
Sliding Window Algorithms for Regular
Languages

Moses Ganardi, Danny Hucke, and Markus Lohrey

Universität Siegen
Department für Elektrotechnik und Informatik

Hölderlinstrasse 3
D-57076 Siegen, Germany

{ganardi,hucke,lohrey}@eti.uni-siegen.de

Abstract. This paper gives a survey on recent results for sliding window
streaming algorithms for regular languages. Details can be found in the
recent papers [18, 19].

Keywords: automata theory, streaming algorithms, sliding window al-
gorithms, regular languages

1 Introduction

Streaming algorithms. Streaming algorithms [1] process an input sequence
a1a2 · · · am of data values from left to right. Random access to the input is not
allowed, and at time instant t the algorithm has only direct access to the current
data value at and its goal is to compute an output value f(a1a2 · · · at) for a
certain function f . During this process it is quite often infeasible and in many
settings also not necessary to store the whole history a1a2 · · · at. Such a scenario
arises for instance when searching in large databases (e.g., genome databases
or web databases), analyzing internet traffic (e.g. click stream analysis), and
monitoring networks. Ideally, a streaming algorithm works in constant space,
in which case the algorithms is a deterministic finite automaton (DFA), but
polylogarithmic space with respect to the input length might be acceptable, too.

The first papers on streaming algorithms as we know them today are usually
attributed to Munro and Paterson [24] and Flajolet and Martin [16], although
the principle idea goes back to the work on online machines by Hartmanis,
Lewis and Stearns from the 1960’s [23, 27]. Extremely influential for the area
of streaming algorithms was the paper of Alon, Matias, and Szegedy [2] on
computing frequency moments in the streaming model.

The sliding window model. The streaming model sketched above is also
known as the standard streaming model. One missing aspect of the standard
model is the fact that data items are usually no longer important after a certain
time. For instance, in the analysis of a time series as it may arise in medical
monitoring, web tracking, or financial monitoring, data items are usually outdated

2 M. Ganardi, D. Hucke, and M. Lohrey

after a certain time. The sliding window model is an alternative streaming model
that can capture this aspect. Two variants of the sliding window model can be
found in the literature; see e.g. [3]:

– Fixed-size model: In this model the algorithm works on a sliding window of a
certain fixed length n. While reading the input word w = a1a2 · · · am symbol
by symbol from left to right it has to output at every time instant n ≤ t ≤ m
a value f(at−n+1 · · · at) that depends on the n last symbols. The number n
is also called the window size.

– Variable-size model: Here, the sliding window at−n+1at−n+2 · · · at is deter-
mined by an adversary. At every time instant the adversary can either remove
the first data value from the sliding window (expiration of a value), or add a
new data value at the right end (arrival of a new value).

In the seminal paper of Datar et al. [15], where the (fixed-size) sliding window
model was introduced, the authors show how to maintain the number of 1’s in a
sliding window of size n over the alphabet {0, 1} in space 1

ε · log2 n if one allows
a multiplicative error of 1± ε. A matching lower bound is proved as well in [15].
Following the work of Datar et al., a large number of papers that deal with the
approximation of statistical data over sliding windows followed. Let us mention
the work on computation of the variance and k-median [4], quantiles [3], and
entropy [8] over sliding windows. Other computational problems that have been
considered for the sliding window model include optimal sampling [9], various
pattern matching problems [10–13], database querying (e.g. processing of join
queries [20]) and graph problems (e.g. checking for connectivity and computation
of matchings, spanners, and spanning trees [14]). Further references on the sliding
window model can be found in the surveys [1, Chapter 8] and [7].

