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Abstract
A sliding window algorithm receives a stream of symbols and has to output at each time instant
a certain value which only depends on the last n symbols. If the algorithm is randomized, then at
each time instant it produces an incorrect output with probability at most ε, which is a constant
error bound. This work proposes a more relaxed definition of correctness which is parameterized
by the error bound ε and the failure ratio φ: a randomized sliding window algorithm is required
to err with probability at most ε at a portion of 1 − φ of all time instants of an input stream.
This work continues the investigation of sliding window algorithms for regular languages. In
previous works a trichotomy theorem was shown for deterministic algorithms: the optimal space
complexity is either constant, logarithmic or linear in the window size. The main results of
this paper concerns three natural settings (randomized algorithms with failure ratio zero and
randomized/deterministic algorithms with bounded failure ratio) and provide natural language
theoretic characterizations of the space complexity classes.
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1 Introduction

Sliding window algorithms process an input sequence a1a2 · · · am from left to right and have
at time t only direct access to the current symbol at. Moreover, at each time instant t the
algorithm is required to compute a value that depends on the last n symbols. The value n is
called the window size and the last n symbols form the active window at time t. In many
streaming applications, data items are outdated after a certain time and the sliding window
model is a simple way to model this. A general goal in the area of sliding window algorithms
is to avoid the explicit storage of the window content (which requires Ω(n) bits), and, instead,
to work in considerably smaller space, e.g. polylogarithmic space with respect to the window
size n. A detailed introduction into the sliding window model can be found in [1, Chapter 8].
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Regular languages over sliding windows. In our recent papers [7, 8] we initiated the study
of sliding window algorithms for regular languages. In general, a sliding window algorithm for
a language L ⊆ Σ∗ decides at every time instant whether the active window belongs to L. In
[8] we proved that for every regular language L the optimal space bound for a sliding window
algorithm for L is either constant, logarithmic or linear in the window size. This trichotomy
result resembles the well-known fact that every regular (even context-free) language has
either polynomial or exponential growth. In [7] we also gave several characterizations for
these space classes: A regular language has a sliding window algorithm with space O(logn)
if and only if it belongs to 〈LI,Len〉, which denotes the Boolean closure of the class LI
of regular left ideals and the class Len of regular length languages. Moreover, a regular
language has a sliding window algorithm that uses space O(1) if and only if it belongs to
〈ST,Len〉, where ST is the class of suffix-testable languages. The formal definitions of these
and other language classes can be found in Section 2. The goal of this work is to extend the
results from [7, 8] to randomized algorithms.

Main results. Consider a Monte-Carlo sliding window algorithm which can produce incorrect
outputs. Abstracting away from the actual computation, we will view such a randomized
sliding window algorithm (SWA for short) as a family R = (Rn)n≥0 of probabilistic automata,
where Rn is the algorithm for window size n. We denote by f(R, n) the number of bits
stored by Rn, which is the logarithm of the number of states. There are different ways to
define correctness of R for a certain language L. The maybe most natural choice is to require
that after reading an arbitrary input word a1a2 · · · am, the algorithm Rn correctly decides
whether am−n+1 · · · am ∈ L with probability at least 2/3. This ensures that for every input
stream and every time instant, one can be sure to get a correct answer with probability at
least 2/3. By a standard probability amplification argument, 2/3 can be replaced by any
probability strictly between 1/2 and 1. With this definition (formal details can be found in
Section 3) our first main result is the following, where SF denotes the class of all regular
suffix-free languages (point (1) and (5) are from [8]).

I Theorem 1.1. Let L ⊆ Σ∗ be a regular language.
1. If L ∈ 〈ST,Len〉, then L has a deterministic SWA R with f(R, n) = O(1).
2. If L /∈ 〈ST,Len〉, then f(R, n) /∈ o(log logn) for every randomized SWA R for L.
3. If L ∈ 〈ST,SF,Len〉, then L has a randomized SWA R with f(R, n) = O(log logn).
4. If L /∈ 〈ST,SF,Len〉, then f(R, n) /∈ o(logn) for every randomized SWA R for L.
5. If L ∈ 〈LI,Len〉, then L has a deterministic SWA R with f(R, n) = O(logn).
6. If L /∈ 〈LI,Len〉, then f(R, n) /∈ o(n) for every randomized SWA R for L.

One may argue that an algorithm which occasionally produces a wrong answer with
probability > 1/3 is acceptable as well. This motivates the following definition: We say that
a randomized algorithm for a certain language L and a window size n has failure ratio φ if
for every input stream, the portion of all time instants where the algorithm gives a wrong
answer with probability > 1/3 is bounded by φ. The second main result concerns algorithms
with a bounded failure ratio. If we ask for an arbitrarily small non-zero failure ratio we get
the following space dichotomy, where PF denotes the class of regular prefix-free languages:

I Theorem 1.2. Let L ⊆ Σ∗ be a regular language.
1. If L ∈ 〈LI,PF,Len〉 and 0 < φ ≤ 1, then L has a randomized SWA with f(R, n) = O(1)

and failure ratio φ.
2. If L /∈ 〈LI,PF,Len〉, then there exists a failure ratio 0 < φ ≤ 1 such that f(R, n) /∈ o(n)

for every randomized SWA R for L with failure ratio φ.
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Figure 1 All language classes are defined in Section 2.

