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Abstract. We prove that the compressed word problem and the compressed
simultaneous conjugacy problem are solvable in polynomial time in hyperbolic

groups. In such problems, group elements are input as words defined by straight

line programs defined over a finite generating set for the group. We prove also
that, for any infinite hyperbolic group G, the compressed knapsack problem in

G is NP-complete.

1. Introduction

Compression techniques in group theory have attracted a lot of attention in recent
years [8, 9, 29, 34, 35]. The general idea is to consider classical group theoretical
decision problems, such as the word problem or the conjugacy problem, but represent
the input group element in a succinct way. Usually, group elements are specified by
words over a finite generating set. Straight-line programs (SLPs for short) provide
a well established succinct representation of words. An SLP can be seen as a
context-free grammar G that produces a single word that we denote by val(G), see
Section 4 for a precise definition. Here is a simple SLP: A0 → A1A1, A1 → A2A2,
A2 → A3A3, A3 → A4A4, A4 → ab (in the main text, we will use a slightly different
notation). This SLP defines the word (ab)16. The length of the word that is defined
by an SLP can be exponential in the size of the SLP, where the latter is usually
defined as the total number of symbols in all right-hand sides of productions A→ u.
Thus, SLPs achieve exponential compression on some words. Applications of SLPs
in group theory can be traced back to Babai and Szemeredi’s reachability theorem
for finite groups [2].

There are numerous papers in computer science that study the complexity of
decision problems for words that are succinctly represented by SLPs, see [28] for
a survey. Here we deal with the so called compressed word problem for a finitely
generated group G. Let us fix a finite generating set Σ for G; all generating sets in
this paper will be symmetric in the sense that a ∈ Σ implies a−1 ∈ Σ. The word
problem for G asks whether a given word w ∈ Σ∗ represents the group identity of
G. It is one of the fundamental decision problems in group theory that goes back to
the work of Dehn [7] from 1911. The compressed word problem for G is the same
problem except that the input word w is represented by an SLP. We also say that
the input is an SLP-compressed word w. Clearly, the compressed word problem for
a group G is decidable if and only if the word problem for G is decidable, but with
respect to computational complexity the compressed word problem for G can be
more difficult than the word problem for G (and, assuming some computational
hardness assumptions, there are such groups: more about that later).

It is interesting to note that the compressed word problem for a group G is
exactly the circuit evaluation problem for G: there, the input is a circuit (a directed
acyclic graph whose nodes are called gates), where the input gates are labelled
with generators of G and the internal gates compute the product of their inputs.
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The question is, whether a distinguished output gate evaluates to the identity of G.
For finite groups, the complexity of the circuit evaluation problem (and hence, the
compressed word problem) was clarified in [3]: if G is a finite solvable group, then the
compressed word problem for G belongs to the parallel complexity class DET ⊆ NC2,
and if G is a finite non-solvable group, then the compressed word problem for
G is P-complete. This dichotomy result naturally motivates the investigation of
compressed word problems for infinite finitely generated groups. Moreover, the
compressed word problem also has applications for the ordinary (uncompressed)
word problem. The third author observed in [38] that the word problem for a finitely
generated subgroup of the automorphism group Aut(G) is polynomial time reducible
to the compressed word problem for G. Similar reductions exist for certain group
extensions [29, Theorem 4.8 and 4.9]. This makes groups for which the compressed
word problem can be solved in polynomial time interesting. Indeed the class of these
groups is quite rich. A first result for infinite groups was obtained in [27], where it
was shown that the compressed word problem for a finitely generated non-abelian
free group is P-complete. This result was used in [38] by the third author to show
that the word problem for Aut(Fn) can be solved in polynomial time, where Fn is
the free group on n generators. This solved an open problem from [22]. Meanwhile
two other important classes of groups in which the compressed word problem can
be solved in polynomial time have been found:

• virtually special groups; that is, finite extensions of finitely generated
subgroups of right-angled Artin groups. Right-angled Artin groups are
also known as graph groups or partially commutative groups. Recent work
related to three-dimensional topology has shown that the class of virtually
special groups is very rich. It contains all Coxeter groups [18], one-relator
groups with torsion [40], fully residually free groups [40] (for fully residually
free groups, Macdonald [31] independently obtained a polynomial time
solution for the compressed word problem), and fundamental groups of
hyperbolic 3-manifolds [1].
• finitely generated nilpotent groups [29]. Here, the compressed word problem

even belongs to the parallel complexity class DET [26].

Moreover, for finitely generated linear groups the compressed word problem belongs
to the complexity class coRP [29, Theorem 4.15], which implies that there is an
efficient randomized polynomial time algorithm that may err with a small probability
on negative input instances. On the negative side, it is known that the compressed
word problem for every restricted wreath product G oZ with G finitely generated non-
abelian is coNP-hard [29, Theorem 4.21]. If G is also finite, then the word problem
for G oZ can be easily solved in polynomial time, see also [39]. Assuming P 6= NP this
gives examples of groups in which the compressed word problem is harder than the
word problem. Another interesting result that relates the compressed word problem
to the area of algebraic complexity theory was shown in [29, Theorem 4.16]: The
compressed word problem for the linear group SL3(Z) is equivalent (w.r.t. polynomial
time reductions) to polynomial identity testing (i.e., the problem whether a circuit
over a polynomial ring Z[x1, . . . , xn] evaluates to the zero polyomial).

In this paper, we prove that the compressed word problem can be solved in
polynomial time in every hyperbolic group.1 Hyperbolic groups have a Cayley-graph
that satisfies a certain hyperbolicity condition, see Section 3 for a precise definition.
Hyperbolic groups are of fundamental importance in geometric group theory. In a
certain probabilistic sense, almost all finitely presented groups are hyperbolic [15, 36].
Also from a computational viewpoint, hyperbolic groups have nice properties: it is

1This result was announced in [29, Theorem 4.12] without proof.
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known that the word problem and the conjugacy problem can be solved in linear
time [11, 20]. They also have a nice shortlex automatic structure [10]. We show in
Theorem 5.4 that, from a given SLP G over the generators of a hyperbolic group
G, one can compute in polynomial time an SLP for the shortlex normal form of
the word val(G) (this is the length lexicographically smallest word that represents
the same group element as val(G)). Since the shortlex normal form for a word w is
the empty word if and only if w =G 1 (here, and in the rest of the paper, we write
u =G v if the words u and v represent the same element of the group G), we obtain
the following corollary:

Corollary 1.1. The compressed word problem for a hyperbolic group can be solved
in polynomial time.

We also use our polynomial time algorithm for the compressed word problem to
solve some other compressed decision problems for hyperbolic groups. A relatively
easy consequence of Corollary 1.1 is that for every hyperbolic group one can compute
in polynomial time the order of the group element that is represented by a given
SLP (Corollary 6.1). In Section 6.2 we consider the compressed conjugacy problem:
the input consists of SLP-compressed words u, v and it is asked whether there exists
a word x with x−1ux =G v. We prove that the compressed conjugacy problem for
a hyperbolic group can be solved in polynomial time. For this, we show that the
algorithm from [11], which solves the conjugacy problem for a hyperbolic group in
linear time, can be implemented in polynomial time for SLP-compressed input words.
Based on this algorithm, we then generalize our result on compressed conjugacy to
the compressed simultaneous conjugacy problem, where the input consists of two
finite lists u1, . . . , un and v1, . . . , vn of SLP-compressed words over the generators of
the group G, and it is asked whether there exists a word x with x−1uix =G vi for
1 ≤ i ≤ n. This problem was shown to be solvable in polynomial time for finitely
generated nilpotent groups in [32]. In the uncompressed setting, the simultaneous
conjugacy problem was shown to be solvable in linear time for hyperbolic groups in
[5]. Again, we show that the algorithm in [5] can be implemented in polynomial
time for SLP-compressed input words, which yields:

Theorem 1.2. Let G be a hyperbolic group. Then the compressed simultaneous
conjugacy problem for G can be solved in polynomial time. Moreover, if the two
input lists are conjugate, then we can compute an SLP for a conjugating element in
polynomial time.

The uncompressed simultaneous conjugacy problem has also been studied for
classes of groups other than hyperbolic groups; see for example [24] and the references
therein. Its SLP-compressed version is important because the word problem for
finitely generated subgroups of the outer automorphism group Out(G) of G can be
reduced to the compressed simultaneous conjugacy problem forG [19, Proposition 10].
Hence, we get the following corollary from our main results (in [6] it is shown that
for a hyperbolic group G, Aut(G) and hence Out(G) are finitely generated).