Language recognition in the streaming model. A natural problem that
has been surprisingly neglected for the streaming model (in particular the sliding
window model) is language recognition. The goal is to check whether an input
string belongs to a given language L. Let us quote Magniez, Mathieu, and Nayak
[22]: “Few applications [of streaming] have been made in the context of formal
languages, which may have impact on massive data such as DNA sequences and
large XML files. For instance, in the context of databases, properties decidable
by streaming algorithm have been studied [26, 25], but only in the restricted
case of deterministic and constant memory space algorithms.” For Magniez et
al. this was the starting point to study language recognition in the streaming
model. Thereby they restricted their attention to the above mentioned standard
streaming model. Note that in the standard model the membership problem
for a regular language is trivial to solve: One simply has to simulate a DFA
on the stream and thereby only store the current state of the DFA. In [22] the
authors presented a randomized streaming algorithm for the (non-regular) Dyck
language Ds with s pairs of parenthesis that works in space O(

√
n log n) and time

polylog(n) per symbol. The algorithm has a one-sided error: it accepts with small
probability also words that do not belong to Ds. An almost matching lower bound
of Ω(

√
n log n) for two-sided errors is proved in [22] as well. Further investigations

Sliding Window Algorithms for Regular Languages 3

on streaming language recognition for various subclasses of context-free languages
can be found in [5, 6, 17, 21].

Let us emphasize that all the papers cited in the last paragraph exclusively
deal with the standard streaming model. Language recognition problems for the
sliding window model have been completely neglected so far. This is surprising,
since even for regular languages the membership problem becomes non-trivial in
the sliding window model. This was the starting point for our work on streaming
[18, 19] that mainly deals with the membership problem for regular languages in
the sliding window model. Before we explain the results from [18, 19] in Section 4,
we formally define the various streaming models in the next section.

2 Streaming Algorithms as Automata

We use standard definitions from automata theory. A nondeterministic finite
automaton (NFA) is a tuple A = (Q,Σ, I,∆, F) where Q is a finite set of
states, Σ is an alphabet, I ⊆ Q is the set of initial states, ∆ ⊆ Q × Σ × Q
is the transition relation and F ⊆ Q is the set of final states. A deterministic
finite automaton (DFA) A = (Q,Σ, q0, δ, F) has a single initial state q0 ∈ Q
instead of I and a transition function δ : Q ×Σ → Q instead of the transition
relation ∆. A deterministic automaton has the same format as a DFA, except
that the state set Q is not required to be finite. If A is deterministic, the
transition function δ is extended to a function δ : Q × Σ∗ → Q in the usual
way and we define A(x) = δ(q0, x) for x ∈ Σ∗. The language accepted by A is
L(A) = {w ∈ Σ∗ : δ(q0, w) ∈ F}.

Recall from the introduction that a streaming algorithm reads an input word
w = a1a2 · · · am from left to right and computes at every time instant 0 ≤ t ≤ m
a value f(a1a2 · · · at) for some target function f . In this paper we make two
restrictions:

– The data values ai are from some finite alphabet Σ. This rules out streaming
algorithms that read for instance a natural number in each time unit.

– The target function is boolean-valued, i.e., f : Σ∗ → {0, 1}.

These two restrictions imply that a streaming algorithm can be seen as a de-
terministic automaton, possibly with an infinite state set. Moreover, in order
to make statements about the space complexity of a streaming algorithm, we
also have to fix an encoding of the automaton states by bit strings. Formally,
a streaming algorithm over Σ is a deterministic (possibly infinite) automaton
A = (S,Σ, s0, δ, F), where the states are encoded by bit strings. We describe
this encoding by an injective function enc: S → {0, 1}∗. The space function
space(A, ·) : Σ∗ → N specifies the space used by A on a certain input: For
w ∈ Σ∗ let space(A, w) = max{|enc(A(u))| : u ∈ Pref(w)}, where Pref(w) de-
notes the set of prefixes of w. We also say that A is a streaming algorithm for
the accepted language L(A).

4 M. Ganardi, D. Hucke, and M. Lohrey

3 Sliding Window Streaming Models

In the above streaming model, the output value of the streaming algorithm at
time t depends on the whole past a1a2 · · · at of the data stream. However, in
many practical applications one is only interested in the relevant part of the past.
Two formalizations of “relevant past” can be found in the literature:

– Only the suffix of a1a2 · · · at of length n is relevant. Here, n is a fixed constant.
This streaming model is called the fixed-size sliding window model.

