this way, the algorithm can check whether the arriving symbol is the right one, namely the
(possibly primed) (`+ 1)-th symbol of the configuration reached after t steps on input ak. In
this case, the algorithm sets ` := `+ 1, otherwise the algorithm sets i := n+ 1. If t is set to
t(k) + 1 then the algorithm starts to accumulate the window suffix s ∈ {0, 1}∗ up to length
k. If s has length k then the next k arriving symbols are compared in reversed order with s.
If a match is obtained, the algorithm accepts if i = 1 at the same time.

Let us now compute the space complexity of the algorithm. The numbers n, i, t,
k and ` need O(logn) bits. Recall that s has maximal length k. But we only store
symbols in s if n ≥ k(t(k) + 1) ≥ bk/3c(t(bk/3c) + 3), since the window must already
contain a complete computation on input ak before s becomes non-empty. We get bk/3c =
f(bk/3c(t(bk/3c) + 3)) ≤ g(n), i.e., k ≤ 3g(n) + 3. Finally, since g(n) is the maximal value
k such that k(t(k) + 3) ≤ n and t(k) ∈ 2O(k), we get g(n) ∈ Ω(logn). This shows that the
algorithm works in space O(g(n)).

To show that FK(n) ∈ O(f(n)) we can argue similarly. Of course, in the fixed-size model,
we do not have to store the window size n. If the window size n is not of the form k(t(k) + 3)
for some k then the algorithm always rejects and no space at all is needed. Otherwise, since
t(k) is monotonically increasing, there is a unique k with n = k(t(k) + 3).

Finally, we show that FK(n) ≥ f(n) for all n, which implies that VK(n) ≥ g(n) for
all n since VK(n) ≥ FK(n) and VK(n) is monotonic. It suffices to consider a window size
n = k(t(k) + 3) for some k, as otherwise f(n) = 0. Hence, f(n) = k. Moreover, consider
an accepting computation c0 `M c1 `M · · · `M ct(k) where |c0| = · · · = |ct(k)| = k. Let us
assume that k is even; the case that k is odd is analogous. Now consider the 2k many distinct
words w(s) := 0k c0 rev(c1)′ c2 rev(c3)′ · · · ct(k) s for s ∈ {0, 1}k. The length of these words is
n = k(t(k) + 3), which is the window size.

Consider now the minimal DFA An for the language Kn, and let r be the number of states
of An (hence, FK(n) = blog2 rc). We claim that An(w(s)) 6= An(w(u)) for all s, u ∈ {0, 1}k
with s 6= u. To see this, assume that An(w(s)) = An(w(u)) for s, u ∈ {0, 1}k with s 6= u.
Hence, An(w(s) rev(s)) = An(w(u) rev(s)). On the other hand, the above definition of w(s)
and w(u) implies w(s) rev(s) ∈ K and w(u) rev(s) 6∈ K, which yields a contradiction. We
get r ≥ 2k, and thus FK(n) ≥ k = f(n). J

Theorem 9 yields a quite dense spectrum of space complexity functions for context-free
languages. We only prove the existence of context-free languages with sliding-window space
complexity n1/c for c ∈ N, c ≥ 1:

MFCS 2018

15:12 Sliding windows over context-free languages

I Theorem 10. For every c ∈ N, c ≥ 1, there exists a one-counter language Lc such that
FLc(n) ∈ O(n1/c) \ o(n1/c) and VLc(n) ∈ Θ(n1/c).

Proof. One can easily construct a deterministic LBA M that on input ak terminates after
exactly kc−1 steps. For instance, an LBA that terminates after exactly k2 steps makes k
phases, where in each phase the read-write head moves from the left input end to the right
end or vice versa and thereby replaces the first a that is seen on the tape by a b-symbol. This
construction can be iterated to obtain the above LBA M for an arbitrary k. The mapping
f(n) from Theorem 9 then satisfies f(k(t(k) + 3)) = f(k(kc−1 + 3)) = f(kc + 3k) = k and
f(n) = 0 if n is not of the form kc + 3k for some k. This implies f(n) ∈ O(n1/c) \ o(n1/c)
and g(n) ∈ Θ(n1/c) for the mapping g(n) from Theorem 9. Hence, by Theorem 9 there is a
one-counter language Lc with the properties stated in the theorem. J

To fully exploit Theorem 9 one would have to analyze the spectrum of time complexity
functions of linear bounded automata. We are not aware of specific results in this direction.