Corollary 1.3. For every hyperbolic group G, the word problems for Aut(G) and
Out(G) can be solved in polynomial time.

As a byproduct of our algorithm for the compressed simultaneous conjugacy
problem we also show that for every hyperbolic group one can compute in polynomial
time from a given finite set S of SLP-compressed group elements a finite generating
set for the centralizer of S, where every element of this generating set is represented
by an SLP. We call this computation problem the compressed centralizer problem.

Theorem 1.4. Let G be a hyperbolic group. Then the compressed centralizer
problem for G can be solved in polynomial time.
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Finally, we consider the compressed knapsack problem for a hyperbolic group. In
the (uncompressed) knapsack problem for a finitely generated group G the input is
a list of words u1, . . . , un, v over the generators of G, and it is asked whether there
exist natural numbers n1, . . . , nk such that v =G un1

1 · · ·u
nk

k . This problem has been
studied in [12, 13, 25, 30, 33] for various classes of groups. In [33] it was shown
that the knapsack problem for a hyperbolic group can be solved in polynomial time.
In the compressed knapsack problem, the words u1, . . . , un, v are represented by
SLPs. For the special case G = Z this problem is a variant of the classical knapsack
problem for binary encoded integers, which is known to be NP-complete. This makes
it interesting to look for groups where the compressed knapsack problem belongs
to NP. In [30] it was shown that compressed knapsack for every virtually special
group belongs to NP. Here, we prove:

Theorem 1.5. If G is an infinite hyperbolic group then the compressed knapsack
problem for G is NP-complete.

2. General notations

Zero is included in the set of natural numbers; that is, N = {0, 1, 2, . . .}. Suppose
that Σ is an alphabet and Σ∗ is the Kleene closure of Σ, that is, the set of all
finite words over Σ. We use ε ∈ Σ∗ to denote the empty word. Suppose that
w = a0a1 · · · an−1 ∈ Σ∗ with ai ∈ Σ. Here the length of w is |w| = n. For
0 ≤ i ≤ n− 1 we define w[i] = ai. For 0 ≤ i ≤ j ≤ n we define w[i : j] = ai · · · aj−1.
We use w[: j] to mean w[0 : j], the prefix of length j, and we also use w[i :] to mean
w[i : n], the suffix of length n− i. Note that w[i : i] = ε and w = w[: i]w[i :] for all
0 ≤ i ≤ n. We say that u ∈ Σ∗ is a factor of w ∈ Σ∗ if there exist x, y ∈ Σ∗ with
w = xuy.

3. Hyperbolic groups

Let G be a finitely generated group with the finite symmetric generating set Σ.
The Cayley-graph of G with respect to Σ is the undirected graph Γ = Γ(G) with
node set G and all edges (g, ga) for g ∈ G and a ∈ Σ. We view Γ as a geodesic
metric space, where every edge (g, ga) is identified with a unit-length interval. It
is convenient to label the directed edge from g to ga with the generator a. The
distance between two points p, q is denoted by dΓ(p, q). For g ∈ G let |g| := dΓ(1, g);
so |g| is the length of a shortest word in Σ∗ that represents g. For r ≥ 0, let
Br(1) = {g ∈ G : |g| ≤ r}.

Given a word w ∈ Σ∗, one obtains a unique path P [w] that starts at 1 and is
labelled by the word w. This path ends in the group element represented by w.
More generally, for g ∈ G we denote by g · P [w] the path that starts at g and
is labelled by w. We will mostly consider paths of the form g · P [w]. One views
g · P [w] as a continuous mapping from the real interval [0, |w|] to Γ. Such a path
P : [0, n]→ Γ is geodesic if dΓ(P (0), P (n)) = n. We say that a path P : [0, n]→ Γ
is path from P (0) to P (n). A word w ∈ Σ∗ is geodesic if the path P [w] is geodesic,
which means that there is no shorter word representing the same group element
from G. A word w ∈ Σ∗ is shortlex reduced if it is the length-lexicographically least
word that represents the same group element as w. For this, we have to fix an
arbitrary linear order on Σ. Note that if u = xy is shortlex reduced then x and y are
shortlex reduced too. For a word u ∈ Σ∗ we denote by shlex(u) the unique shortlex
reduced word that represents the same group element as u. Whenever appropriate,
we identify elements of Br(1) with geodesic words over Σ of length at most r.

A geodesic triangle consists of three points p, q, r ∈ Γ and geodesic paths Pp,q,
Pp,r, Pq,r (the three sides of the triangle), where Px,y is a path from x to y. We
call a geodesic triangle δ-slim for δ ≥ 0, if every point p on one of the three sides
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Figure 1. The shape of a geodesic triangle in a hyperbolic group
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Figure 2. A δ-thin triangle in a hyperbolic group. Dotted lines
represent geodesic paths of length at most δ.

has distance at most δ from a point p′ belonging to one of the two sides that are
opposite to p. The group G is called δ-hyperbolic if every geodesic triangle is δ-slim.
Finally, G is hyperbolic, if it is δ-hyperbolic for some δ ≥ 0. Figure 1 shows the
shape of a geodesic triangle in a hyperbolic group. Finitely generated free groups
are for instance 0-hyperbolic. The property of being hyperbolic is independent of
the chosen generating set Σ. The word problem for every hyperbolic group can be
decided in real time time [20]. Moreover, one can compute shlex(w) from a given
word w in linear time; see [11] where the result is attributed to Shapiro.

We will need an equivalent definition of hyperbolicity in terms of so called thin
triangles. Again, consider three points p, q, r ∈ Γ and let Px,y for x, y ∈ {p, q, r} be
a geodesic path from x to y, where Py,x is the path Px,y traversed in the reversed
direction. Moreover, let dx,y = dΓ(x, y) be the length of Px,y. Since the three
lengths dp,q, dp,r and dq,r fulfill the triangle inequality, there exist unique real
numbers sp, sq, sr ≥ 0 such that sx + sy = dx,y for all x, y ∈ {p, q, r} with x 6= y.
The geodesic triangle determined by the threes side Pp,q, Pp,r, Pq,r is called δ-thin
for δ ≥ 0, if for all x, y, z with x ∈ {p, q, r} and {y, z} = {p, q, r} \ {x} we have
dΓ(Px,y(t), Px,z(t)) ≤ δ for all t ∈ [0, sx]; see Figure 2 for an illustration. It is well
known (see for example [21, Theorem 6.1.3]) that in a δ-hyperbolic group every
geodesic triangle is δ′-thin for a constant δ′ ≥ δ.
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Figure 3. Splitting a geodesic rectangle according to Lemma 3.2.

P0 P1
> δ

≤ δ ≤ δ

P2

Figure 4. The situation from Lemma 3.3.

Let us fix a δ-hyperbolic group G with the finite symmetric generating set Σ for
the rest of the section, and let Γ be the corresponding geodesic metric space. By
choosing δ large enough, we can assume that all geodesic triangles in Γ are δ-thin.
We will apply a couple of well-known results for hyperbolic groups.

Lemma 3.1 (c.f. [10, Theorem 3.4.5]). The set {shlex(u) : u ∈ Σ∗} of all shortlex
reduced words is a regular language.

We use the following simple lemma for geodesic rectangles several times; see
Figure 3.

Lemma 3.2. Let a, b, u, v ∈ Σ∗ be geodesic words such that v =G aub and consider
a factorization v = v1v2 with |v1| ≥ |a|+ 2δ and |v2| ≥ |b|+ 2δ. Then there exists a
factorization u = u1u2 and a geodesic word c with |c| ≤ 2δ such that v1 =G au1c
and v2 =G c−1u2b.

Proof. Consider the endpoint p of the path P [v1] on the path P [v]. Since geodesic
rectangles are 2δ-slim, there must exist a point q belonging to the union of the three
paths P [a], a · P [u], and au · P [b] such that dΓ(p, q) ≤ 2δ. The point cannot belong
to P [a] \ {a} since this would imply that |v1| < |a|+ 2δ by the triangle inequality.
Similarly, q cannot belong to au · P [b] \ {v}. Hence, q belongs to a · P [u], which
proves the lemma. �

The situation from the following Lemma is shown in Figure 4.

Lemma 3.3. For i ∈ {0, 1, 2} let Pi : [0, ni] → Γ be geodesic paths such that
P0(0) = P1(0), P0(n0) = P2(0) and P1(n1) = P2(n2) (so P0, P1, P2 form a geodesic
triangle). Let j ≤ min{n0, n1} be any integer such that dΓ(P0(j), P1(j)) > δ.
Then there exist integers i0, i1 ∈ [0, n2] with i0 ≤ i1, dΓ(P0(j), P2(i0)) ≤ δ, and
dΓ(P1(j), P2(i1)) ≤ δ.