– The relevant suffix of a1a2 · · · at is determined by an adversary. In this model,
at every time instant the adversary can either remove the first symbol from
the active window (expiration of a data value), or add a new symbol at the
right end (arrival of a new data value). This streaming model is also called
the variable-size sliding window model.

In the following two subsections, we formally define these two models.

3.1 Fixed-Size Sliding Windows

Given a word w = a1a2 · · · am ∈ Σ∗ and a window length n ≥ 0, we define
lastn(w) ∈ Σn by

lastn(w) =

{
am−n+1am−n+2 · · · am, if n ≤ m,
�n−ma1 · · · am, if n > m,

which is called the active window. Here � ∈ Σ is an arbitrary symbol, which
fills the initial window. A sequence A = (An)n≥0 is a fixed-size sliding window
algorithm for a language L ⊆ Σ∗ if each An is a streaming algorithm for the
language

Ln := {w ∈ Σ∗ : lastn(w) ∈ L}.

Its space complexity is the function fA : N→ N∪{∞} where fA(n) is the maximal
encoding length of a state in An. Note that for every language L and every n
the language Ln is regular, which ensures that An can be chosen to be a DFA
and hence fA(n) <∞ for all n ≥ 0.

A trivial fixed-size sliding window algorithm B = (Bn)n≥0 for L is obtained
by taking the DFAs Bn = (Σn, Σ,�n, δn, Σ

n ∩ L) with the transition function
δn(au, b) = ub for a, b ∈ Σ, u ∈ Σn−1. It stores the active window explicitly in the
state. States of Bn can be encoded with O(log |Σ| · n) bits. By minimizing each
Bn, we obtain an optimal fixed-size sliding window algorithm AL for L. Finally, we
define FL(n) = fAL

(n). Thus, FL is the space complexity of an optimal fixed-size
sliding window algorithm for L. Notice that FL is not necessarily monotonic. For
instance, take L = {au : u ∈ {a, b}∗, |u| odd}. Then, we have FL(2n) ∈ Θ(n) (see
Example 5 below) and FL(2n+ 1) ∈ O(1). The above trivial algorithm B yields
FL(n) ∈ O(n) for every language L.

Note that the fixed-size sliding window model is a non-uniform model: for
every window size we have a separate streaming algorithm and these algorithms

Sliding Window Algorithms for Regular Languages 5

do not have to follow a common pattern. Working with a non-uniform model
makes lower bounds stronger. In contrast, the variable-size sliding window model
that we discuss next is a uniform model in the sense that there is a single
streaming algorithm that works for every window length.

3.2 Variable-Size Sliding Windows

For an alphabet Σ we define the extended alphabet Σ = Σ ∪{↓}. In the variable-

size model the active window wnd(u) ∈ Σ∗ for a stream u ∈ Σ∗ is defined as
follows:

– wnd(ε) = ε
– wnd(ua) = wnd(u) a for a ∈ Σ
– wnd(u↓) = ε if wnd(u) = ε
– wnd(u↓) = v if wnd(u) = av for a ∈ Σ

A variable-size sliding window algorithm for a language L ⊆ Σ∗ is a streaming
algorithm A for {w ∈ Σ∗ : wnd(w) ∈ L}. Its space complexity is the function
vA : N→ N ∪ {∞} mapping each window length n to the maximum number of
bits used by A on inputs producing an active window of size at most n. Formally,
it is the function

vA(n) = max{space(A, u) : u ∈ Σ∗, |wnd(v)| ≤ n for all v ∈ Pref(u)}.

Note that vA is a monotonic function. It is not completely obvious that every
language L has an optimal variable-size sliding window algorithm:

Lemma 1. For every language L ⊆ Σ∗ there exists a variable-size sliding window
algorithm A such that vA(n) ≤ vB(n) for every variable-size sliding window
algorithm B for L and every n.

