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Abstract. Recently knapsack problems have been generalized from the
integers to arbitrary finitely generated groups. The knapsack problem for a
finitely generated group G is the following decision problem: given a tuple
(g, g1, . . . , gk) of elements of G, are there natural numbers n1, . . . , nk ∈ N
such that g = gn1

1 · · · g
nk
k holds in G? Myasnikov, Nikolaev, and Ushakov

proved that for every hyperbolic group, the knapsack problem can be
solved in polynomial time. In this paper, it is shown that for every
hyperbolic group G, the knapsack problem belongs to the complexity
class LogCFL, and it is LogCFL-complete if G contains a free group of
rank two. Moreover, it is shown that for every hyperbolic group G and
every tuple (g, g1, . . . , gk) of elements of G the set of all (n1, . . . , nk) ∈ Nk

such that g = gn1
1 · · · g

nk
k in G is effectively semilinear.

1 Introduction

In [22], Myasnikov, Nikolaev, and Ushakov initiated the investigation of dis-
crete optimization problems, which are usually formulated over the integers,
for arbitrary (possibly non-commutative) groups. One of these problems is the
knapsack problem for a finitely generated group G: The input is a sequence of
group elements g1, . . . , gk, g ∈ G (specified by finite words over the generators
of G) and it is asked whether there exists a tuple (n1, . . . , nk) ∈ Nk such that
gn1
1 · · · g

nk

k = g in G. For the particular case G = Z (where the additive notation
n1 · g1 + · · · + nk · gk = g is usually preferred) this problem is NP-complete
(resp., TC0-complete) if the numbers g1, . . . , gk, g ∈ Z are encoded in binary
representation [11,9] (resp., unary notation [2]).

In [22], Myasnikov et al. encode elements of the finitely generated group G
by words over the group generators and their inverses, which corresponds to the
unary encoding of integers. There is also an encoding of words that corresponds
to the binary encoding of integers, so called straight-line programs, and knapsack
problems under this encoding have been studied in [18]. In this paper, we only
consider the case where input words are explicitly represented. Here is a list of
known results concerning the knapsack problem:

– Knapsack can be solved in polynomial time for every hyperbolic group [22]. In
[4] this result was extended to free products of any finite number of hyperbolic
groups and finitely generated abelian groups.



– There are nilpotent groups of class 2 for which knapsack is undecidable. Exam-
ples are direct products of sufficiently many copies of the discrete Heisenberg
group H3(Z) [12], and free nilpotent groups of class 2 and sufficiently high
rank [20].

– Knapsack for H3(Z) is decidable [12]. In particular, together with the previous
point it follows that decidability of knapsack is not preserved under direct
products.

– Knapsack is decidable for every co-context-free group [12], i.e., groups where
the set of all words over the generators that do not represent the identity
is a context-free language. Lehnert and Schweitzer [14] have shown that the
Higman-Thompson groups are co-context-free.

– Knapsack belongs to NP for all virtually special groups (finite extensions of
subgroups of graph groups) [19]. The class of virtually special groups is very
rich. It contains all Coxeter groups, one-relator groups with torsion, fully
residually free groups, and fundamental groups of hyperbolic 3-manifolds.
For graph groups (also known as right-angled Artin groups) a complete
classification of the complexity of knapsack was obtained in [19]: If the
underlying graph contains an induced path or cycle on 4 nodes, then knapsack
is NP-complete; in all other cases knapsack can be solved in polynomial time
(even in LogCFL).

– Decidability of knapsack is preserved by finite extensions, HNN-extensions
over finite associated subgroups and amalgamated products over finite sub-
groups [18].