Proof. Consider the geodesic triangle with the points p := P0(0) = P1(0), q :=
P0(n0), r := P1(n1) and the sides Pp,q := P0, Pp,r := P1, and Pq,r := P2. By our
choice of the constant δ, this triangle is δ-thin. For x, y ∈ {p, q, r} let dx,y = dΓ(x, y)
and for x ∈ {p, q, r} let sx ≥ 0 be the unique real numbers such that sx + sy = dx,y
for all x, y ∈ {p, q, r} with x 6= y. Then, in particular, sp + sq = n0, sp + sr = n1
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and sq + sr = n2. For all x, y, z with x ∈ {p, q, r} and {y, z} = {p, q, r} \ {x} we
have dΓ(Px,y(t), Px,z(t)) ≤ δ for all t ∈ [0, sx]. The condition on j from the lemma
implies j > sp. Thus, n0 − j < n0 − sp = sq and n1 − j < n1 − sp = sr. Hence,
dΓ(P0(j), P2(n0−j)) = dΓ(Pq,p(n0−j), Pq,r(n0−j)) ≤ δ and dΓ(P1(j), P2(n2−n1 +
j)) = dΓ(Pr,p(n1 − j), Pr,q(n1 − j)) ≤ δ. Finally, we have n0 − j < sq = n2 − sr <
n2 − n1 + j. Setting i0 = n0 − j and i1 = n2 − n1 + j shows the lemma. �

4. Compressed words and the compressed word problem

4.1. Straight-line programs. A straight-line program (SLP for short) over the
alphabet Σ is a triple G = (V, ρ, S), where V is a finite set of variables such that
V ∩Σ = ∅, S ∈ V is the start variable, and ρ : V → (V ∪Σ)∗ is a mapping such that
the relation {(B,A) ∈ V × V : B occurs in ρ(A)} is acyclic. For the reader familiar
with context free grammars, it might be helpful to view the SLP G = (V, ρ, S) as
the context-free grammar (V,Σ, P, S), where P contains all productions A→ ρ(A)
for A ∈ V . The definition of an SLP implies that this context-free grammar derives
exactly one terminal word, which will be denoted by val(G). One can define this
string inductively as follows. First, for every A ∈ V we define valG(A). Assume
that ρ(A) = w0A1w1 · · ·Akwk with k ≥ 0, wi ∈ Σ∗ and Ai ∈ V . Then we define
valG(A) = w0valG(A1)w1 · · · valG(Ak)wk. Finally, we define val(G) = valG(S).

The word ρ(A) is also called the right-hand side of A. Quite often, it is convenient
to assume that all right-hand sides are of the form a ∈ Σ or BC with B,C ∈ V . This
corresponds to the well-known Chomsky normal form for context-free grammars.
There is a simple linear time algorithm that transforms an SLP G with val(G) 6= ε
into an SLP G′ in Chomsky normal form with val(G) = val(G′), see for example [29,
Proposition 3.8].

We define the size of the SLP G = (V, ρ, S) as the total length of all right-hand
sides: |G| =

∑
A∈V |ρ(A)|. SLPs offer a succinct representation of words that

contain many repeated substrings. For instance, the word (ab)2n

can be produced
by the SLP G = ({A0, . . . , An}, ρ, An) with ρ(A0) = ab and ρ(Ai+1) = AiAi for
0 ≤ i ≤ n− 1. We need the following upper bound on the length of the word val(G):

Lemma 4.1 (c.f. [4, proof of Lemma 1]). For every SLP G we have |val(G)| ≤
3|G|/3.

4.2. Algorithms for SLP-compressed words. We will use the fact that the
following simple algorithmic tasks for SLPs can be solved in polynomial time; see
also [29, Proposition 3.9].

• Given an SLP G, compute the length |val(G)|.
• Given an SLP G and an integer 0 ≤ i < |val(G)|, compute the symbol
val(G)[i].
• Given an SLP G and integers 0 ≤ i ≤ j ≤ |val(G)|, compute an SLP for
val(G)[i : j].

Also the following proposition is well-known:

Proposition 4.2 (c.f. [4, Lemma 2]). For a given SLP G and integer n, we can
compute an SLP Gn with val(Gn) = val(G)n in time linear in |G|+ log |n|.

The following results are less trivial; this is true in particular for Theorem 4.4
and 4.5.

Proposition 4.3. Given a complete deterministic finite state automaton M over
the alphabet Σ and an SLP G over the alphabet Σ, we can determine in polynomial
time whether val(G) is in the language L(M) of M .

Furthermore, we can determine in polynomial time whether all words in the set
{val(G)k : k ∈ N} of non-negative powers of val(G) belong to L(M).
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Proof. The first part is proved in [29, Theorem 3.11]. For the second part, let
q1, . . . , qm be the states of M , where q1 is the initial state. Since M is deterministic
and complete, for each word w ∈ Σ∗, each state qi has a unique target state qwi
defined by reading w through M starting at state qi. Then w ∈ L(M) if and only if
qw1 is an accepting state.

Let s = val(G). Now all non-negative powers of s lie in L(M) if and only if qs
k

1 is
an accepting state for all k ≥ 0. If this is the case, then there must exist integers

k, l with 0 ≤ k < l ≤ m such that qs
k

1 = qs
l

1 . Conversely, it is easy to see that, if this

condition holds and qs
t

1 is an accepting state for 0 ≤ t ≤ l, then all non-negative
powers of s lie in L(M).

To sum up, we have shown that sk ∈ L(M) for all k ≥ 0 if and only if sk ∈ L(M)
for all 0 ≤ k ≤ m. By Proposition 4.2, we can compute for every 0 ≤ k ≤ m
in polynomial time an SLP Gk with val(Gk) = sk. Finally, using the first part of
the proposition, we can test in polynomial time whether val(Gk) ∈ L(M) for every
0 ≤ k ≤ m. �

Theorem 4.4 (c.f. [37]). Given two SLPs G and H, one can check in polynomial
time whether val(G) = val(H).

The following result generalizes Theorem 4.4 to the so called fully compressed
pattern matching problem.

Theorem 4.5 (c.f. [23]). Given two SLPs G and H, one can check in polynomial
time whether val(H) is a factor of val(G) and, if so, find the smallest m such that
val(G)[m : m+ |val(H)|] = val(H).

A word x is a cyclic rotation of the word y, if there are words x1 and x2 with
x = x1x2 and y = x2x1. Note that x is a cyclic rotation of y if and only if |x| = |y|
and y if a factor of xx: If |x| = |y| and xx = x1yx2, then x = x1x2 and y = x2x1.
Hence, we obtain the following result from Theorem 4.5:

Proposition 4.6. For given SLPs G and H one can check in polynomial time
whether val(G) is a cyclic rotation of val(H). Moreover, if val(G) is a cyclic rotation
of val(H) then we can compute in polynomial time SLPs G1 and G2 such that
val(G) = val(G1)val(G2) and val(H) = val(G2)val(G1).

4.3. The compressed word problem. The compressed word problem for a finitely
generated group G with the finite symmetric generating set Σ is the following decision
problem:

Input: an SLP G over the alphabet Σ.
Question: does val(G) represent the group identity of G?

It is an easy observation that the computational complexity of the compressed word
problem for G does not depend on the chosen generating set Σ in the sense that if Σ′

is another finite symmetric generating set for G, then the compressed word problem
for G with respect to Σ is logspace reducible to the compressed word problem for
G with respect to Σ′ [29, Lemma 4.2]. Therefore we do not have to specify the
generating set.

4.4. Composition systems. A useful generalization of SLPs, which are used for
example in the polynomial time algorithm for the compressed word problem of a
free group [27]), are the so called composition systems, which are called cut-SLPs
(CSLPs for short) in [29]. CSLPs are defined analogously to SLPs, but in addition
may contain right-hand sides of the form B[: i] and B[i :] for a variable B and an
integer i ≥ 0. We call [: i] and [i :] cut operators.
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If ρ(A) = B[: i] or ρ(A) = B[i :] in a CSLP G, then we define valG(A) = valG(B)[:
i] or valG(A) = valG(B)[i :], respectively. The following result was shown by Hagenah
in his PhD thesis [17] (in German), see also [29, Theorem 3.14].

Theorem 4.7 (c.f. [17]). From a given CSLP G one can compute in polynomial
time an SLP G′ such that val(G) = val(G′).

Theorems 4.4 and 4.7 imply that one can also check for two given CSLPs G1 and
G2 whether val(G1) = val(G2).