We define VL(n) = vA(n), where A is a space optimal variable-size sliding window
algorithm for L from Lemma 1. Since any algorithm in the variable-size model
yields an algorithm in the fixed-size model, we have FL(n) ≤ VL(n).

It is not hard to show that any variable-size sliding window algorithm for a
non-trivial language has to store enough information to recover the length of the
active window. Hence, we have:

Lemma 2. For every language L ⊆ Σ∗ such that ∅ 6= L 6= Σ∗ we have VL(n) ∈
Ω(log n).

4 Sliding Window Algorithms for Regular Languages

4.1 Space Trichotomy for Regular Languages

The main result from [19] is a space trichotomy for regular languages with respect
to the two sliding window models: For every regular language, the space is either
constant, logarithmic or linear.

6 M. Ganardi, D. Hucke, and M. Lohrey

Theorem 3 (space trichotomy [19]). For every regular language L, exactly
one of the following three cases holds:

1. FL(n) ∈ O(1)
2. FL(n) ∈ O(log n) \ o(log n) and VL(n) ∈ Θ(log n)
3. FL(n) ∈ O(n) \ o(n) and VL(n) ∈ Θ(n)

Note in particular that the class of regular languages that need logarithmic space
(resp., linear space) is the same for the fixed-size model and the variable-size model.
This is not true for constant space: For instance, for the language L1 = {a, b}∗a
we have FL1

(n) ∈ O(1), whereas Lemma 2 implies that VL1
(n) ∈ Ω(log n). Here

are two further examples:

Example 4. For the language L2 = {a, b}∗a{a, b}∗ we have FL2
(n) ∈ Θ(log n) as

well as VL2
(n) ∈ Θ(log n). A variable-size sliding window algorithm for L2 stores

(i) the length of the active window and (ii) the position of the right-most a in
the active window (or ∞ if the active window does not contain an a). For this,
O(log n) bits are sufficient. To see that VL2

(n) ∈ Ω(log n) consider a fixed-size
sliding window algorithm A = (An)n≥0 for L2. Consider the window length n
and all strings wi = bi−1abn−i for 1 ≤ i ≤ n. Then a standard fooling argument
shows that for 1 ≤ i < j ≤ n the words wi and wj must lead to different states
in An. Hence, An has at least n states, which implies that fA(n) ∈ Ω(log n).

Example 5. For the language L3 = a{a, b}∗ we have FL3
(n) ∈ Θ(n) as well as

VL2(n) ∈ Θ(n). It suffices to show the lower bound FL3(n) ∈ Ω(n). This follows
from a fooling argument similar to the one from Example 4: Consider a fixed-size
sliding window algorithm A = (An)n≥0 for L3. Consider the window length n.
Then, all words from Σn have to lead to different states of An, i.e., An has at
least |Σ|n states which implies that fA(n) ∈ Ω(n).

The reader might wonder why we write FL(n) ∈ O(log n) \ o(log n) (resp.,
FL(n) ∈ O(n) \ o(n)) instead of FL(n) ∈ Θ(log n) (resp., FL(n) ∈ Θ(n)) in
point 2 (resp., point 3) of Theorem 3. To see that this is indeed necessary,
consider again the language L = {au : u ∈ {a, b}∗, |u| odd}. Then, we have
FL(2n) ∈ O(n) \ o(n), but FL(n) 6∈ Ω(n), since FL(2n + 1) ∈ O(1). On the
other hand, for the variable-size model, we can make the stronger statement
VL(n) ∈ Θ(log n) (resp., VL(n) ∈ Θ(n)) due to the monotonicity of VL(n).

4.2 Characterizations of the Space Classes

We use the following notation for the three classes from Theorem 3:

– Reg(1) is the class of all regular languages for which point 1 from Theorem 3
holds.

– Reg(log n) is the class of all regular languages for which point 2 from Theo-
rem 3 holds.

– Reg(n) is the class of all regular languages for which point 3 from Theorem 3
holds.

Sliding Window Algorithms for Regular Languages 7

0 1 2

3

4
a, b

b

a

a a, b

b
a, b

Fig. 1. A well-behaved DFA.