The notion of failure ratio makes sense for deterministic sliding window algorithms as
well. Our third main result is a space trichotomy for deterministic sliding window algorithms
having a bounded failure ratio. Let LB denote the class of left ideals generated by bifix-free
(i.e., prefix- and suffix-free) regular languages. We then show:

I Theorem 1.3. Let L ⊆ Σ∗ be a regular language.
1. If L ∈ 〈LB,PF,SF,Len〉 and 0 < φ ≤ 1, then L has a deterministic SWA with

f(R, n) = O(1) and failure ratio φ.
2. If L /∈ 〈LB,PF,SF,Len〉, then there exists a failure ratio 0 < φ ≤ 1 such that f(R, n) /∈

o(logn) for every deterministic SWA R for L with failure ratio φ.
3. If L ∈ 〈LI,PF,Len〉 and 0 < φ ≤ 1, then L has a deterministic SWA with f(R, n) =
O(logn) and failure ratio φ.

4. If L /∈ 〈LI,PF,Len〉, then there exists a failure ratio 0 < φ ≤ 1 such that f(R, n) /∈ o(n)
for every deterministic SWA R for L with failure ratio φ.

Note that Theorem 1.3(4) is an immediate corollary of Theorem 1.2(2), and that The-
orem 1.3(3) follows from Theorem 1.3(1) and Theorem 1.1(5). Figure 1 summarizes the
resulting space classes for each setting; the left column shows the three classes for the
deterministic setting [7, 8]. Figure 2 shows an inclusion diagram for the language classes in
Figure 1. One can show that the example languages in Figure 2 witness the strictness of the
inclusions.

Technical contributions. Our randomized algorithms are based on a simulation of a counter
by a Bernoulli random variable. Albeit simple, this Bernoulli algorithm can be utilized for
sliding window algorithms with a bounded failure ratio. We present automata-theoretic
descriptions of several Boolean closed language classes, to derive certain witness words for
proving the lower bounds. Concerning lower bounds for sliding window algorithms with a
bounded failure ratio, we consider a promise variant of the communication problem IDXn,
which has randomized one-way communication complexity Ω(n). Also we prove that a DFA
which can count up to n, allowing a bounded failure ratio, needs Ω(n) states.

Related work. Let us emphasize related results which prove bounds on randomized sliding
window algorithms. In the seminal paper of Datar et al. [6], where the sliding window model
was introduced, the authors prove that the number of 1’s in a 0/1-sliding window of size n can
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Figure 2 Examples for all occurring language classes where Σ = {a, b, c}.

be maintained in space O( 1
ε · log2 n) if one allows a multiplicative error of 1± ε. Furthermore,

they proved a matching lower bound for both deterministic and randomized algorithms. Ben-
Basat et al. [3] present a sliding window algorithm for the related problem of approximating
counts with an additive error, and present a deterministic and randomized lower space bound.
We remark that both papers [3, 6] use a stronger notion of correctness: A randomized
sliding window algorithm must have the property that for every input w, the probability
that the algorithm produces some incorrect output while reading w is bounded by 1/3. The
authors utilize Yao’s minimax principle to lift the deterministic lower bound to a randomized
lower bound [13]. Arasu et al. [2] study the problem of maintaining approximate frequency
counts and quantiles over sliding windows. They present a deterministic algorithm and a
randomized algorithm with improved space complexity using a simple sampling technique.
Chan et al. [5] present a randomized sliding window algorithm for a certain measure of
monotonicity. Furthermore, they present randomized lower bounds using communication
complexity. The randomized algorithm analyzed in both papers comply with our standard
definition of correctness with failure ratio 0. Further references can be found in [1, 4].

Finally let us mention the study of the communication complexity of regular languages
by Tesson and Thérien [17], where a trichotomy (resp., quatrochotomy) for the deterministic
(resp., randomized) communication complexity was shown. These results resemble our results,
but the language classes that appear in [17] are different from the classes in our results.

2 Preliminaries

For integers i, j ∈ N let [i, j] = {k ∈ N : i ≤ k ≤ j}. The set of all words over a finite alphabet
Σ is denoted by Σ∗. The empty word is denoted by ε whereas error probabilities are denoted
by the lunate epsilon ε. The sets of words over Σ of length exactly, at most and at least n are
denoted by Σn, Σ≤n and Σ≥n, respectively. Consider a word w = a1a2 · · · am. The reversal
of w is defined as wR = am · · · a2a1, and for a language L we set LR = {wR : w ∈ L}. For a
non-empty interval [i, j] ⊆ [1,m] we define w[i, j] = aiai+1 · · · aj . If i > j we set w[i, j] = ε.
A prefix of w is a word of the form w[1, i] for some 0 ≤ i ≤ m; a suffix of w is a word of the
form w[i,m] for some 1 ≤ i ≤ m+ 1. A language L ⊆ Σ∗ is prefix-free (resp., suffix-free) if
there are no two words x, y ∈ L with x 6= y and x is a prefix (resp., suffix) of y. A language
is bifix-free if it is both prefix- and suffix-free.
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Automata and regular languages. For general background in automata theory see [10]. A
deterministic finite automaton (DFA) A = (Q,Σ, q0, δ, F ) consists of a finite set of states Q,
a finite alphabet Σ, an initial state q0 ∈ Q, a transition function δ : Q× Σ→ Q and a set of
final states F ⊆ Q. We inductively extend δ to a function δ : Q×Σ∗ → Q as usual. If P ⊆ Q
is a set of states, then L(A,P ) = {w ∈ Σ∗ : δ(q0, w) ∈ P}. The language accepted by A is
L(A) = L(A,F ). A language is regular if it is accepted by a DFA. Classes of languages are
denoted by boldfaced letters. In this paper we will deal with the following language classes:

Reg: the class of all regular languages.
Len: the class of regular length languages, i.e., regular languages L such that for all n ∈ N
we have Σn ⊆ L or Σn ∩ L = ∅.
LI (resp., RI): the class of regular left (resp., right) ideals, i.e., languages of the form
Σ∗L (resp., LΣ∗) where L is regular.
ST (resp., PT): the class of suffix testable (resp., prefix testable) languages, i.e., finite
Boolean combinations of languages Σ∗w (resp., wΣ∗) where w ∈ Σ∗.
SF (resp., PF): the class of regular suffix-free (resp., prefix-free) languages
LB (resp., RB): the class of left ideals (resp., right ideals) generated by regular bifix-free
languages, i.e., languages of the form Σ∗L (resp., LΣ∗) where L ∈ PF ∩ SF.1

It is easy to see that every finite language is prefix and suffix testable. Moreover, prefix
testable and suffix testable languages are regular. If A1, . . . ,An are language classes, then
〈A1, . . . ,An〉 denotes the smallest boolean-closed class which contains

⋃n
i=1 Ai.

Probabilistic automata. In the following we introduce probabilistic automata [14, 15] as a
model for randomized streaming algorithms. A probabilistic automaton R = (Q,Σ, ι, ρ, F )
consists of a (possibly infinite) set of states Q, an alphabet Σ, an initial state distribution
ι : Q→ {r ∈ R : 0 ≤ r ≤ 1}, a transition probability function ρ : Q× Σ×Q→ {r ∈ R : 0 ≤
r ≤ 1} and set of final states F ⊆ Q such that

∑
q∈Q ι(q) = 1 and

∑
q∈Q ρ(p, a, q) = 1

for all p ∈ Q, a ∈ Σ. If ι and ρ map into {0, 1}, then R is a deterministic automaton.
A run on a word a1 · · · am ∈ Σ∗ in R is a sequence π = (q0, a1, q1, a2, . . . , am, qm) where
q0, . . . , qm ∈ Q and ρ(qi−1, ai, qi) > 0 for all 1 ≤ i ≤ m. Given such a run π in R we
define ρι(π) = ι(q0) ·

∏n
i=1 ρ(qi−1, ai, qi). For each w ∈ Σ∗ the function ρι is a probability

distribution on the set Runs(w) of all runs of R on w.

3 Randomized streaming and sliding window algorithms

A randomized streaming algorithm (R, enc) consists of a probabilistic automaton R =
(Q,Σ, ι, ρ, F ) as above and an injective function enc: Q→ {0, 1}∗. Usually, we will only refer
to the underlying automaton R. If R is deterministic, we speak of a deterministic streaming
algorithm. The maximum number of bits stored during a run π = (q0, a1, . . . , am, qm) is
denoted by space(R, π), i.e., space(R, π) = max{|enc(qi)| : 0 ≤ i ≤ m}. The worst case
space complexity of R on w is space(R,w) = max{space(R, π) : π ∈ Runs(w), ρι(π) > 0}.
A run π = (q0, a1, . . . , am, qm) is correct with respect to a language K ⊆ Σ∗ if qm ∈ F ⇔
a1 · · · am ∈ K holds. The error probability of R on w for K is

ε(R,w,K) =
∑
{ρι(π) : π ∈ Runs(w) is not correct with respect to K}.

1 or equivalently, the class of all left ideals generated by regular prefix-free languages. Since our proofs
related to LB yield decompositions of the form Σ∗L with L bifix-free, we decided to define LB as above.
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Given an error bound 0 ≤ ε ≤ 1, the failure ratio of R on w is defined as

φ(R,w,K, ε) = 1
m+ 1 |{t ∈ [0,m] : ε(R, a1a2 · · · at,K) > ε}|.

For a window length n ≥ 0 and a stream x ∈ Σ∗ we define lastn(x) to be the suffix of �nx
of length n where � ∈ Σ is a fixed alphabet symbol. The word lastn(ε) = �n is the initial
window content. Given a language L ⊆ Σ∗ and a window size n ≥ 0 we define the language

Ln = {x ∈ Σ∗ : lastn(x) ∈ L}. (1)

A randomized sliding window algorithm (randomized SWA for short) is a sequence R =
(Rn)n≥0 of randomized streaming algorithms Rn over the same alphabet Σ. If every Rn is
deterministic, we speak of a deterministic SWA. The space complexity of the randomized SWA
R = (Rn)n≥0 is the function f(R, n) = sup{space(Rn, w) : w ∈ Σ∗} ∈ N ∪ {∞}. Clearly, if
Rn is finite, then one can always find a state encoding such that f(R, n) = blog2 |Rn|c.