5. The compressed word problem for hyperbolic groups

Fix a δ-hyperbolic group G with the finite symmetric generating set Σ, where
δ > 0 is chosen in such a way that all geodesic triangles are δ-thin. We can moreover
assume that δ is an integer (later, we we want to cut off from a word its prefix and
suffix of length a certain multiple of δ). Let us set ζ := 2δ ≥ 1 for the following.

We need an extension of CSLPs by so called twist operators. A TCSLP (T stands
for “twisted”) over the alphabet Σ is a tuple G = (V, ρ, S), where V is a finite set of
variables such that V ∩ Σ = ∅, S ∈ V is the start variable, and ρ is a mapping with
domain V such that for every A ∈ V , ρ(A) is of one of the following forms:

(1) a word w ∈ (V ∪ Σ)∗

(2) an expression B[: i] or B[i :] with B ∈ V and i ∈ N,
(3) an expression B〈a, b〉 with a, b ∈ Bζ(1).

Moreover, we require that the relation {(B,A) ∈ V ×V : B occurs in ρ(A)} is acyclic.
The reflexive and transitive closure of this relation is denoted with ≤G . We evaluate
variables of type (1) or (2) as for CSLPs. For a variable A with ρ(A) = B〈a, b〉
we define valG(A) := shlex(a valG(B) b). For convenience we will also allow more
complex right-hand sides such as (A[: i]〈a, b〉)(B[j :]〈c, d〉). We define the size of
such a right-hand side as the total number of occurrences of symbols from Σ ∪ V in
the right-hand side. The size of G is obtained by taking the sum over all variables.

If right-hand sides of type (2) do not occur, we speak of a TSLP. We say that
the TCSLP G is valid, if for every variable A, the word valG(A) is shortlex reduced.
Note that right-hand sides of type (1) may lead to words that are not shortlex
reduced, since the concatenation of two shortlex reduced words is not necessarily
shortlex reduced.

For a variable A, we define the height, height(A) for short, inductively by

height(A) = max{height(B) + 1: B ∈ V occurs in ρ(A)},
where max ∅ = 0. Let height(G) = height(S); it is the length of a longest chain in
the partial order ≤G that ends in S.

Lemma 5.1. Given a TSLP G over the alphabet Σ, we can check in polynomial
time whether G is valid. Moreover, if G is valid, then we can compute in polynomial
time an SLP G′ over G such that val(G) =G val(G′).

Proof. Let G = (V, ρ, S). In the same way as for SLPs, we can assume that all
right-hand sides from (V ∪ Σ)∗ are of the form a ∈ Σ or BC with B,C ∈ V . Let
µ = height(G). We will transform G into the desired SLP G′. This will be done by
a bottom-up process; that is we consider the variables in G in order of increasing
height. If G is not valid, we will detect this during the transformation.

For a variable A, we define the twist-height, theight(A) for short, inductively as
follows:

• if ρ(A) = a, then theight(A) = 0,
• if ρ(A) = BC, then theight(A) = max{theight(B), theight(C)}, and
• if ρ(A) = B〈s, t〉 then theight(A) = theight(B) + 1.
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By removing unused variables, we can assume that S has maximal height and
maximal twist height among all variables. For a nonterminal A we define ηA :=
theight(S)− theight(A) + 1 > 0.

Consider a nonterminal A. Since we are processing the variables in order of
increasing height, we can assume that for all B <G A the word valG(B) is shortlex
reduced. Let w := valG(A). If |w| ≤ 16ζηA + 2ζ then we will explicitly compute the
word w in the process of defining the SLP G′. Otherwise, we will compute explicitly
words `A, rA such that w = `Aw

′rA for some word w′ of length at least 2ζ. The
words `A and rA will satisfy the length constraints

8ζηA ≤ |`A|, |rA| ≤ 8ζηA + 2ζheight(A).

Moreover, in the latter case, the SLP G′ will contain variables A′a,b for all a, b ∈ Bζ(1)
such that

valG′(A′a,b) = shlex(aw′b).

The A′a,b, together with a start variable S′, which will be added at the end of the

process, will be the only variables that we include in the SLP G′. All of the words
that we compute and store, such as the `A and rA, are to enable us to carry out the
necessary computations, and are not stored as part of G′.

Case 1. ρ(A) ∈ Σ. Thus, valG(A) is shortlex reduced. Since 1 ≤ 16ζηA + 2ζ, there
is nothing to do in this case.

Case 2. ρ(A) = BC for variables B and C. We can assume without loss that
ηB = ηC = ηA. This can be achieved by adding dummy variables with right-
hand sides of the form X〈1, 1〉 if needed. Let u := valG(B), v := valG(C), and
w := valG(A) = uv. The words u and v are shortlex reduced by assumption. Let us
write η for ηA = ηB = ηC .

Case 2.1. |u| > 16ζη + 2ζ and |v| > 16ζη + 2ζ. Hence, we have computed words
`B , rB , `C , rC such that the following hold:

• 8ζη ≤ |`B |, |rB | ≤ 8ζη + 2ζheight(B),
• 8ζη ≤ |`C |, |rC | ≤ 8ζη + 2ζheight(C),
• u = `Bu

′rB and v = `Cv
′rC for words u′, v′ of length at least 2ζ.

Moreover, we already have defined variables B′a,b and C ′a,b for all a, b ∈ Bζ(1), which

produce shlex(au′b) and shlex(av′b), respectively. The situation is shown in Figure 5.
We first check whether the word

`B valG′(B′1,1) rB `C valG′(C ′1,1) rC = `Bu
′rB`Cv

′rC = uv = w

is shortlex reduced. This can be done in polynomial time by Proposition 4.3. If
not, then we stop because G is not valid. Otherwise we continue as follows: we set
`A := `B and rA := rC . Note that, since ηA = ηB = ηC and height(B) ≤ height(A) ≥
height(C), we have the length constraints 8ζηA ≤ |`A|, |rA| ≤ 8ζηA + 2ζheight(A).
We also have the required bound |u′rB`Cv′| ≥ 2δ.

It remains to define the right-hand sides for the variables A′a,b for all a, b ∈ Bζ(1).

Let us fix a, b ∈ Bζ(1). For all c, d ∈ Bζ(1) we compute z := shlex(c−1rB`Cd
−1) and

check, using Proposition 4.3, whether the word

valG′(B′a,c) z valG′(C ′d,b) = shlex(au′c) shlex(c−1rB`Cd
−1) shlex(dv′b)

is shortlex reduced, in which case it is shlex(au′rB`Cv
′b). By Lemma 3.2, there

must be at least one such pair c, d (there might be several pairs, in which case we
choose an arbitrary one) and define

ρ′(A′a,b) := B′a,c z C
′
d,b.
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a c d b

`B u′

shlex(au′c) z

rB `C v′

shlex(dv′b)

rC

Figure 5. Case 2.1 from the proof of Lemma 5.1. Dotted lines
represent words that are given by SLPs.

a c b

`B u′

shlex(au′c) z

rB

y

v

Figure 6. Case 2.2 from the proof of Lemma 5.1. Dotted lines
represent words that are given by SLPs.

Case 2.2. |u| > 16ζη + 2ζ and |v| ≤ 16ζη + 2ζ. We have computed the word v
explicitly. Moreover, we have computed explicit words `B and rB such that the
following hold:

• 8ζη ≤ |`B |, |rB | ≤ 8ζη + 2ζheight(B),
• u = `Bu

′rB for a word u′ of length at least 2ζ.

Moreover, we have already produced variables B′a,b for all a, b ∈ Bζ(1), which

produce shlex(au′b).
We first check whether the word

`B valG′(B′1,1) rB v = `Bu
′rBv = uv = w

is shortlex reduced. This can be done in polynomial time by Proposition 4.3. If not,
then we stop because G is not valid.

Otherwise we continue as follows. If |v| ≤ 2ζ, we set `A := `B and rA := rBv
and define ρ′(A′a,b) := B′a,b for all a, b ∈ Bζ(1). In this case, we have 8ζη ≤ |`A| ≤
8ζη+ 2ζheight(B) ≤ 8ζη+ 2ζheight(A) and 8ζη ≤ |rA| ≤ 8ζη+ 2ζ(height(B) + 1) ≤
8ζη + 2ζheight(A).