Theorem 3 does not give language theoretical characterizations of the above
three classes. Such characterizations were provided in [18]. We need the following
definitions.

A language L ⊆ Σ∗ is called k-suffix testable if for all x, y ∈ Σ∗ and z ∈ Σk

we have: xz ∈ L if and only if yz ∈ L. Equivalently, L is a Boolean combination
of languages of the form Σ∗w where w ∈ Σ≤k. We call L suffix testable if it is
k-suffix testable for some k ≥ 0. Clearly, every finite language is suffix testable: if
L ⊆ Σ≤k then L is (k+1)-suffix testable. Moreover, every suffix testable language
is regular. A language L ⊆ Σ∗ is called a length language if for all n ∈ N, either
Σn ⊆ L or L ∩Σn = ∅.

Theorem 6 ([18]). Reg(1) is the class of all finite Boolean combination of
suffix testable languages and regular length languages.

In order to characterize the class Reg(log n) we need the following definition: A
language L ⊆ Σ∗ is called a left ideal if Σ∗L ⊆ L.

Theorem 7 ([18]). Reg(log n) is the class of all finite Boolean combination of
regular left ideals and regular length languages.

The class Reg(log n) has a useful characterization in terms of automata as well.
A strongly connected component (SCC for short) of a DFA A = (Q,Σ, q0, δ, F) is
an inclusion-maximal subset C ⊆ Q such that for all p, q ∈ C there exist words
u, v ∈ Σ∗ such that δ(p, u) = q and δ(q, v) = p. A singleton SCC {q} is called
trivial if δ(q, u) 6= q for all non-empty words u (i.e., q is not on a cycle). An
SCC C ⊆ Q is well-behaved if for all q ∈ C and u, v ∈ Σ∗ with |u| = |v| and
δ(q, u), δ(q, v) ∈ C we have: δ(q, u) ∈ F if and only if δ(q, v) ∈ F . Clearly, every
trivial SCC is well-behaved. If every SCC in A which is reachable from q0 is
well-behaved, then A is called well-behaved. Figure 1 shows an example of a
well-behaved DFA. Its SCCs are {0} (which is trivial), {1}, {2, 3}, and {4}.

For a word w = a1a2 · · · an, let wrev = an · · · a2a1 be the reversed word.

Theorem 8 ([18]). A regular language L belongs to Reg(log n) if and only if
the reversed language Lrev = {wrev : w ∈ L} is accepted by a well-behaved DFA.
Moreover, this holds if and only if every DFA for Lrev is well-behaved.

Let us sketch the logspace (variable-size) sliding-window algorithm for a regular
language L such that Lrev is accepted by a well-behaved DFA A = (Q,Σ, q0, δ, F).
Let w be the current active window. Assume that we store for every state q ∈ Q
the run of A on the word wrev (i.e., the sequence of visited states) that starts in q.

8 M. Ganardi, D. Hucke, and M. Lohrey

This information would allow to make the necessary updates and queries for the
variable-size model (i.e., removing the left-most symbol from the window, adding
a symbol on the right, and testing membership in L). But the space needed to
store these runs would be linear in the length w. The main observation for the
logspace algorithm is that since A is well-behaved it suffices to store for each of the
above runs a so called path summary that is defined as follows: Let C1, . . . , Ck be
the sequence of pairwise different SCCs that are visited by the run in that order.
The path summary of the run is the sequence (q1, `1, q2, `2, . . . , qk, `k) where qi
is the first state in Ci visited by ρ, and `i ≥ 0 is the number of transitions from
the first occurrence of qi until the first state from Ci+1 (or until the end for qk).

The lower bound Ω(n) for the space complexity (with respect to the fixed-size
model) in case Lrev is accepted by a DFA that is not well-behaved can be shown
by a fooling argument similar to the one from Example 5.