I Definition 3.1. Let 0 ≤ ε ≤ 1 and 0 ≤ φ ≤ 1. A randomized SWA R = (Rn)n≥0 is
(ε, φ)-correct for a language L ⊆ Σ∗ if φ(Rn, w, Ln, ε) ≤ φ for all n ≥ 0 and w ∈ Σ≥n. The
number ε is the error probability and φ is the failure ratio of R (with respect to ε).

Definition 3.1 also makes sense in the special case that R is deterministic and ε = 0. A
(0, φ)-correct deterministic SWA R = (Rn)n≥0 for L has the property that Rn produces at
most φ · (m+ 1) many incorrect answers when running on any input word of length m ≥ n.

We will set the error probability to ε = 1/3, which is justified by the following lemma
(that follows from a standard Chernoff bound).

I Lemma 3.2. Let L ⊆ Σ∗, 0 < ε′ < ε < 1
2 and 0 ≤ φ ≤ 1. Given a randomized SWA R

which is (ε, φ)-correct for L, one can construct a randomized SWA R′ which is (ε′, φ)-correct
for L such that f(R′, n) ≤ ln( 1

ε′ ) · 1
poly(ε) · f(R, n).

I Definition 3.3. Let L ⊆ Σ∗ be a language and 0 ≤ φ ≤ 1.
A randomized SWA for L with failure ratio φ is a randomized SWA which is (1/3, φ)-
correct for L. If moreover φ = 0, then we speak of a randomized SWA for L.
A deterministic SWA for L with failure ratio φ is a deterministic SWA which is (0, φ)-
correct for L. If moreover φ = 0, then we speak of a deterministic SWA for L.

We only consider randomized SWAs R = (Rn)n≥0 where every Rn has a finite state set
Qn. This is justified by the fact that for every language L and every n the language Ln
from (1) is regular and hence can be accepted by a DFA. The space-optimal deterministic
SWA for a language L therefore consists of the minimal DFA for Ln for every n ≥ 0. For a
fixed error probability ε < 1/2 a space-optimal randomized SWA for L consists of a minimal
probabilistic finite automaton for Ln which accepts a word w with probability at least 1− ε
if w ∈ Ln and accepts w with probability at most ε if w /∈ Ln. By a result of Rabin [15]
such a probabilistic finite automaton can be transformed into an equivalent DFA with an
exponential blow-up. Hence, we get:

I Lemma 3.4. Let R be a randomized SWA for the language L. Then, there exists a
deterministic SWA D for L such that f(D, n) ∈ O(2f(R,n)).

4 Upper bounds

In this section we prove the upper bounds in Theorem 1.1, 1.2 and 1.3. We use the simple
fact that space complexity classes in the sliding window model are Boolean-closed:
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I Lemma 4.1. Let L be a Boolean combination of languages L1, . . . , Lk. For each i ∈ [1, k]
let Ri be a randomized SWA for Li with failure ratio φi. Then L has a SWA R with failure
ratio

∑k
i=1 φi and f(R, n) = O(

∑k
i=1 f(Ri, n)).

4.1 The Bernoulli algorithm
In this section, we introduce a randomized SWA that will be used for the proof of the upper
bounds (3) from Theorem 1.1 and (1) from Theorem 1.2. The idea is based on the algorithm
from [7], which stores path summaries in the reversal DFA. Consider a regular language
L ⊆ Σ∗ and let A = (Q,Σ, q0, δ, F ) be a DFA for LR. Observe that if L is a left-ideal then
any run in A switches from Q \ F to F at most once; if L is suffix-free then any run in A
visits F at most once. For a stream w ∈ Σ∗ define the function `w : Q→ N ∪ {∞} by

`w(q) = inf{k ∈ N : δ(q, lastk(w)R) ∈ F}, (2)

where we set inf(∅) =∞. By the observations above we know:
If L is a left ideal, then lastn(w) ∈ L if and only if `w(q0) ≤ n.
If L is suffix-free, then lastn(w) ∈ L if and only if `w(q0) = n.

One can define a deterministic SWA which stores the function `w on input stream w. If a
symbol a ∈ Σ is read, we can determine `wa from `w: If q ∈ F , then `wa(q) = 0. Otherwise
`wa(q) = 1 + `w(δ(q, a)) where 1 +∞ =∞.