Now assume that |v| > 2ζ. We set `A := `B. Since |rBv| ≥ 8ζη we can define
rA as the suffix of rBv of length 8ζη; that is, rBv = yrA for some word y of length
|y| = |rB |+ |v| − |rA| ≥ |v| > 2ζ. This satisfies the required bounds on the lengths
of `A and rA. It remains to define the right-hand sides for the variables A′a,b for all

a, b ∈ Bζ(1). Let us fix a, b ∈ Bζ(1). For all c ∈ Bζ(1) we compute z := shlex(c−1yb)
and check whether the word

valG′(B′a,c) z = shlex(au′c) shlex(c−1yb)

is shortlex reduced, in which case it is shlex(au′yb); see also Figure 6. By Lemma 3.2,
there must be at least one such c, for which we define

ρ′(A′a,b) = B′a,c z.

Case 2.3. |u| ≤ 16ζη + 2ζ and |v| > 16ζη + 2ζ. This case is symmetric to Case 2.2.

Case 2.4. |u| ≤ 16ζη + 2ζ and |v| ≤ 16ζη + 2ζ. In this case, we have computed
u and v explicitly. We first check whether w := uv is shortlex reduced. If not,
then we stop. Otherwise we have to distinguish the cases |w| ≤ 16ζη + 2ζ and
|w| > 16ζη + 2ζ. In the first case, there is nothing to do. If |w| > 16ζη + 2ζ, we
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factorize w as w = `Aw
′rA with |`A| = |rA| = 8ζη, and thus |w′| ≥ 2ζ. We can

compute for all a, b ∈ Bζ(1) the word shlex(aw′b) and set ρ′(A′a,b) = shlex(aw′b).

Case 3. ρ(A) = B〈a, b〉 for a, b ∈ Bζ(1). Let u := valG(B) and v := valG(A) =
shlex(aub). The word u is shortlex reduced by assumption, and v is shortlex reduced
by definition. Let η = ηB . We have ηA = η − 1 ≥ 1.

Case 3.1. |u| ≤ 16ζη + 2ζ. Hence we have explicitly computed the word u.
We explicitly compute the word v = shlex(aub), and then distinguish the cases
|v| ≤ 16ζη + 2ζ and |v| > 16ζη + 2ζ. The rest of the argument is analogous to
Case 2.4.

Case 3.2. |u| > 16ζη + 2ζ. We have computed words `B , rB such that 8ζη ≤
|`B |, |rB | ≤ 8ζη + 2ζheight(B) and u = `Bu

′rB for a word u′ of length at least 2ζ.
Moreover, we have already defined variables B′c,d for all c, d ∈ Bζ(1), which produce

shlex(cu′d).
We check for all c, d ∈ Bζ(1) whether

shlex(a`Bc
−1)valG′(B′c,d)shlex(d

−1rBb) = shlex(a`Bc
−1)shlex(cu′d)shlex(d−1rBb)

is shortlex reduced, in which case it is shlex(a`Bu
′rBb) = shlex(aub) = v; see

Figure 7. By Lemma 3.2, there must exist such c, d ∈ Bζ(1). Let s = shlex(a`Bc
−1)

and t = shlex(d−1rBb). By the triangle inequality, these words have length at
least 8ζη − 2ζ. Hence we can factorize these words as s = wx and t = yz with
|w| = |z| = 8ζ(η−1) = 8ζηA ≥ 8ζ. The words x and y have length at least 6ζ. We set
`A := w and rA := z. These words satisfy the required bounds on their lengths. Note
that valG(A) = shlex(aub) = `Ax shlex(cu

′d)yrA and |x shlex(cu′d)y| ≥ 12ζ ≥ 2ζ.
It remains to define the right-hand sides of the variables A′g,h for all g, h ∈ Bζ(1).

Let us fix g, h ∈ Bζ(1). The lower bounds on the lengths of w, x, y, z allow us to
apply Lemma 3.2 to the geodesic rectangles with sides a, `B , c, wx and d, rB , b, yz,
respectively (all of these words have been computed explicitly). We can compute
in polynomial time e, f ∈ Bζ(1) and factorizations `B = w′x′, rB = y′z′ as shown
in Figure 7. By the triangle inequality, the words x′ and y′ must have length at
least 4ζ. Now consider the geodesic rectangle with sides x′u′y′, shlex(ge), shlex(fh),
and shlex(gex′u′y′fh). Since |x′|, |y′| ≥ 4ζ and |shlex(ge)|, |shlex(fh)| ≤ 2ζ, we can
apply Lemma 3.2 again. There must exist i, j ∈ Bζ(1) such that the word

shlex(gex′i−1) valG′(B′i,j) shlex(j
−1y′fh) = shlex(gex′i−1) shlex(iu′j) shlex(j−1y′fh)

is shortlex reduced, in which case the above word is shlex(gex′u′y′fh). As before, we
can compute such i, j ∈ Bζ(1) in polynomial time. We finally define the right-hand
side of A′g,h as

ρ′(A′g,h) = shlex(gex′i−1)B′i,j shlex(j
−1y′fh).

This concludes the definition of the right-hand sides for the variables A′a,b. We

complete the definition of the SLP G′ by adding a start variable S′ to G′ and setting
ρ′(S′) = `SS

′
1,1rS . �

The next lemma generalizes Lemma 5.1 to TCSLPs.

Lemma 5.2. Given a TCSLP G over the alphabet Σ, we can check in polynomial
time whether G is valid. Moreover, if G is valid, then we can compute in polynomial
time an SLP G′ over G such that val(G) =G val(G′).

Proof. The idea of the proof is taken from [17], where it is shown that a CSLP can
be transformed in polynomial time into an equivalent SLP. Let G = (V, ρ, S) be the
input TCSLP. We can assume that all right-hand sides from (V ∪ Σ)∗ are of the
form a ∈ Σ or BC with B,C ∈ V . By Lemma 5.1 it suffices to transform G into an
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Figure 7. Case 3 from the proof of Lemma 5.1. Dotted lines
represent words that are given by SLPs.
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Figure 8. Case 3.1 in the proof of Lemma 5.2.

equivalent TSLP. Let µ = height(G). Consider a variable A such that ρ(A) = B[: i];
the case that ρ(A) = B[i :] can be dealt with analogously. By considering the
variables in order of increasing height, we can assume that no cut operator occurs
in the right-hand side of any variable C <G A. We show how to eliminate the cut
operator in ρ(A). Thereby we add at most µ new variables to the TCSLP. Moreover
the height of the TCSLP after the cut elimination is still bounded by µ. Hence, the
final TSLP has at most µ · |V | variables. In addition, every right-hand side of the
final TSLP will have length at most 2ζ + 1 (this maximum value could occur in
Case 3.2 below), so its size will be polynomially bounded.

The idea of the cut elimination is to push the cut operator towards smaller
variables. For this, we make a case distinction on the right-hand side of B:

Case 1. ρ(B) = a ∈ Σ. If i = 1 we redefine ρ(A) = a, and if i = 0 we redefine
ρ(A) = ε.

Case 2. ρ(B) = CD with C,D ∈ V . Since cut operators do not occur below
B, we have TSLPs for valG(C) and valG(D) available. Using Lemma 5.1, we can
transform these TSLPs into SLPs GC and GD such that val(GC) = valG(C) and
val(GD) = valG(D). These SLPs are only used temporarily in the definition of the
new right-hand side for A; later we can discard them. Let nC = |val(GC)| and
nD = |val(GD)|. These lengths can be computed in polynomial time. If i ≤ nC
then we redefine ρ(A) := C[: i]. If i > nC then we redefine ρ(A) := CX for a new
variable X and set ρ(X) := D[: i− nC ]. We then continue with the elimination of
the remaining cut operator in C[: i] or in D[: i− nC ].

Case 3. ρ(B) = C〈a, b〉 with C ∈ V and a, b ∈ Bζ(1). Analogously to Case 2, we can
assume that we have SLPs GB and GC with val(GB) = valG(B) and val(GC) = valG(C).
Moreover, we can compute the lengths nB = |val(GB)| and nC = |val(GC)| in
polynomial time. Let u = val(GC) and v = val(GB). Moreover, let v = v1v2 with
|v1| = i. Thus, we have valG(A) = v1 and v = shlex(aub).

Case 3.1. There exists c ∈ Bζ(1) and a factorization a = a1a2 such that v1 =G a1c;
see Figure 8. Note that this implies that i = |v1| ≤ 2ζ. Hence, we can check
in polynomial time whether this case holds by computing the prefix of the SLP-
compressed word v of length i. We redefine ρ(A) = v1.
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v1

v2va
b1

b2
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c

Figure 9. Case 3.2 in the proof of Lemma 5.2.