In this paper we further investigate the knapsack problem in hyperbolic groups.
The definition of hyperbolic groups requires that all geodesic triangles in the
Cayley-graph are δ-slim for a constant δ; see Section 3 for details. The class of
hyperbolic groups has several alternative characterizations (e.g., it is the class of
finitely generated groups with a linear Dehn function), which gives hyperbolic
groups a prominent role in geometric group theory. Moreover, in a certain
probabilistic sense, almost all finitely presented groups are hyperbolic [8,23]. Also
from a computational viewpoint, hyperbolic groups have nice properties: it is
known that the word problem and the conjugacy problem can be solved in linear
time [3,10]. As mentioned above, knapsack can be solved in polynomial time
for every hyperbolic group [22]. Our first main result of this paper provides a
precise characterization of the complexity of knapsack for hyperbolic groups:
for every hyperbolic group, knapsack belongs to LogCFL, which is the class
of all problems that are logspace-reducible to a context-free language. LogCFL
has several alternative characterizations, see Section 5 for details. The LogCFL
upper bound for knapsack in hyperbolic groups improves the polynomial upper
bound shown in [22], and also generalizes a result from [15], stating that the
word problem for a hyperbolic group is in LogCFL. For hyperbolic groups that
contain a copy of a non-abelian free group (such hyperbolic groups are called non-
elementary) it follows from [19] that knapsack is LogCFL-complete. Hyperbolic
groups that contain no copy of a non-abelian free group (so called elementary
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hyperbolic groups) are known to be virtually cyclic, in which case knapsack can
be shown to be in NL ⊆ LogCFL.

In Section 6 we prove our second main result: for every hyperbolic group G and
every tuple (g, g1, . . . , gk) of elements of G the set of all (n1, . . . , nk) ∈ Nk such
that g = gn1

1 · · · g
nk

k in G is effectively semilinear. In other words: the set of all
solutions of a knapsack instance in G is semilinear. Groups with this property are
also called knapsack-semilinear. For the special case G = Z this is well-known (the
set of solutions of a linear equation is Presburger definable and hence semilinear).
Clearly, knapsack is decidable for every knapsack-semilinear group (due to the
effectiveness assumption). In a series of recent papers it turned out that the class
of knapsack-semilinear groups is surprisingly rich. It contains all virtually special
groups [16] and all co-context-free group [12] and is closed under the following
constructions: going to a finitely generated subgroup (this is trivial), going to
a finite group extension [18], HNN-extensions over finite associated subgroups
[18], amalgamated free products over finite subgroups [18], direct products (this
follows from the closure of semilinear sets under intersection), and restricted
wreath products [5].

Our proof of the knapsack-semilinearity of a hyperbolic group shows an addi-
tional quantitative statement: If the group elements g, g1, . . . , gk are represented
by words over the generators and the total length of these words is N , then the
set {(n1, . . . , nk) ∈ Nk | g = gn1

1 · · · g
nk

k in G} has a semilinear representation,
where all vectors only contain integers of size at most p(N). Here, p(x) is a
fixed polynomial that only depends on G. Groups with this property are called
knapsack-tame in [19]. In [19], it is shown that the class of knapsack-tame groups
is closed under free products and direct products with Z.

Missing proofs can be found in the long version [17].

2 General notations

We assume that the reader is familiar with basic concepts from group theory and
formal languages. The empty word is denoted with ε. For a word w = a1a2 · · · an
let |w| = n be the length of w, and for 1 ≤ i ≤ j ≤ n let w[i] = ai, w[i : j] =
ai · · · aj , w[: i] = w[1 : i] and w[i :] = w[i : n]. Moreover, let w[i : j] = ε for i > j.

We let N = {0, 1, 2, . . .}. A set of vectors A ⊆ Nk is linear if there exist vectors
v0, . . . , vn ∈ Nk such that A = {v0 + λ1 · v1 + · · ·+ λn · vn | λ1, . . . , λn ∈ N}. The
tuple of vectors (v0, . . . , vn) is a linear represention of A. Its magnitude is the
largest number appearing in one the vectors v0, . . . , vn. A set A ⊆ Nk is semilinear
if it is a finite union of linear sets A1, . . . , Am. A semilinear representation of A is
a list of linear representations for the linear sets A1, . . . , Am. Its magnitude is the
maximal magnitude of the linear representations for the sets A1, . . . , Am. The
magnitude of a semilinear set A is the smallest magnitude among all semilinear
representations of A.

In the context of knapsack problems, we will consider semilinear subsets as
mapping f : {x1, . . . , xk} → N for a finite set of variables X = {x1, . . . , xk}. Such
a mapping f can be identified with the vector (f(x1), . . . , f(xk)). This allows
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to use all vector operations (e.g. addition and scalar multiplication) on the set
NX of all mappings from X to N. The pointwise product f · g of two mappings
f, g ∈ NX is defined by (f · g)(x) = f(x) · g(x) for all x ∈ X. Moreover, for
mappings f ∈ NX , g ∈ NY with X ∩ Y = ∅ we define f ⊕ g : X ∪ Y → N by
(f ⊕ g)(x) = f(x) for x ∈ X and (f ⊕ g)(y) = g(y) for y ∈ Y . All operations on
NX will be extended to subsets of NX in the standard pointwise way.