Using a Bernoulli random variable, we define a randomized approximation of the above
deterministic SWA to reduce the space complexity to O(1). Let β : N → R be a function
such that for some n0, 0 ≤ β(n) ≤ 1 for all n ≥ n0, which controls the Bernoulli random
variable and will later be instantiated by concrete functions. We define the following constant-
space randomized SWA B = (Bn)n≥0 (which depends on the language L, the DFA A and
the function β), which we call the Bernoulli algorithm. If n < n0 let Bn be the trivial
deterministic streaming algorithm for Ln. For n ≥ n0 the algorithm Bn stores a Boolean
flag for each state in form of a function b : Q→ {0, 1}. All flags b(q) for q ∈ F are fixed to 1
forever. For all other states q ∈ Q \ F we define the initial value of the flag b(q) as follows,
where ` = `ε(q) ∈ N ∪ {∞}:

b(q) :=
{

0 with probability 1− (1− β(n))`

1 with probability (1− β(n))` .
(3)

Here we set x∞ = 0 for 0 ≤ x < 1. For all states q ∈ Q \ F we do the following upon arrival
of a symbol a ∈ Σ:

b(q) :=
{

0 with probability β(n)
b(δ(q, a)) with probability 1− β(n)

(4)

The algorithm accepts if and only if b(q0) = 1. An induction on |w| shows:

I Lemma 4.2. For all n ≥ n0 and w ∈ Σ∗ we have Pr[Bn accepts w] = (1− β(n))`w(q0).

4.2 Randomized SWAs with failure ratio zero
In this section we present a O(log logn) space algorithm for suffix-free regular languages L.
Since languages in ST and Len have constant space deterministic SWAs (Theorem 1.1(1))
and the space complexity classes are closed under Boolean combinations by Lemma 4.1, this
implies Theorem 1.1(3).

ICALP 2018
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Let L ∈ SF and A = (Q,Σ, q0, δ, F ) be a DFA for LR ∈ PF. Since the case L = ∅
is trivial, we can assume that A contains at least one final state which is reachable from
q0. Furthermore, since LR is prefix-free, any run in A from q0 contains at most one final
state. Therefore, we can assume that F contains exactly one final state qF , and all outgoing
transitions from qF lead to a sink state.

Recall the function `w : Q → N ∪ {∞} defined in (2). Notice that lastn(w) ∈ L if and
only if `w(q0) = n for all w ∈ Σ∗. Our randomized SWA R = (Rn)n≥0 consists of two parts:
Firstly, we take the Bernoulli algorithm B = (Bn)n≥0 from Section 4.1 for the function
β(n) = 1/(2n) and n0 = 1. From Lemma 4.2 we know that Bn accepts a word w ∈ Σ∗ with
probability (1− 1/(2n))`w(q0). Secondly, we simultaneously run a modulo-counting algorithm
Mn. Let pi be the i-th prime number and let s(m) be the product of all prime numbers ≤ m.
It is known that ln(s(m)) > m · (1− 1/ lnm) for m ≥ 41 [16, 3.16] and pi < i · (ln i+ ln ln i)
for i ≥ 6 [16, 3.13]. Let k be the first natural number such that

∏k
i=1 pi ≥ n. By the above

bounds we get k ∈ O(logn) and p3k ∈ O(logn · log logn). The algorithm Mn initially picks
a random prime p ∈ {p1, . . . , p3k}, which is stored throughout the run using O(log logn)
bits. Then, after reading w ∈ Σ∗, Mn stores for every q ∈ Q a bit telling whether `w(q) <∞
and, if the latter holds, the values `w(q) mod p using O(|Q| · log logn) bits. The algorithm
accepts if and only if `w(q0) ≡ n mod p.

The combined algorithm Rn accepts if and only if both Bn and Tn accept. Let us bound
the error probability on an input stream w ∈ Σ∗ with ` = `w(q0).

Case 1. ` = n, i.e., lastn(w) ∈ L. Then Mn accepts w with probability 1. Moreover, Bn
accepts w with probability (1− 1/(2n))n ≥ 0.6 for n ≥ 12 (note that (1− 1/(2n))n converges
to 1/

√
e ≈ 0.60653 from below). Hence, Rn accepts with probability at least 0.6.

Case 2. ` ≥ 2n and hence lastn(w) /∈ L. Then Bn rejects with probability 1− (1−1/(2n))` ≥
1− (1− (1/2n))2n ≥ 1− 1/e ≥ 0.6. Here, we use the well-known inequality (1− 1/y)y ≤ e−1

for all y ≥ 1. Hence, Rn also rejects with probability at least 0.6.

Case 3. ` < 2n and ` 6= n, and thus lastn(w) /∈ L. Since `− n ∈ [−n, n] and any product of
at least k + 1 pairwise distinct primes exceeds n, the number `− n 6= 0 has at most k prime
factors. Therefore, Mn (and thus Rn) rejects with probability at least 2/3.

4.3 SWAs with arbitrarily small non-zero failure ratio
In this section we sketch the proofs of Theorem 1.2(1) and Theorem 1.3(1). We focus on the
main base case L ∈ LI from Theorem 1.2(1).