Case 3.2. There exists c ∈ Bζ(1) and a factorization b = b1b2 such that v2 =G cb2;
see Figure 9. As in Case 3.1 we can check in polynomial time whether this condition
holds. We redefine ρ(A) = X〈a, c−1〉 for a new variable X and set ρ(X) = C〈1, b1〉.
Case 3.3. Neither Case 3.1 nor Case 3.2 holds. Then, there exists a factorization
u = u1u2 and c ∈ Bζ(1) such that v1 =G au1c and v2 =G c−1u2b; see Figure 3.
The triangle inequality implies i − 2ζ ≤ |u1| ≤ i+ 2ζ. Hence, we can find such a
factorization of u in polynomial time, by computing for every j ∈ N with |i− j| ≤ 2ζ
SLPs for the words u[: j] and u[j :]. Then we apply Lemma 5.1 and compute for
every c ∈ Bζ(1) SLPs for the words w1 := shlex(au[: j]c) and w2 := shlex(c−1u[j :]b).
Finally, we check using Theorem 4.4 whether v1 = w1 and v2 = w2. We will find at
least one such j and c. Finally, we redefine ρ(A) = X〈a, c〉 for a new variable X
and set ρ(X) = C[: j]. We then continue with the elimination of the cut operator in
C[: j]. This concludes the proof of the lemma. �

Lemma 5.3. Given valid TCSLPs G0 and G1 such that val(Gi) represents the group
element gi, we can check in polynomial time, whether dΓ(g0, g1) ≤ δ. Moreover, if
this is true, we can compute a ∈ Bδ(1) such that g0a =G g1.

Proof. For all a ∈ Bδ(1) we compute, by adding one new variable to G0, a valid
TCSLP G0,a for shlex(val(G0)a). Using Lemma 5.2 and Theorem 4.4 we can check in
polynomial time whether val(G0,a) = val(G1), which is equivalent to g0a =G g1. �

Finally, we can prove the main technical result of this section:

Theorem 5.4. From a given SLP G over the alphabet Σ we can compute in poly-
nomial time an SLP G′ for shlex(val(G)).

Proof. By Lemma 5.2 it suffices to compute in polynomial time a valid TCSLP
G′ for shlex(val(G)). For this, we process G bottom-up; that is, we consider the
variables in order of increasing height. Assume that G = (V, ρ, S) and that G is
in Chomsky normal form. The TCSLP G′ will contain all variables from V plus
some auxiliary variables. Let us write G′ = (V ′, ρ′, S). For every variable A ∈ V
we will have valG′(A) = shlex(valG(A)). Consider a variable A ∈ V and assume
that, for all variables B <G A, we have already defined ρ′(B) in such a way that
valG′(B) = shlex(valG(B)).

If ρ(A) = a ∈ Σ then we set ρ′(A) := shlex(a). Now assume that ρ(A) = BC.
Thus we have already defined TCSLPs for the words u := shlex(valG(B)) and
v := shlex(valG(C)). Moreover, by Lemma 5.2 we can transform these TCSLPs into
SLPs. Using these SLPs, we can compute the lengths m = |u| and n = |v|. If m = 0
or n = 0, then we set ρ′(A) := C or ρ′(A) := B, respectively. So let us assume
that m and n are both non-zero. Moreover, we only consider the case that m ≤ n;
the other case is symmetric. From the SLP for u we can compute an SLP for u−1.
Consider the geodesic paths P0 := P [u−1] and P1 := P [v]. Using Lemma 5.3 we can
check whether dΓ(P0(m), P1(m)) ≤ δ.
Case 1. dΓ(P0(m), P1(m)) ≤ δ. In this case, we can compute by Lemma 5.3 a word
a of length at most δ such that a =G uv[: m]. The situation is shown in Figure 10
on the left. We set ρ′(A) := C[m :]〈a, 1〉.
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Figure 10. Case 1 (left) and 2 (right) from the proof of Theorem 5.4.

Case 2. dΓ(P0(m), P1(m)) > δ. Using binary search, we compute an integer
i ∈ [0,m− 1] such that dΓ(P0(i), P1(i)) ≤ δ and dΓ(P0(i+ 1), P1(i+ 1)) > δ. For
this we store an interval [p, q] ⊆ [0,m] such that p < q, dΓ(P0(p), P1(p)) ≤ δ and
dΓ(P0(q), P1(q)) > δ. Initially, we set p = 0 and q = m, and we stop if q = p+ 1. In
each iteration, we compute r = d(p+ q)/2e and check, using Lemma 5.3, whether
dΓ(P0(r), P1(r)) ≤ δ or dΓ(P0(r), P1(r)) > δ. In the first case we set p := r and do
not change q, and in the second case we set q := r and do not change p. Hence, in
each iteration the size of the interval [p, q] is roughly halved. Therefore, the binary
search stops after O(log(m)) iterations, which is polynomial in the input length. In
addition to the position i, we can also compute a ∈ Bδ(1) that labels a path from
P0(i) to P1(i).

Let P2 be the unique geodesic path from P0(m) to P1(n) that is labelled with a
shortlex reduced word. Note that this path is labelled with shlex(uv). By Lemma 3.3
there exist i0 ≤ i1 such that dΓ(P0(i+ 1), P2(i0)) ≤ δ and dΓ(P1(i+ 1), P2(i1)) ≤ δ.
We therefore iterate over all b, c ∈ Bδ(1), compute the word

s := shlex(b−1u[m− i− 1]av[i]c−1)

explicitly, and check whether the word

(1) shlex(u[: m− i− 1]b) s shlex(cv[i+ 1 :])

is shortlex reduced too, in which case it is shlex(uv). This can be done using
Lemma 3.1 and using the fact that SLPs for u and v are available. From these SLPs
we can compute TCSLPs for shlex(u[: m− i− 1]b) and shlex(cv[i+ 1 :]), which can
be transformed into SLPs using Lemma 5.2. It is guaranteed by Lemma 3.3 that we
will find b, c ∈ Bδ(1) such that the word in (1) is shortlex reduced. For these b, c we
finally set

ρ′(A) := (B[: m− i− 1]〈1, b〉) s (C[i+ 1 :]〈c, 1〉).
This concludes the proof of the theorem. �

A word w ∈ Σ∗ represents the group identity if and only if shlex(w) = ε. Hence,
Corollary 1.1 from the introduction follows directly from Theorem 5.4.

6. Further compressed decision problems

6.1. Compressed order problem. For a finitely generated group G we define the
compressed order problem for G as the following computation problem, where Σ is
an arbitrary finite symmetric generating set for G:

Input: SLP G over the alphabet Σ.
Output: The order (an element from N ∪ {∞}) of the group element represented

by val(G).

An easy consequence of Corollary 1.1 is the following result:

Corollary 6.1. For every hyperbolic group G, the compressed order problem can be
solved in polynomial time.
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Proof. Let G be an SLP over a fixed finite symmetric generating set for G. It is
known that every hyperbolic group has a finite number of conjugacy classes of finite
subgroups, and hence that there is a bound on the order of its finite subgroups [21,
Theorem 6.8.4]. So there exists a constant c = c(G) such that the order of every
element g ∈ G belongs to {1, . . . , c,∞}. Hence, in order to compute the order of
(the group element represented by) val(G), it suffices to check whether val(G)k =G 1
for all 1 ≤ k ≤ c+ 1. By Corollary 1.1, this can be done in polynomial time. �

6.2. Compressed conjugacy and centralizers. Let G be a finitely generated
group G with a fixed finite symmetric generating set for G. For group elements
g, h ∈ G we use the standard abbreviation gh = h−1gh, which is extended to lists
L = (g1, . . . , gk) with gi ∈ G by Lg = (gh1 , . . . , g

h
k ). We extend these definitions to

words over Σ in the obvious way. The compressed conjugacy problem for G is the
following problem:

Input: SLPs G and H over the alphabet Σ.
Question: Do G and H represent conjugate elements in G? That is, does there

exist g ∈ G with val(G)g =G val(H)?

More generally, we can define the compressed simultaneous conjugacy problem for
G:

Input: Finite lists LG := (G1, . . . ,Gk) and LH := (H1, . . . ,Hk) of SLPs over the
alphabet Σ.

Question: Do LG and LH represent conjugate lists of elements in G? That is, does
there exist g ∈ G with val(Gi)g =G val(Hi) for 1 ≤ i ≤ k?

In the case when the answer to either of these questions is positive, we might also
want to compute an SLP for an element that conjugates val(G) to val(H) or LG to
LH.

The compressed centralizer problem for G is the following computation problem:

Input: A finite list (G1, . . . ,Gk) of SLPs over G.
Output: A finite list of SLPs (H1, . . . ,Hl) such that {val(H1), . . . , val(Hl)} is a

generating set for the centralizer of the group elements represented by
val(G1), . . . , val(Gk).