It is well-known that the semilinear subsets of Nk are exactly the sets definable
in Presburger arithmetic. These are those sets that can be defined with a first-
order formula ϕ(x1, . . . , xk) over the structure (N, 0,+,≤) [7]. Moreover, the
transformations between such a first-order formula and an equivalent semilinear
representation are effective. In particular, the semilinear sets are effectively closed
under Boolean operations.

3 Hyperbolic groups

Let G be a finitely generated group with the finite symmetric generating set
Σ, i.e., a ∈ Σ implies that a−1 ∈ Σ. The Cayley-graph of G (with respect to
Σ) is the undirected graph Γ = Γ (G) with node set G and all edges (g, ga)
for g ∈ G and a ∈ Σ. We view Γ as a geodesic metric space, where every
edge (g, ga) is identified with a unit-length interval. It is convenient to label
the directed edge from g to ga with the generator a. The distance between two
points p, q is denoted with dΓ (p, q). For g ∈ G let |g| = dΓ (1, g). For r ≥ 0, let
Br(1) = {g ∈ G | dΓ (1, g) ≤ r}.

Paths can be defined in a very general way for metric spaces, but we only need
paths that are induced by words over Σ. Given a word w ∈ Σ∗ of length n, one
obtains a unique path P [w] : [0, n]→ Γ , which is a continuous mapping from the
real interval [0, n] to Γ . It maps the subinterval [i, i+1] ⊆ [0, n] isometrically onto
the edge (gi, gi+1) of Γ , where gi (resp., gi+1) is the group element represented
by the word w[: i] (resp., w[: i+ 1]). The path P [w] starts in 1 = g0 and ends in
gn (the group element represented by w). We also say that P [w] is the unique
path that starts in 1 and is labelled with the word w. More generally, for g ∈ G
we denote with g · P [w] the path that starts in g and is labelled with w. When
writing u ·P [w] for a word u ∈ Σ∗, we mean the path g ·P [w], where g is the group
element represented by u. A path P : [0, n]→ Γ of the above form is geodesic if
dΓ (P (0), P (n)) = n; it is a (λ, ε)-quasigeodesic if |a−b| ≤ λ·dΓ (P (a), P (b))+ε for
all a, b ∈ [0, n]; and it is ζ-local (λ, ε)-quasigeodesic if |a−b| ≤ λ·dΓ (P (a), P (b))+ε
for all a, b ∈ [0, n] with |a− b| ≤ ζ.

A word w ∈ Σ∗ is geodesic if the path P [w] is geodesic, which means that
there is no shorter word representing the same group element from G. Similarly,
we define the notion of (ζ-local) (λ, ε)-quasigeodesic words. A word w ∈ Σ∗ is
shortlex reduced if it is the length-lexicographically smallest word that represents
the same group element as w. For this, we have to fix an arbitrary linear order on
Σ. Note that if u = xy is shortlex reduced then x and y are shortlex reduced too.
For a word u ∈ Σ∗ we denote with shlex(u) the unique shortlex reduced word
with shlex(u) = u in G.
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P1

P2

Fig. 1: Paths that asynchronously K-fellow travel

A geodesic triangle consists of three points p, q, r ∈ G and geodesic paths
P1 = Pp,q, P2 = Pp,r, P3 = Pq,r (the three sides of the triangle), where Px,y is a
geodesic path from x to y. The geodesic triangle is δ-slim for δ ≥ 0, if for all i ∈
{1, 2, 3}, every point on Pi has distance at most δ from a point on

⋃
j∈{1,2,3}\{i} Pj .

The group G is called δ-hyperbolic, if every geodesic triangle is δ-slim. Finally, G
is hyperbolic, if it is δ-hyperbolic for some δ ≥ 0. Finitely generated free groups
are for instance 0-hyperbolic. The property of being hyperbolic is independent of
the chosen generating set Σ. The word problem for a hyperbolic group can be
solved in real time [10].