5 Sliding windows over deterministic one-counter languages

The context-free language Lc from Theorem 10 is not deterministic context-free and it is
open whether the same result can be obtained for deterministic context-free languages. In
this section we exhibit a deterministic one-turn one-counter language with space complexity
Θ((logn)2) in the variable-size (resp., fixed-size) model. A t-turn pushdown automaton has
the property that in any accepting run there are at most t alternations between push and
pop operations [6].

We start with the variable-size model. A maximal factor β in a word w ∈ {a, b}∗ of the
form β = abi is called a block of length i+ 1 in w (this notion is not related to the blocks
used in the proof of Theorem 9). Define the language

L = {abkav : k ≥ 0, v ∈ {a, b}≤k} ∪ ab∗, (8)

which is recognized by a deterministic one-turn one-counter automaton. Put differently, L
contains those words w ∈ {a, b}∗ which begin with a block of length ≥ |w|/2.

I Lemma 11. We have VL(n) ∈ O((logn)2).

Proof. Any word w ∈ {a, b}∗ can be uniquely factorized as w = bsβmβm−1 · · ·β2β1 where
s,m ≥ 0 and each βi is a block. A block βi is relevant if it is at least as long as the remaining
suffix, i.e. |βi| ≥

∑i−1
j=1 |βj |. For an active window w ∈ {a, b}∗ our variable-size algorithm

maintains the window size and for each relevant block βi its starting position and its length.
If the first symbol in the window expires, every relevant block stays relevant (and the starting
position is decremented) with the possible exception of a relevant block with starting position
1, which is removed. If an a arrives, we create a new relevant block of length 1. If a b arrives,
we prolong the rightmost relevant block (which is also rightmost among all blocks) by 1.
Furthermore, using this information we can determine whether w ∈ L: This is the case if
and only if the leftmost relevant block starts at the first position and its length is at least
n/2 where n is the current window size.

To show that the space complexity of the algorithm is O((logn)2), it suffices to show that
each word w ∈ {a, b}n has O(logn) relevant blocks. Let γk, γk−1, . . . , γ2, γ1 be the sequence
of relevant blocks in w. Then we know that |γi| ≥

∑i−1
j=1 |γj | for all 1 ≤ i ≤ k. Inductively,

we show that |γi| ≥ 2i−2|γ1| for all 2 ≤ i ≤ k. This is immediate for i = 2 and for the
induction step, observe that |γi| ≥ |γ1|+

∑i−1
j=2 |γj | ≥ |γ1|+ |γ1|

∑i−1
j=2 2j−2 = 2i−2|γ1| for all

i ≥ 3. This proves k = O(logn), which concludes the proof. J

M. Ganardi, A. Jeż, M. Lohrey 15:13

I Lemma 12. We have VL(n) ∈ Ω((logn)2).

Proof. For each k ≥ 0 we define arrangements of length 3k: The word a is the only
arrangement of length 30 = 1. An arrangement of length 3k+1 is any word of the form ub3

k

v

where u, v ∈ {a, b}3k , u begins with a and has at most one other a-symbol and v is any
arrangement of length 3k. Notice that an arrangement ub3kv contains one or two blocks
in the factor ub3k , one of which is relevant. If α1 6= α2 are distinct arrangements of length
3k, consider the maximal common suffix α3 of α1 and α2 which is again an arrangement.
Consider the suffixes of α1, α2 of length 3|α3|. By the construction, these suffixes are also
arrangements. Hence, their “middle parts” consist solely of b’s, so they have the common
suffix b|α3|α3. Since α1 and α2 differ, there exists a number ` ≥ |α3| such that α1 has the
suffix ab`α3 and α2 has the suffix b`+1α3, or vice versa.