The remainder of this subsection is devoted to the proofs of Theorem 1.2 and
1.4. A linear-time algorithm for solving the conjugacy problem of a hyperbolic
group G is described in [11, Section 3]. This was generalized in [5] to a linear-
time algorithm for the (uncompressed) simultaneous conjugacy problem and the
centralizer problem. We shall show that essentially the same algorithms can be used
to solve the compressed (simultaneous) conjugacy problem for G and the compressed
centralizer problem in polynomial time. We first deal with the compressed conjugacy
problem in Section 6.2.1. Building on the algorithm for compressed conjugacy,
we will solve the compressed simultaneous conjugacy problem and the compressed
centralizer problem in the case that one of the input group elements has infinite
order in Section 6.2.2. Finally, in Section 6.2.3 we deal with the case that all input
group elements have finite order.

6.2.1. Compressed conjugacy of elements. In this section we deal with the compressed
conjugacy problem. The input consists of two SLPs G and H and we want to test
the group elements defined by u := val(G) and v := val(H) for conjugacy. For this
we basically use the conjugacy algorithm from [11] on the words u and v. We will
describe this algorithm step by step in the following. Our description of each step is
comprised of two paragraphs, the first describing operations relating to the words
u and v, and the second explaining how we effect these operations in polynomial
time using the SLPs G and H. All assertions that we make in the first of these
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paragraphs are justified in [11]. In most cases it is straightforward to see from the
results that we have already established that the corresponding processes can be
carried out in polynomial time when applied to SLPs.

Let δ ∈ N\{0} be a thinness constant of G on the specified symmetric generating
set Σ. We define constants K and L as in [11], that is, L := 34δ + 2 and K :=
17(2L+ 1)/7.

A word w ∈ Σ∗ is said to be shortlex straight if all non-negative powers wk for
k ≥ 0 are shortlex reduced words. By the second part of Proposition 4.3, we can
use the finite state automaton that accepts the set of all shortlex reduced words to
test in polynomial time whether compressed words are shortlex straight.

As a preprocessing step, we make a list of all pairs of shortlex reduced words of
length at most K that are conjugate in G.

Step 1. We first replace u and v by shlex(u) and shlex(v).
By Theorem 5.4 we can replace in polynomial time G and H by SLPs for

shlex(val(G)) and shlex(val(H)), respectively.

Step 2. For a word w, we define wC := wRwL, where w = wLwR with |wL| ≤
|wR| ≤ |wL|+ 1. Replace u by shlex(uC) and v by shlex(vC).

By Theorem 5.4 we can make the corresponding replacements to G and H.

Step 3. If |u|, |v| ≤ K then use the precomputed list to test conjugacy of u and v.
Otherwise, at least one of the words, u say, satisfies |u| ≥ K ≥ 2L+1. If |v| < 2L+1
then u and v are not conjugate [11, Section 3.1], and we return false. So assume
from now on that |u|, |v| ≥ 2L + 1. (We also know at this stage that all positive
powers of u and v are L-local (1, 2δ)-quasigeodesics.)

For the compressed conjugacy problem, if |val(G)|, |val(G)| ≤ K then we can
compute val(G) and val(H) explicitly and do the same as in the uncompressed
setting.

Step 4. There exists an element g ∈ B4δ(1) and m with 1 ≤ m ≤ |B4δ(1)|2 such that
the shortlex reduction of g−1umg is shortlex straight [11, Section 3.2]. Find such g
and m, replace u by shlex(g−1ug), and let z := shlex(um) (so z is shortlex straight).

Using Proposition 4.3, we can perform the equivalent operations in polynomial
time with G and compute an SLP G′ with val(G′) = z.

Step 5. Test whether vm is conjugate to z as follows. For all h ∈ B6δ(1), compute
vh := shlex(hvmh−1), and then test whether vh is a cyclic rotation of z. If this test
fails for all h, then vm and z =G um are not conjugate [11, Section 3.3]. But then,
u and v are not conjugate, so we return false. Otherwise, we find h and vh with
this property. Let z1 be a prefix of z such that z =G z1hv

mh−1z−1
1 , and replace v

by shlex(z1hvh
−1z−1

1 ). Now we have vm =G um =G z. From this we get that every
g ∈ G with g−1ug =G v belongs to the centralizer CG(z) of z in G. In particular, u
and v are conjugate in G if and only if they are conjugate in CG(z).

Using Proposition 4.6 we can do the corresponding calculations with H and G′.
Checking whether vh is a cyclic rotation of z can be accomplished in polynomial
time by the first statement of Proposition 4.6 and the second statement allows us
to compute in polynomial time an SLP for z1.

Step 6. Find the shortest prefix y of z such that z = yl for some l ≥ 1. We do that
by finding the second occurrence of the substring z in the word z2.

Perform the corresponding calculation with G′ and, if l > 1, find an SLP G′′ with
val(G′′) = y. Theorem 4.5 implies that we can do this in polynomial time.

Step 7. For each h ∈ B2δ(1), compute shlex(hzh−1) and test whether it is a cyclic
rotation of z. If so, find a prefix z2 of z with hzh−1 =G z−1

2 zz2, and compute and
store shlex(z2h) (which lies in CG(z)) in a list Cz. Then |Cz| ≤ J := |B2δ(1)|.
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Proposition 4.6 allows us to do the corresponding calculations with G′ in poly-
nomial time. We obtain a list of SLPs that evaluate to the words in the list
Cz.

Step 8. For each n with 0 ≤ n ≤ (J − 1)! and each z′ ∈ Cz, let g = ynz′ and test
whether u =G gvg−1. If so then return true (and a conjugating element). If not,
then u and v are not conjugate [11, Section 3.4], so return false.

We can perform corresponding operations in polynomial time with the SLPs.
This concludes the description of a polynomial time algorithm for the compressed
conjugacy problem.

6.2.2. Compressed simultaneous conjugacy and centralizers: the infinite order case.
We now move on to the compressed simultaneous conjugacy problem and the
compressed centralizer problem. So the input consists of two lists LG := (G1, . . . ,Gk)
and LH := (H1, . . . ,Hk) of SLPs over the alphabet Σ. For the compressed centralizer
problem we assume that Gi = Hi. Let ui := val(Gi) and vi := val(Hi).

The algorithm below involves a number of replacements of the elements in the
first list by conjugates, culminating in a check for a conjugating element among the
elements of an explicit finite set. In each of the replacements, SLPs are known for
the conjugating elements involved, and so by keeping track of these, we can find (in
the case when the lists are conjugate) a conjugating element for the original input
lists. We shall give no further details of this process in the proofs below.

As in [5] we start by solving the problems in the case when at least one of the
group elements defined in the list LG has infinite order. By Corollary 6.1 we can
check in polynomial time whether some ui has infinite order. Let us assume that
this holds. By reordering the lists if necessary, we may assume that u1 has infinite
order. We can assume that the same applies to v1 since otherwise the lists are not
conjugate. We now apply the element conjugacy algorithm to u1 and v1 to find an
SLP for an element g ∈ G with ug1 =G v1 (if there is no such g then the lists are not
conjugate). This process involves replacing u1 and v1 by conjugates in some of the
steps, and when we do that we must of course make corresponding replacements
to the other elements ui and vi in the lists. Finally, by replacing each ui by its
conjugate under g, we may assume that u1 = v1.

So we need to decide whether there exists g ∈ CG(u1) with ugi =G vi for 2 ≤ i ≤ k.
In the following we refer to the eight steps from Section 6.2.1. Recall that after
Step 5, we have um1 =G vm1 =G z for some shortlex straight element z and m > 0.
These equations are preserved if we conjugate with an element from CG(z). Hence,
for the u1 = v1 computed in the previous paragraph we also have um1 = z. In Step
6, we write z = yl. It is shown in [11, Section 3.4] that all elements g ∈ CG(z)
have the form g =G ynz′, for some n ∈ Z and z′ ∈ Cz, where Cz is the list (of
SLPs) of elements in CG(z) that we computed in Step 7. So the same applies to
any g ∈ CG(u1) ⊆ CG(z).

Now, by trying each z′ ∈ Cz in turn, and replacing each vi by z′vi(z
′)−1 in each

case, the problem reduces to the following: does there exist n ∈ Z such that uy
n

i = vi
for 1 ≤ i ≤ k?

To solve this problem, we apply [5, Proposition 3.23] to each pair ui, vi in turn.
For each i, there are three possibilities.