Let L ⊆ Σ∗ be a regular left ideal. Let A = (Q,Σ, q0, δ, F ) be the minimal DFA for LR.
Since the case L = ∅ is trivial, we can assume that L 6= ∅. It is easy to see that F contains
a single state qF from which all outgoing transitions lead back to qF . Recall the function
`w : Q→ N∪ {∞} defined in (2). Since L is a left ideal, we have: lastn(w) ∈ L if and only if
`w(q0) ≤ n: The following lemma says that the portion of prefixes of an input stream, where
`w(q0) is close to n, is small:

I Lemma 4.3. Let 0 < ξ < 1. Let n ≥ 0 be a window size and w ∈ Σ≥n be an input stream.
Then the number of prefixes v of w such that dξne ≤ `v(q0) ≤ n is at most

(1− ξ + 1
n ) · |Q|

ξ
· (|w|+ 1 + ξn). (5)

Proof. Let us say that a prefix v of w is a hit, if dξne ≤ `v(q0) ≤ n. Consider an interval
I = [i, i′] with 0 ≤ i ≤ i′ ≤ |w| and i′ − i ≤ dξne. With each position j ∈ I we associate the
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prefix w[1, j]. We claim that V := {w[1, j] : j ∈ I} contains at most |Q| · (n− dξne+ 1) hits.
Let us assume the contrary. Since dξne ≤ `v(q0) ≤ n for every hit v, and the interval [dξne, n]
contains n−dξne+1 many different values, there is a subset U ⊆ V and some ` ∈ [dξne, n] such
that (i) |U | > |Q| and (ii) `v(q0) = ` for all v ∈ U . Let U = {w[1, j1], w[1, j2], . . . , w[1, jk]},
where k > |Q|. Consider the words u1 = last`(w[1, j1]), u2 = last`(w[1, j2]), . . . , uk =
last`(w[1, jk]). Since jk − j1 ≤ dξne and ` ≥ dξne, we have ` − jk + j1 ≥ 0. Hence,
we can consider the words v1 = last`−jk+j1(w[1, j1]), v2 = last`−jk+j2(w[1, j2]), . . . , vk =
last`(w[1, jk]). Clearly, vj is a suffix of uj . Moreover, the words vj all start in the same
position of �nw, i.e., every vj is a prefix of vj′ for j ≤ j′. Consider now the state qj = ξ(q0, v

R
j )

for 1 ≤ j ≤ k. Since k > |Q| there exist j < j′ such that qj = qj′ . But this would imply that
`vj (q0) < `vj′ (q0), which contradicts `vj (q0) = ` = `vj′ (q0). This shows the above claim.

Now we can finish the proof of the lemma: We divide the interval [0, |w|] into intervals of
size dξne+1 and one last interval of possibly shorter length. This yields d(|w|+1)/(dξne+1)e
many intervals. In each of these intervals we find at most |Q| · (n− dξne+ 1) many hits by
the above claim. Hence, the total number of hits is bounded by⌈

|w|+ 1
dξne+ 1

⌉
· |Q| · (n− dξne+ 1) ≤

(
|w|+ 1
ξn

+ 1
)
· |Q| · (n− ξn+ 1)

= (|w|+ 1 + ξn) · |Q| ·
1− ξ + 1

n

ξ
.

This concludes the proof of the lemma. J

We now consider the Bernoulli algorithm Bε = (Bεn)n≥0 for βε : N → R with βε(n) =
ln(1/ε)/n. Note that 0 < βε(n) ≤ 1 for n ≥ ln(1/ε). With Lemma 4.2 one can show:

I Lemma 4.4. For every 0 < ξ < 1 there exists 0 < ε < 1/2 and n0 ≥ 1 such that for all
n ≥ n0 the following holds: If w ∈ Σ∗ and `w(q0) 6∈ [dξne, n], then ε(Bεn, w, Ln) ≤ ε.

I Theorem 4.5. Let L be a regular left ideal and 0 < φ < 1. Then L has a randomized SWA
R with f(R, n) = O(1) and failure ratio φ.

Proof. Let us fix a failure ratio 0 < φ < 1 and let 0 < ξ < 1, which will be defined later
(depending on φ). Let ε and n0 be the numbers from Lemma 4.4. Let Bε = (Bεn)n≥0 be
the randomized SWA described above. Let n ≥ n0 be a window size and w ∈ Σ≥n be an
input stream. Consider the set P (w) of all prefixes v of w such that `v(q0) ∈ [dξne, n]. By
Lemma 4.4 the algorithm Bεn errs on each prefix v /∈ P (w) with probability at most ε, i.e.,

φ(Bεn, w, Ln, ε) ≤ |P (w)|
|w|+ 1

Lemma 4.3
≤

(1− ξ + 1
n ) · |Q|

ξ
·
(

1 + ξn

|w|+ 1

)
≤

(
1− ξ + 1

n

)
· |Q| ·

(
1 + 1

ξ

)
. (6)

Note that if ξ converges to 1, then the probability (6) tends towards 2|Q|/n. Hence we can
choose numbers n1 ≥ n0 and 0 < ξ < 1 such that for all n ≥ n1 the probability (6) is smaller
than our fixed failure ratio φ.

Finally for window sizes n < n1 we can use the optimal deterministic sliding-window
algorithms for L and window size n. The space complexity of the resulting algorithm is a
constant that depends only on φ. J

The base case L ∈ Len in Theorem 1.2(1) is trivial (there is a constant-space deterministic
SWA). Finally, for the case L ∈ PF, one can show that the constant-space deterministic
SWA that always rejects has a failure ratio of O(1/n) for window length n. This fact also
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covers the base case L ∈ PF from Theorem 1.3(1), and a similar argument covers the case
L ∈ SF. For the remaining base case L ∈ LB in Theorem 1.3(1), one can basically use a
DFA for L itself as a sliding window algorithm. One can prove that this algorithm gives only
O(1) incorrect answers in n consecutive windows.