Now consider a variable-size sliding window algorithm for L. We claim that the algorithm
can distinguish any two distinct arrangements α1 6= α2 of length 3k. Consider two instances
of the algorithm, where the active windows are α1 and α2, respectively. By performing
a suitable number of ↓-operations the two windows contain the words ab`α3 and b`+1α3,
respectively. Since |α3| ≤ `, we have ab`α3 ∈ L and b`+1α3 6∈ L.

It is easy to see that the number nk of arrangements of length 3k is exactly
∏k−1
i=0 3i:

to construct an arrangement of length 3k, note that among its first 3k−1 letters the first
one is a and there is at most one further a. So, there are 3k−1 choices for the prefix of
length 3k−1. The next 3k−1 letters are fixed, and then one of nk−1 many arrangements of
length 3k−1 follows. Thus nk = 3k−1nk−1 and n0 = 1, which yields the claim. Note that
log3(nk) =

∑k−1
i=0 i = Θ(k2). Therefore, the algorithm needs Ω((logn)2) bits of space. J

I Corollary 13. There exists a deterministic one-turn one-counter language L such that
VL(n) = Θ((logn)2).

The language L from (8) is an example of a language where the space complexity in the
fixed-size model is strictly below the space complexity in the variable-size model:

I Lemma 14. We have FL(n) ∈ O(logn).

Proof. Let n ≥ 0 be the window size. For the active window we store (i) the starting position
of the leftmost block of length at least n/2 (if such a block does not exist we set a special
flag) and (ii) the length of the unique suffix from ab∗ (again, a flag is set if the window
content is in b∗). This information can be stored with O(logn) bits and it can be updated
at each step. Moreover, the active window belongs to L if the leftmost block of length at
least n/2 starts at position 1. J

We now prove the variant of Corollary 13 for the fixed-size model: For the language L from
(8) let K = Lc∗, which is a deterministic one-turn one-counter language.

I Theorem 15. We have FK(n) = Θ((logn)2).

Proof. Let n be the window size. Consider the maximal suffix of the active window which
has the form vci where v ∈ {a, b}∗. Using O(logn) bits we maintain the starting position of
that suffix and the length |v|. Furthermore, we maintain the same data structure as in the
proof of Lemma 11 for the word v ∈ {a, b}∗. The algorithm accepts iff v begins at the first
position, the leftmost relevant block also starts at the first position and has length at least
|v|/2. In total, the space complexity is bounded by O((logn)2).

The proof for the lower bound is similar to the proof of Lemma 12. Let k be maximal
such that 3k ≤ n. Then the number of bits required to encode an arrangement of length 3k

MFCS 2018

15:14 Sliding windows over context-free languages

is Ω((logn)2). The rest of the proof follows the proof of Lemma 12; we only have to replace
every ↓-operation by the insertion of a c-symbol. J

For the language L from (8) let L′ = {#jrev(u)v$i : u ∈ L, i ≥ 0, v ∈ {a, b}i, j ≥ 1}. Its
reversal rev(L′) = {$iv | i ≥ 0, v ∈ {a, b}i}L#+ is accepted by a deterministic one-counter
three-turn automaton.

I Theorem 16. We have VL′(n) = O((logn)2) and FL′(n) /∈ o((logn)2).

Proof. We first exhibit a variable-size sliding window algorithm for L′. Of course, we
maintain the window size n. For the active window consider its longest suffix of the form
#jw$i where w ∈ {a, b}∗ and i, j ≥ 0. Using O(logn) bits we can maintain the numbers i, j,
the length |w|, and the maximal number k such that bk is a suffix of w.

Furthermore, if j ≥ 1 we maintain for each relevant block in rev(w) its starting position
and its length, which requires O((logn)2) bits (see the proof of Lemma 11). Let us argue
why this information can be maintained. Let n, i, j, k and w have the meaning from the
previous paragraph. If j is set from 0 to 1, then w is empty and rev(w) contains no blocks.
If j ≥ 1 we can prolong w as long as the active window does not end with $-symbols (i = 0).
In this case, every time an a-symbol arrives, a new block in rev(w) is formed, which has
length k + 1. If it is not relevant, then it is immediately discarded. Also notice that when w
is prolonged by a or b, all relevant blocks in rev(w) stay relevant. A ↓-operation only affects
w if j ∈ {0, 1} and n = j + |w|+ i. In this case j is set to zero, and we no longer have to
store the relevant blocks of w.