(i) there exist 0 ≤ ri < ti ≤ |B2δ(1)| such that uy
j

i =G vi if and only if
j ≡ ri mod ti;

(ii) there is a unique ri ∈ Z with uy
ri

i =G vi, where |ri| is bounded by a linear
function of |ui| and |vi|;

(iii) there is no ri ∈ Z with uy
ri

i =G vi.
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[5, Proposition 3.23] provides an algorithm for determining which case applies, and
for finding ri, ti in cases (i) and (ii). This involves calculating a bounded number of
powers uni , vni and yn for integers n such that |n| is bounded by a linear function of
|ui| and |vi|, and we can perform that calculation in polynomial time with SLPs by
Proposition 4.2.

After performing this calculation for each i with 1 ≤ i ≤ k, the conjugacy problem
for the lists reduces to solving some modular linear equations involving the integers
ri and ti, as described in [5, Section 3.4]. Since the ri and ti in case (i) are bounded
by a constant and, for ri in case (ii), log |ri| is bounded by a linear function of the
size of the SLPs representing ui and vi, these equations can be solved in polynomial
time using standard arithmetical operations on the binary representations of ri and
ti.

For the compressed centralizer problem, we are in the same situation but with
vi = ui for all i. We perform the same calculations as above, but we do it for
each z′ ∈ Cz and, if there are solutions, then we can find them by solving modular
equations. The centralizer of the list is either finite, or is virtually cyclic, in which
case it contains a subgroup of 〈y〉 of finite index, which we will find when we do the
calculation for z′ = 1. See [5, Section 3.5] for more details.

6.2.3. Compressed simultaneous conjugacy and centralizers: the finite order case.
This case is handled for lists of elements given by standard input words in [5, Section
4]. In fact no new complications arise when applying the same methods to lists
defined by SLPs. Indeed some of the steps become easier, because we are only
interested in achieving polynomial time rather than linear time.

We follow the steps of the algorithm described in [5, Section 4.5]. Note that the
conjugacy and centralizer problems are handled together, where the two lists are
taken to be equal for the centralizer calculation. At this stage we have already
verified that all ui and vi have finite order, and these words are all shortlex reduced.
We start by eliminating any duplicates in the lists u1, . . . , uk and by v1, . . . , vk. So
we can now assume that the ui represent distinct group elements, and similarly for
the vi.

Let n := min{|B2δ(1)|4 + 1, k}. We consider the initial bounded length sublists
L1 := (u1, . . . , un) and L2 := (v1, . . . , vn) of the lists of group elements. We apply
the function ShortenWords from [5, Section 4.2] to the lists L1 and L2. This
function involves finding subwords, replacing words by cyclic rotations, and applying
shlex to words, which can be executed in polynomial time when working with SLPs.
Since there is an absolute bound |B2δ(1)|4 + 1 on the lengths of L1 and L2, the
complete application of ShortenWords to each list takes place in polynomial
time.

ShortenWords either finds a product urur+1 · · ·us of elements of L1 that
has infinite order, and thereby reduces the problem to the previous case; or it
replaces L1 and L2 by conjugates and then calculates lists L′1 := (u′1, . . . , u

′
n) and

L′2 = (v′1, . . . , v
′
n) with |u′i| and |v′i| bounded by a constant, and such that Lg1 = L2

if and only if (L′1)g = L′2.
In the second case, we can test in time O(1) using standard operations in the

group whether there exists g ∈ G with (u′1, . . . , u
′
n)g = (v′1, . . . , v

′
n) (or we could look

this up on a precomputed list). If so, we replace (u1, . . . , uk) by (u1, . . . , uk)g and
thereby assume that ui = vi for 1 ≤ i ≤ n. For the centralizer problem, methods are
described in [14, Proposition 2.3] of finding a generating set of the centralizer of any
quasiconvex subgroup of any biautomatic group, and finitely generated subgroups of
hyperbolic groups satisfy these conditions. Since they need only be applied to words
of bounded length their complexity does not matter - indeed, we could precompute
all such centralizers.
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This completes the proof in the case n = k. In the case k > n, it is proved in
[5, Corollary 4.6] that the centralizer C of the subgroup 〈u1, . . . , un〉 is finite, and
that the elements of C have lengths bounded by a constant. So we can compute the
elements of C explicitly (in time O(1)). Then we simply need to check whether any
g ∈ C satisfies (un+1, . . . , uk)g = (vn+1, . . . , vk).

6.3. Compressed knapsack. Let G be a finitely generated group with the finite
symmetric generating set Σ. A knapsack expression over G is a formal expression of
the form E = v0u

∗
1v1u

∗
2v2 · · ·u∗kvk with k ≥ 0 and ui, vi ∈ Σ∗. A solution for E is a

tuple (n1, n2, . . . , nk) ∈ Nk of natural numbers such that v0u
n1
1 v1u

n2
2 v2 · · ·unk

k vk =G

1. The length of E is defined as |E| = |v0|+
∑k
i=1 |ui|+ |vi|. The knapsack problem

for G is the following decision problem:

Input: A knapsack expression E over G.
Question: Does E has a solution?

Note that v0u
n1
1 v1u

n2
2 v2 · · ·unk

k vk =G 1 if and only if

(v0u1v
−1
0 )n1(v0v1u2v

−1
1 v−1

0 )n2 · · · (v0 · · · vk−1ukv
−1
k−1 · · · v

−1
0 )nk(v0 · · · vk) = 1.

Hence, it suffices to consider knapsack expressions of the form u∗1u
∗
2 · · ·u∗kv.

In [33] it was shown that the knapsack problem for a hyperbolic group can be
solved in polynomial time. A crucial step in the proof for this fact is the following
result, which is of independent interest:

Theorem 6.2 (c.f. [33]). For every hyperbolic group G there exists a polynomial p(x)
such that the following holds: if a knapsack expression E = v0u

x1
1 v1u

x2
2 v2 · · ·uxk

k vk
over G has a solution then it has a solution (n1, . . . , nk) ∈ Nk such that ni ≤ p(|E|)
for all 1 ≤ i ≤ k.

Let us now consider the compressed knapsack problem for G. It is defined in
the same way as the knapsack problem, except that the words ui, vi ∈ Σ∗ are
given by SLPs. It is well known that the compressed knapsack problem for Z is
NP-complete [16, Proposition 4.1.1]. In fact, this problem corresponds to a variant
of the classical knapsack problem for binary encoded integers (for an integer z, it is
easy to construct in polynomial time from the binary encoding of z an SLP over the
symmetric generating set {a, a−1} of Z which evaluates to az or to (a−1)−z). Hence,
for every non-torsion group, the compressed knapsack problem is NP-hard. This
makes it interesting to look for groups where the compressed knapsack problem is
NP-complete.

From Corollary 1.1 and Theorem 6.2 we can easily prove Theorem 1.5, which
states that compressed knapsack for an infinite hyperbolic group G is NP-complete.

Proof of Theorem 1.5. Consider a knapsack expression E = v0u
∗
1v1u

∗
2v2 · · ·u∗kvk

over G, where the ui and vi are given by SLPs Gi and Hi, respectively. Let

N := |H0|+
∑k
i=1(|Gi|+ |Hi|) be the input length. By Theorem 6.2, there exists

a polynomial p(x) such that E has a solution if and only if it has a solution
(n1, . . . , nk) ∈ Nk of E = 1 such that ni ≤ p(|E|) for all 1 ≤ i ≤ k. Since
|ui| ≤ 3|Gi|/3 and |vi| ≤ 3|Hi|/3) by Lemma 4.1, we obtain a bound of the form
2O(N) on the ni. Hence, we can guess a tuple (n1, . . . , nk) ∈ Nk with all ni
bounded by 2O(N) and then check whether it is a solution of E. The latter can be
done in polynomial time by constructing from the SLPs Gi and Hi an SLP G for
v0u

n1
1 v1u

n2
2 v2 · · ·unk

k vk using Proposition 4.2. Finally, we check in polynomial time
whether val(G) =G 1 using Corollary 1.1.

That compressed knapsack is NP-hard for G follows from the well known fact that
every infinite hyperbolic group is non-torsion together with the above mentioned
result for Z [16, Proposition 4.1.1]. �
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[2] László Babai and Endre Szemerédi. On the complexity of matrix group problems I. In
Proceedings of the 25th Annual Symposium on Foundations of Computer Science, FOCS

1984, pages 229–240. IEEE Computer Society, 1984.

[3] Martin Beaudry, Pierre McKenzie, Pierre Péladeau, and Denis Thérien. Finite monoids: From
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