Let us fix a δ-hyperbolic group G with the finite symmetric generating set Σ
for the rest of the section, and let Γ be the corresponding geodesic metric space.
We will apply a couple of well-known results for hyperbolic groups.

Lemma 1 ([6, 8.21]). Let g ∈ G be of infinite order and let n ≥ 0. Let u be
a geodesic word representing g. Then the word un is (λ, ε)-quasigeodesic, where
λ = N |g|, ε = 2N2|g|2 + 2N |g| and N = |B2δ(1)|.

Consider paths P1 : [0, n1] → Γ , P2 : [0, n2] → Γ and let K be a positive real
number. We say that P1 and P2 asynchronously K-fellow travel if there exist two
continuous non-decreasing mappings ϕ1 : [0, 1]→ [0, n1] and ϕ2 : [0, 1]→ [0, n2]
such that ϕ1(0) = ϕ2(0) = 0, ϕ1(1) = n1, ϕ2(1) = n2 and for all 0 ≤ t ≤ 1,
dΓ (P1(ϕ1(t)), P2(ϕ2(t))) ≤ K. Intuitively, this means that one can travel along
the paths P1 and P2 asynchronously with variable speeds such that at any time
instant the current points have distance at most K. By slightly increasing K one
obtains a ladder graph of the form shown in Figure 1, where the edges connecting
the horizontal P1- and P2-labelled paths represent paths of length at most K
that connect elements from G.

Lemma 2 ([21]). Let P1 and P2 be (λ, ε)-quasigeodesic paths such that Pi starts
in gi and ends in hi. Assume that dΓ (g1, h1), dΓ (g2, h2) ≤ h. There exists a
computable bound K = K(δ, λ, ε, h) ≥ h such that P1 and P2 asynchronously
K-fellow travel.

Finally we need the following lemma, see [17].

Lemma 3. Fix constants λ, ε and let κ = K(δ, λ, ε, 0) be taken from Lemma 2.
Let v1, v2 ∈ Σ∗ be geodesic words and u1, u2 ∈ Σ∗ (λ, ε)-quasigeodesic words
such that v1u1 = u2v2 in G. Consider a factorization u1 = x1y1 with |x1| ≥
λ(|v1|+2δ+κ)+ ε and |y1| ≥ λ(|v2|+2δ+κ)+ ε Then there exists a factorization
u2 = x2y2 and c ∈ B2δ+2κ(1) such that v1x1 = x2c and cy1 = y2v2 in G.
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4 Knapsack problems

Let G be a finitely generated group with the finite symmetric generating set
Σ. Moreover, let X be a set of variables that take values from N. A knapsack
expression over G is a formal expression of the form E = ux1

1 v1u
x2
2 v2 · · ·u

xk

k vk
with k ≥ 1, x1, . . . , xk ∈ X, xi 6= xj for i 6= j, and u1, v1, . . . , uk, vk ∈ Σ∗. Let
XE = {x1, . . . , xk} be the set of variables that occur in E. A solution for E is

a mapping σ ∈ NXE such that the word u
σ(x1)
1 v1u

σ(x2)
2 v2 · · ·uσ(xk)

k vk represents
the identity element of G. With sol(E) we denote the set of all solutions of E.

The length of E is defined as |E| =
∑k
i=1 |ui|+ |vi|, whereas k is its depth. The

knapsack problem for G is the following decision problem: Given a knapsack
expression E over G, is sol(E) non-empty?

The group G is called knapsack-semilinear if for every knapsack expression
E over G, the set sol(E) is semilinear and a semilinear representation can be
effectively computed from E. The discrete Heisenberg groupH3(Z) (which consists
of all upper triangular (3 × 3)-matrices over the integers, where all diagonal
entries are 1) is an example of a group which is not knapsack-semilinear, but for
which the knapsack problem is decidable, see [12].

The group G is called polynomially knapsack-bounded if there is a fixed
polynomial p(n) such that for a given a knapsack expression E over G, one has
sol(E) 6= ∅ if and only if there exists ν ∈ sol(E) with ν(x) ≤ p(|E|) for all variables
x in E. Finally, G is called knapsack-tame if there is a fixed polynomial p(n) such
that for a given a knapsack expression E over G one can compute a semilinear
representation for sol(E) of magnitude at most p(|E|). Thus, every knapsack-tame
group is knapsack-semilinear as well as polynomially knapsack-bounded.