It remains to show the lower bound. Let the window size n be of the form 2 · 3k. Again
we show that any fixed-size sliding window algorithm for L′ must distinguish any two distinct
arrangements. Let α1 6= α2 be two arrangements of length 3k. As shown in the proof of
Lemma 12, there exists a number 0 ≤ ` < 3k and an arrangement α3 of length at most `
such that α1 and α2 have the suffixes ab`α3 ∈ L and b`+1α3 /∈ L, respectively (or vice versa).
Without loss of generality, α1 = v1ab

`α3 and α2 = v2b
`+1α3 for some v1, v2 ∈ {a, b}∗. Both

words v1 and v2 have length r := 3k − (`+ 1 + |α3|). We have

lastn(#3krev(α1)$r) = #3k−rrev(ab`α3) rev(v1)$r ∈ L′ and

lastn(#3krev(α2)$r) = #3k−rrev(b`+1α3) rev(v2)$r /∈ L′.

This shows that the algorithm must distinguish the words #3krev(α1) and #3krev(α2). Note
that adding a $ at the right end of the word removes the right-most symbol (a or b) in the
factor which has to belong to rev(L) in order to have a word from L′. The rest of the proof
follows the arguments from the proof of Lemma 12. J

6 Open problems

Our results lead to several open problems; in particular for deterministic context-free
languages: Are there deterministic context-free languages where the optimal space bound
(for the variable-size or the fixed-size model) is in o(n) ∩ ω((logn)2)?

An interesting subclass of the deterministic context-free languages are the visibly pushdown
languages [2, 9], which are also known as input-driven languages. Visibly pushdown languages
have better algorithmic properties than general deterministic context-free languages [2, 9].
Our deterministic context-free languages from Section 5 are not visibly pushdown languages.
This leads to the question, whether our space trichotomy result for regular languages [4]
extends to visibly pushdown languages (or at least visibly one-counter languages).

M. Ganardi, A. Jeż, M. Lohrey 15:15

References
1 Charu C. Aggarwal. Data Streams - Models and Algorithms. Springer, 2007.
2 Rajeev Alur and P. Madhusudan. Visibly pushdown languages. In Proceedings of the

36th Annual ACM Symposium on Theory of Computing, STOC 2004, pages 202–211. ACM
Press, 2004.

3 Moses Ganardi, Danny Hucke, Daniel König, Markus Lohrey, and Konstantinos Mamouras.
Automata theory on sliding windows. In Proceedings of the 35th Symposium on Theoretical
Aspects of Computer Science, STACS 2018, volume 96 of LIPIcs, pages 31:1–31:14. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

4 Moses Ganardi, Danny Hucke, and Markus Lohrey. Querying regular languages over sliding
windows. In Proceedings of the 36th IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science, FSTTCS 2016, volume 65 of LIPIcs, pages
18:1–18:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016.

5 Paweł Gawrychowski and Artur Jeż. Hyper-minimisation made efficient. In Proceedings
of the 34th International Symposium on Mathematical Foundations of Computer Science,
MFCS 2009, volume 5734 of Lecture Notes in Computer Science, pages 356–368. Springer,
2009.

6 Seymour Ginsburg and Edwin H Spanier. Finite-turn pushdown automata. SIAM Journal
on Control, 4(3):429–453, 1966.

7 J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages and Com-
putation. Addison–Wesley, Reading, MA, 1979.

8 Rohit Parikh. On context-free languages. Journal of the ACM, 13(4):570–581, 1966.
9 Burchard von Braunmühl and Rutger Verbeek. Input-driven languages are recognized in

logn space. In Proceedings of the 1983 International FCT-Conference, FCT 1983, volume
158 of Lecture Notes in Computer Science, pages 40–51. Springer, 1983.

MFCS 2018

	Introduction
	Preliminaries
	Automata and streaming algorithms
	Sliding window streaming models

	Sliding windows over context-free languages: below logspace
	Proof of Theorem 3
	Proof of Theorem 4

	Sliding windows over context-free languages: above logspace
	Sliding windows over deterministic one-counter languages
	Open problems