4.3 Uniform Space Bounds

In the statements from Sections 4.1 and 4.2 we always assume a fixed regular
language. When, e.g., saying that VL ∈ O(log n) then the O-constant depends
on the automaton size. Using the path summaries mentioned in Sections 4.2, one
can show:

Theorem 9 ([18]). Let A be a DFA or NFA with m states such that L =
L(A) ∈ Reg(log n) is well-behaved. There are constants cm, dm that only depend
on m such that the following holds:

– If A is a DFA then VL(n) ≤ (2m ·m+ 1) · log n + cm for n large enough.
– If A is an NFA then VL(n) ≤ (4m + 1) · log n + dm for n large enough.

The following theorem states a lower bound for the fixed-size model (and hence
also for the variable-size model) that almost matches the space bound in Theo-
rem 9:

Theorem 10 ([18]). For all k ≥ 1 there exists a language Lk ⊆ {0, . . . , k}∗
recognized by a DFA with k + 3 states such that Lk ∈ Reg(log n) and FLk

(n) ≥
(2k − 1) · (log n− k).

It is open whether in Theorem 10 the alphabet {0, . . . , k} can be replaced by a
fixed (e.g. binary) alphabet without changing the lower bound.

4.4 Deciding the Space Classes

Theorem 8 leads to a decision algorithm for the class Reg(log n): Given a DFA
(or NFA) for a regular language L, one first constructs a DFA A for Lrev using
standard automata constructions and then checks whether A is well-behaved.
But this algorithm is not very efficient since in general the size of a DFA for Lrev

is exponential in the size of an automaton for L, even if the latter automaton
is deterministic. In [18] we provided a more efficient algorithm for the class
Reg(log n) as well as Reg(1) in case the input automaton is deterministic.

Sliding Window Algorithms for Regular Languages 9

Theorem 11 ([18]). Given a DFA for a regular language L, it is NL-complete
to check whether L ∈ Reg(log n), respectively L ∈ Reg(1).

As one might expect, if the input automaton is nondeterministic than the com-
plexity increases by one exponent:

Theorem 12 ([18]). Given an NFA for a regular language L, it is Pspace-
complete to check whether L ∈ Reg(log n), respectively L ∈ Reg(1).

5 Future Work

The space trichotomy theorem for regular languages (Theorem 3) leads to several
interesting research questions:

– Do similar results hold for context-free languages or subclasses like determin-
istic context-free languages or visibly pushdown languages?

– Is it possible to generalize Theorem 3 to a randomized setting? In fact, most
papers on streaming algorithms deal with randomized streaming algorithms.

These topics will be the content of two forthcoming papers.

References

1. Aggarwal, C.C.: Data Streams - Models and Algorithms. Springer (2007)
2. Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the

frequency moments. J. Comput. Syst. Sci. 58(1), 137–147 (1999)
3. Arasu, A., Manku, G.S.: Approximate counts and quantiles over sliding windows.

In: Proceedings of PODS 2004. pp. 286–296. ACM (2004)
4. Babcock, B., Datar, M., Motwani, R., O’Callaghan, L.: Maintaining variance and

k-medians over data stream windows. In: Proceedings of PODS 2003. pp. 234–243.
ACM (2003)

5. Babu, A., Limaye, N., Radhakrishnan, J., Varma, G.: Streaming algorithms for
language recognition problems. Theor. Comput. Sci. 494, 13–23 (2013)

6. Babu, A., Limaye, N., Varma, G.: Streaming algorithms for some problems in
log-space. In: Proceedings of TAMC 2010. Lecture Notes in Computer Science, vol.
6108, pp. 94–104. Springer (2010)

7. Braverman, V.: Sliding window algorithms. In: Encyclopedia of Algorithms, pp.
2006–2011. Springer (2016)

8. Braverman, V., Ostrovsky, R.: Smooth histograms for sliding windows. In: Proceed-
ings of FOCS 2007. pp. 283–293. IEEE Computer Society (2007)

9. Braverman, V., Ostrovsky, R., Zaniolo, C.: Optimal sampling from sliding windows.
J. Comput. Syst. Sci. 78(1), 260–272 (2012)