5 Complexity of knapsack in hyperbolic groups

In this section we show that for every hyperbolic group the knapsack problem
belongs to the complexity class LogCFL. This class consists of all computational
problems that are logspace reducible to a context-free language. The class LogCFL
is included in the parallel complexity class NC2 and has several alternative
characterizations; see [24,26] for details. For our purposes, a characterization via
AuxPDAs is most suitable. An AuxPDA (for auxiliary pushdown automaton)
is a nondeterministic pushdown automaton with a two-way input tape and an
additional work tape. Here we only consider AuxPDAs with the following two
restrictions:

– The length of the work tape is restricted to O(log n) for an input of length n
(logspace bounded).

– There is a polynomial p(n), such that every computation path of the AuxPDA
on an input of length n has length at most p(n) (polynomially time bounded).

Whenever we speak of an AuxPDA in the following, we implicitly assume that
the AuxPDA is logspace bounded and polynomially time bounded. The class of
languages that are accepted by such AuxPDAs is exactly LogCFL [24]. A one-way
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AuxPDA is an AuxPDA that never moves the input head to the left. Hence, in
every step, the input head either does not move, or moves to the right.

In order to show that knapsack for a hyperbolic group belongs to LogCFL,
we use the following important result from [22]:

Theorem 4 ([22]). Every hyperbolic group is polynomially knapsack-bounded.

This result is also a direct corollary of Theorem 7 from the next section.
In [15] it is shown that the word problem for a hyperbolic group belongs to

LogCFL. Here, we extend the proof from [15] to the knapsack problem. First,
we consider another problem of independent interest. An acyclic NFA is a
nondeterministic finite automaton A = (Q,Σ,∆, q0, F ) (Q is a finite set of
states, Σ is the input alphabet, ∆ ⊆ Q×Σ∗ ×Q is the set of transition triples,
q0 ∈ Q is the initial state, and F ⊆ Q is the set of final states) such that the
relation {(p, q) ∈ Q×Q | ∃w ∈ Σ∗ : (p, w, q) ∈ ∆} is acyclic. Note that we allow
transitions labelled with words; this will be convenient in the proof of the next
theorem. For a finitely generated group G with the finite generating set Σ (the
concrete choice of Σ is not relevant), the membership problem for acyclic NFAs
over G is the following computational problem: Given an acyclic NFA A with
input alphabet Σ, does A accept a word w ∈ Σ∗ such that w = 1 in G?

Theorem 5. Membership for acyclic NFAs over a hyperbolic group belongs to
LogCFL.

Proof. Let G be a hyperbolic group with the symmetric generating set Σ and let
A be the input NFA. Let W = {w ∈ Σ∗ | w = 1 in G} be the word problem for
G. In [15] it is shown that W is a growing context-sensitive language, i.e., it can
be generated by a grammar where all productions are strictly length-increasing
(except for the start production S → ε). Hence, by the main result of [1], W can
be recognized by a one-way AuxPDA P in logarithmic space and polynomial
time.

An AuxPDA for the membership problem for acyclic NFAs over G guesses a
path in the NFA A and thereby simulates the AuxPDA P on the word spelled
by the guessed path. If the final state of the input NFA A is reached and the
AuxPDA P accepts at the same time, then the overall AuxPDA accepts. It
is important that the AuxPDA P works one-way since the guessed path in A
cannot be stored in logspace. This implies that the AuxPDA cannot re-access
input symbols that have already been processed. The AuxPDA is clearly logspace
bounded and polynomially time bounded since A is acyclic. ut

Theorem 6. For every hyperbolic groups G, knapsack can be solved in LogCFL.
Moreover, if G contains a copy of F2 (the free group of rank 2) then knapsack
for G is LogCFL-complete.