5 Lower bounds

To prove the claimed lower bounds, we apply the same proof strategy in all cases (with one
exception). We first show that if a regular language does not belong to the language class
under consideration then there exist certain witness words. These words can then be used to
apply known lower bounds from randomized one-way communication complexity [11, 12] by
deriving a randomized communication protocol from a randomized SWA. This is a standard
technique for showing lower bounds for streaming algorithms.

The setting in (one-way) communication complexity is as follows: Alice holds an element
x ∈ X and Bob holds an element y ∈ Y and they aim to compute f(x, y) according to a
randomized one-way protocol P . Alice computes from her input x ∈ X and from a random
string a message and sends it to Bob. Using this message, his input y ∈ Y and a random
string, Bob computes an output bit. The cost of the protocol P is the maximal number of
bits sent from Alice to Bob. We say that P computes f if the protocol computes f(x, y) with
probability at least 2/3 for all inputs (x, y). The minimal cost of a protocol which computes
f is denoted by C(f).

Due to space constraints we only prove Theorem 1.1(4) in detail and discuss the proofs
of the remaining lower bounds only briefly in Section 5.2.

5.1 Proof of point 4 from Theorem 1.1
Let A = (Q,Σ, q0, δ, F ) be a DFA. A state q is trivial if δ(q, x) 6= q for all x ∈ Σ+, otherwise
it is non-trivial. A pair (p, q) ∈ Q×Q of states is called synchronized if there exist words
x, y, z ∈ Σ∗ with |x| = |y| = |z| ≥ 1 such that δ(p, x) = p, δ(p, y) = q and δ(q, z) = q. A pair
(p, q) is called reachable from a state r if p is reachable from r. A state pair (p, q) is called
F -consistent if either {p, q} ∩ F = ∅ or {p, q} ⊆ F . We remark that synchronized state pairs
have no connection to the notion of synchronizing words. A simple pumping argument shows:

I Lemma 5.1. A state pair (p, q) is synchronized if and only if p and q are non-trivial and
there exists y ∈ Σ+ such that |Q|! divides |y| and δ(p, y) = q.

Let Q = T ∪N be the partition of the state set into the set T of trivial states and the set
N of non-trivial states. A function β : N→ {0, 1} is k-periodic if β(i) = β(i+ k) for all i ∈ N.

I Lemma 5.2. Assume that every synchronized pair in A which is reachable from q0 is
F -consistent. Then for every word v ∈ Σ∗ of length at least |Q|! · (|T |+ 1) there exists a |Q|!-
periodic function βv : N→ {0, 1} such that the following holds: If w ∈ vΣ∗ and δ(q0, w) ∈ N ,
then we have w ∈ L iff β(|w|) = 1.

Proof. Let v = a1a2 · · · ak with k ≥ |Q|! · (|T |+ 1), and consider the run q0
a1−→ · · · ak−→ qk

of A on v. Clearly, each trivial state can occur at most once in the run. First notice that
for each 0 ≤ i ≤ |Q|! − 1 at least one of the states in Qi = {qi+j|Q|! : 0 ≤ j ≤ |T |} is
non-trivial because otherwise the set would contain |T |+ 1 pairwise distinct trivial states.
Furthermore, we claim that the non-trivial states in Qi are either all final or all non-final:
Take two non-trivial states qi+j1|Q|! and qi+j2|Q|! with j1 < j2. Since we have a run of length
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(j2 − j1)|Q|! from qi+j1|Q|! to qi+j2|Q|!, the states form a synchronized pair by Lemma 5.1.
Hence, by assumption the two states are F -consistent. Now define βv : N→ {0, 1} by

βv(m) =
{

1 if the states in Qm mod |Q|! ∩N are final,
0 if the states in Qm mod |Q|! ∩N are non-final,

which is well-defined by the remarks above. Clearly βv is |Q|!-periodic.
Let w = a1 · · · am ∈ vΣ∗ be a word of length m ≥ k. The run of A on w prolongs the

run on v, say q0
a1−→ · · · ak−→ qk

ak+1−−−→ · · · am−−→ qm. Assume that qm ∈ N . As argued above,
there is a position 0 ≤ i ≤ k such that i ≡ m (mod |Q|!) and qi ∈ N . Hence (qi, qm) is a
synchronized pair by Lemma 5.1 which is F -consistent by assumption. Therefore w ∈ L iff
qm ∈ F iff qi ∈ F iff βv(|w|) = 1. J

I Lemma 5.3. Assume that every synchronized pair in A which is reachable from q0 is
F -consistent. Then L(A) belongs to 〈PT,PF,Len〉.

Proof. Let FN = N ∩ F and FT = T ∩ F . We decompose L into

L = L(A,FN ) ∪
⋃
q∈FT

L(A, {q}).

First observe that L(A, {q}) ∈ PF for all q ∈ FT because a trivial state q can occur at most
once in a run of A. It remains to show that L(A,FN ) belongs to 〈PT,PF,Len〉. Using the
threshold k = |Q|! · (|T | + 1), we distinguish between words of length at most k − 1 and
words of length at least k, and group the latter set by their prefix of length k, i.e.,

L(A,FN ) = (L(A,FN ) ∩ Σ≤k−1) ∪
⋃
v∈Σk

(L(A,FN ) ∩ vΣ∗).