10. Breslauer, D., Galil, Z.: Real-time streaming string-matching. ACM Trans. Algo-
rithms 10(4), 22:1–22:12 (2014)

11. Clifford, R., Fontaine, A., Porat, E., Sach, B., Starikovskaya, T.A.: Dictionary
matching in a stream. In: Proceedings of ESA 2015. Lecture Notes in Computer
Science, vol. 9294, pp. 361–372. Springer (2015)

10 M. Ganardi, D. Hucke, and M. Lohrey

12. Clifford, R., Fontaine, A., Porat, E., Sach, B., Starikovskaya, T.A.: The k -mismatch
problem revisited. In: Proceedings of SODA 2016. pp. 2039–2052. SIAM (2016)

13. Clifford, R., Starikovskaya, T.A.: Approximate hamming distance in a stream. In:
Proceedings of ICALP 2016. LIPIcs, vol. 55, pp. 20:1–20:14. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2016)

14. Crouch, M.S., McGregor, A., Stubbs, D.: Dynamic graphs in the sliding-window
model. In: Proceedings of ESA 2013. Lecture Notes in Computer Science, vol. 8125,
pp. 337–348. Springer (2013)

15. Datar, M., Gionis, A., Indyk, P., Motwani, R.: Maintaining stream statistics over
sliding windows. SIAM J. Comput. 31(6), 1794–1813 (2002)

16. Flajolet, P., Martin, G.N.: Probabilistic counting algorithms for data base applica-
tions. J. Comput. Syst. Sci. 31(2), 182–209 (1985)

17. François, N., Magniez, F., de Rougemont, M., Serre, O.: Streaming property testing
of visibly pushdown languages. In: Proceedings of ESA 2016. LIPIcs, vol. 57, pp.
43:1–43:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016)

18. Ganardi, M., Hucke, D., König, D., Lohrey, M., Mamouras, K.: Automata theory
on sliding windows. In: Proceedings of STACS 2018. LIPIcs, Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2018), to appear

19. Ganardi, M., Hucke, D., Lohrey, M.: Querying regular languages over sliding
windows. In: Proceedings of FSTTCS 2016. LIPIcs, vol. 65, pp. 18:1–18:14. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik (2016)

20. Golab, L., Özsu, M.T.: Processing sliding window multi-joins in continuous queries
over data streams. In: Proceedings of VLDB 2003. pp. 500–511. Morgan Kaufmann
(2003)

21. Krebs, A., Limaye, N., Srinivasan, S.: Streaming algorithms for recognizing nearly
well-parenthesized expressions. In: Proceedings of MFCS 2011. Lecture Notes in
Computer Science, vol. 6907, pp. 412–423. Springer (2011)

22. Magniez, F., Mathieu, C., Nayak, A.: Recognizing well-parenthesized expressions
in the streaming model. SIAM J. Comput. 43(6), 1880–1905 (2014)

23. Lewis II, P.M., Stearns, R.E., Hartmanis, J.: Memory bounds for recognition of
context-free and context-sensitive languages. In: Proceedings of the 6th Annual
Symposium on Switching Circuit Theory and Logical Design. pp. 191–202. IEEE
Computer Society (1965)

24. Munro, J.I., Paterson, M.: Selection and sorting with limited storage. Theor. Comput.
Sci. 12, 315–323 (1980)

25. Segoufin, L., Sirangelo, C.: Constant-memory validation of streaming XML doc-
uments against dtds. In: Proceedings of ICDT 2007. Lecture Notes in Computer
Science, vol. 4353, pp. 299–313. Springer (2007)

26. Segoufin, L., Vianu, V.: Validating streaming XML documents. In: Proceedings of
PODS 2002. pp. 53–64. ACM (2002)

27. Stearns, R.E., Hartmanis, J., Lewis II, P.M.: Hierarchies of memory limited compu-
tations. In: Proceedings of the 6th Annual Symposium on Switching Circuit Theory
and Logical Design. pp. 179–190. IEEE Computer Society (1965)