Proof. Let G be a hyperbolic group. It is straightforward to present a logspace
reduction from knapsack for G to the membership problem for acyclic NFAs.
By Theorem 5, this proves the first statement of the theorem. Consider a knap-
sack expression E = ux1

1 v1u
x2
2 v2 · · ·u

xk

k vk over G. By Theorem 4, there exists
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a polynomial p(x) such that sol(E) 6= ∅ if and only if there exists a solution
(n1, . . . , nk) ∈ sol(E) such that ni ≤ p(|E|) for all 1 ≤ i ≤ k. For our reduc-
tion it therefore suffices to construct an acyclic NFA for the finite language
{un1

1 v1u
n2
2 v2 · · ·unk

k vk | 0 ≤ n1, . . . , nk ≤ p(|E|)}, which is easy (see also [19,
Section 4.2.5]).

The second statement from the theorem follows from [19, Proposition 4.26],
where it was shown that knapsack for F2 is LogCFL-complete. ut

6 Hyperbolic groups are knapsack-semilinear

In this section, we prove the following strengthening of Theorem 4:

Theorem 7. Every hyperbolic group is knapsack-tame.

Let us remark that the total number of vectors in a semilinear representation can
be exponential, even for the simplest case G = Z. Take the (additively written)
knapsack expression E = x1 +x2 + · · ·+xn−n. Then sol(E) is finite and consists
of
(
2n−1
n

)
≥ 2n vectors.

Let us fix a δ-hyperbolic group G for the rest of Section 6 and let Σ be a
finite symmetric generating set for G.

6.1 Knapsack expressions of depth two

We first consider knapsack expressions of depth 2 where all powers are quasi-
geodesic. It is well known that the semilinear sets are exactly the Parikh images
of the regular languages. We need the following quantitative version of this result:

Theorem 8 ([25, Theorem 4.1], see also [13]). Let k be a fixed constant.
Given an NFA A over an alphabet of size k with n states, one can compute
in polynomial time a semilinear representation of the Parikh image of L(A).
Moreover, all numbers appearing in the semilinear representation are polynomially
bounded in n.

Lemma 9. Let λ and ε be fixed constants. For all geodesic words u1, v1, u2, v2 ∈
Σ∗ such that u1 6= ε 6= u2 and un1 , un2 are (λ, ε)-quasigeodesic for all n ≥ 0,
the set {(x1, x2) ∈ N × N | v1ux1

1 = ux2
2 v2 in G} is effectively semilinear with

magnitude bounded by p(|u1|+ |v1|+ |u2|+ |v2|) for a fixed polynomial p(n).

Proof. Let S := {(x1, x2) ∈ N×N | v1ux1
1 = ux2

2 v2 in G}. We will define an NFA
A over the alphabet {a1, a2} such that the Parikh image of L(A) is S. Moreover,
the number of states of A is polynomial in |u1|+ |u2|+ |v1|+ |v2|. This allows
us to apply Theorem 8. We will allow transitions that are labelled with words
(having length polynomial in |u1|+ |u2|+ |v1|+ |v2|). Moreover, instead of writing
in the transitions these words, we write their Parikh images (so, for instance, a

transition p
a1a2a1−−−−→ q is written as p

(2,1)−−−→ q.
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v1 v2

x′ y′
z′

x
y z

u2
u2

u2
u2 u2 u2 u2 u2 u2 u2

u1 u1 u1 u1 u1 u1 u1 u1 u1 u1 u1 u1 u1 u1 u1 u1 u1
u1

u1
u1

c = c0 d = c24

Fig. 2: Example for the construction from the proof of Lemma 9.

Let `i = |ui| and mi = |vi|. Take the constant κ from Lemma 3 and define
N1 = λ(m1 + 2δ + κ) + ε and N2 = λ(m2 + 2δ + κ) + ε. We split the solution
set S into S1 = S ∩ {(n1, n2) ∈ N × N | n1 < (N1 + N2)/`1} and S2 = S \ S1.
For all (n1, n2) ∈ S1 we have |un1

1 | = n1`1 < N1 + N2. Hence, |shlex(un2
2 )| =

|shlex(v1un1
1 v−12 )| < N1 +N2 +m1 +m2. Since un2

2 is (λ, ε)-quasigeodesic we get
|un2

2 | = n2`2 < λ(N1+N2+m1+m2)+ε, i.e., n2 < (λ(N1+N2+m1+m2)+ε)/`2.
Hence, S1 is finite and its magnitude is bounded by O(m1 +m2).