The first part L(A,FN ) ∩ Σ≤k−1 is finite and thus prefix testable. To finish the proof, we
will show that L(A,FN ) ∩ vΣ∗ ∈ 〈PT,PF,Len〉 for each v ∈ Σk. Let v ∈ Σk and let
βv : N→ {0, 1} be the |Q|!-periodic function from Lemma 5.2. We know

L(A,FN ) ∩ vΣ∗ = (vΣ∗ ∩ {w ∈ Σ∗ : β(|w|) = 1}) \ L(A, T ).

Note that {w ∈ Σ∗ : β(|w|) = 1} ∈ Len, vΣ∗ ∈ PT and L(A, T ) ∈ 〈PF〉. J

By applying Lemma 5.3 to the language LR, we obtain:

I Lemma 5.4. If L ∈ Reg \ 〈ST,SF,Len〉, then there exist u, x, y, z ∈ Σ∗ with |x| = |y| =
|z| ≥ 1 such that one of the following cases holds:

x∗u ⊆ L and z∗yx∗u ∩ L = ∅
x∗u ∩ L = ∅ and z∗yx∗u ⊆ L.

We can now conclude the proof of Theorem 1.1(4). Let L ∈ Reg \ 〈ST,SF,Len〉. We
reduce from the communication problem GTm : [1,m]2 → {0, 1} where GTm(i, j) = 1 iff
i > j. It is known that C(GTm) ∈ Θ(logm) [11, Theorem 3.8].

Consider the words u, x, y, z ∈ Σ∗ described in Lemma 5.4. Let R = (Rn)n≥0 be a
randomized SWA for L. Let m ≥ 0. We describe a randomized one-way protocol Pm
for GTm: Let i ∈ [1,m] be the input of Alice and j ∈ [1,m] be the input of Bob. Let
n = |x| · m + |u| ∈ Θ(m). Alice starts by running the probabilistic automaton Rn on
zmyxm−i using her random bits in order to simulate the random choices of Rn. Afterwards,
she sends the encoding of the reached state to Bob. Bob then continues the run of Rn

ICALP 2018



124:12 Randomized sliding window algorithms for regular languages

from the transmitted state with the word xju. Hence, Rn is simulated on the word w :=
zmyxm−ixju = zmyxm−i+ju. We have

lastn(w) =
{
zi−1−jyxm−i+ju, if i > j,

xmu, if i ≤ j.

By Lemma 5.4, lastn(w) belongs to L in exactly one of the two cases i > j and i ≤ j. Hence
Bob can distinguish these two cases with probability at least 2/3. It follows that the protocol
computes GTm and its cost is bounded by f(R, n). We have f(R, |x| ·m+ |u|) = f(R, n) ≥
cost(Pm) ∈ Ω(logm) and therefore f(R, n) /∈ o(logn).

5.2 Remaining lower bounds

The remaining lower bounds in Theorem 1.1–1.3 are shown by reductions from communication
problems as well, with one exception:

For Theorem 1.1(2) we reduce from the communication problem EQm, where Alice holds
a number i ∈ [1,m], Bob holds a number j ∈ [1,m] and Bob has to verify whether i = j.
It is known that C(EQm) ∈ Θ(log logm) [12].
For Theorem 1.1(6) we reduce from the communication problem IDXm, where Alice holds
a bitstring a1 · · · am, Bob holds an index i ∈ [1,m] and Bob has to output the bit ai. By
[11, Theorem 3.7] we know that C(IDXm) ∈ Θ(m).
For Theorem 1.2(2) we reduce from a promise variant of IDXm. Let D ⊆ {0, 1}m× [1,m]
such that for each x ∈ {0, 1}m there exist at least 7/8 ·m pairs (x, i) ∈ D. We prove
that IDXm still has communication complexity Ω(m) if the inputs for Alice and Bob are
restricted to D. This extends [11, Theorem 3.7] and allows us to incorporate the notion
of failure ratio into a communication protocol.
Theorem 1.3(2) is not shown via a reduction to a communication problem. Instead, we
utilize a combinatorial result on the ability of DFAs to count up to a threshold n, modulo
a failure ratio φ.

6 Further results

The technical report [9] contains several further results that we briefly want to discuss.
In this paper, we only considered randomized SWAs with a two sided error (analogously

to the complexity class BPP). Randomized SWAs with a one-sided error (analogously to the
class RP) can be motivated by applications, where all “yes” outputs have to be correct, but
a small probability for a false negative answer is acceptable. We prove that for every regular
language the optimal space bound with respect to randomized SWAs with one-sided error
coincides (up to constant factors) with the optimal space bound in the deterministic setting
[7, 8] (which was discussed in the introduction).

In the introduction (related work) we remarked that some authors use a stronger cor-
rectness notion for randomized SWAs, where for every input w, the probability that the
algorithm produces some incorrect output while reading w is bounded by 1/3. We show that
for every approximation problem (where approximation problems are defined by specifying
for every input string a set of possible output values) every randomized SWA that fulfills
this stronger notion of correctness can be completely derandomized without a space increase.
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