We now deal with pairs (n1, n2) ∈ S2. Consider such a pair (n1, n2) and the
quasigeodesic rectangle consisting of the four paths Q1 = P [v1], P1 = v1 · P [un1

1 ],
P2 = P [un2

2 ], and Q2 = un2
2 · P [v2]. Since |un1

1 | ≥ N1 +N2, we factorize the word
un1
1 as un1

1 = xyz with |x| = N1 and |z| = N2. By Lemma 3 we can factorize
un2
2 as un2

2 = x′y′z′ such that there exist c, d ∈ B2δ+2κ(1) with v1x = x′c and
dz = z′v2 in G, see Figure 2 (where n1 = 20, n2 = 10, `1 = 2 and `2 = 4). Since
un2
2 is (λ, ε)-quasigeodesic, we have

|x′| ≤ λ(m1 + |x|+ 2δ + 2κ) + ε = λ(m1 +N1 + 2δ + 2κ) + ε, (1)

|z′| ≤ λ(m2 + |z|+ 2δ + 2κ) + ε = λ(m2 +N2 + 2δ + 2κ) + ε. (2)

Consider now the subpath P ′1 of P1 from P1(|x|) to P1(n1`1−|z|) and the subpath
P ′2 of P2 from P2(|x′|) to P2(n2`2− |z′|). These are the paths labelled with y and
y′, respectively, in Figure 2. By Lemma 2 these paths asynchronously γ-fellow
travel, where γ := K(δ, λ, ε, 2δ + 2κ) is a constant. In Figure 2 this is visualized
by the part between the c-labelled edge and the d-labelled edge. W.l.o.g. we
assume that γ ≥ 2δ + 2κ.

We now define the NFA A over the alphabet {a1, a2} (recall the we replace
edge labels from {a1, a2}∗ by their Parikh images). The state set of A is

Q = {q0, qf} ∪ {(i, b, j) | 0 ≤ i < `1, 0 ≤ j < `2, b ∈ Bγ(1)}.

The unique initial (resp., final) state is q0 (resp., qf ). To define the transitions of
A set p = bN1/`1c = b|x|/|u1|c, r = N1 mod `1 = |x| mod |u1|, s = dN2/`1e =
d|z|/|u1|e, t = −N2 mod `1 = −|z| mod |u1|. Thus, we have x = up1u1[: r] and
z = us1[t+ 1 :]. There are the following types of transitions (transitions without
a label are implicitly labelled by the zero vector (0, 0)), where 0 ≤ i < `1,
0 ≤ j < `2, b, b′ ∈ Bγ(1).
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1. q0
(p,p′)−−−→ (r, c, r′) if there exists a number 0 ≤ k ≤ λ(m1 +N1 + 2δ + 2κ) + ε

(this is the possible range for the length of x′ in (1)) such that p′ = bk/`2c,
r′ = k mod `2, and v1u

p
1u1[: r] = up

′

2 u2[: r′]c in G.
2. (i, b, j) −→ (i+ 1, b′, j) if i+ 1 < `1 and bu1[i+ 1] = b′ in G.

3. (`1 − 1, b, j)
(1,0)−−−→ (0, b′, j) if bu1[`1] = b′ in G.

4. (i, b, j) −→ (i, b′, j + 1) if j + 1 < `2 and b = u2[j + 1]b′ in G.

5. (i, b, `2 − 1)
(0,1)−−−→ (i, b′, 0) if b = u2[`2]b′ in G.

6. (t, d, t′)
(s,s′)−−−→ qf if there exists a number 0 ≤ k ≤ λ(m2 +N2 + 2δ + 2κ) + ε

(this is the possible range for the length of z′ in (2)) such that s′ = dk/`2e,
t′ = −k mod `2, and du1[t+ 1 :]us1 = u2[t′ + 1 :]us

′

2 v2 in G.

The construction is best explained using the example in Figure 2. As men-
tioned above, the vertical lines between c = c0 and d = c24 represent the
asynchronous γ-fellow travelling. The vertical lines are labelled with group ele-
ments c0, c1, . . . , c23, c24 ∈ Bγ(1) from left to right. In order to not overload the
figure we only show c0 and c24. Note that x = u61u1[1], x′ = u32u2[1], z = u1[2]u71,
z′ = u2[2 : 4]u32. Basically, the NFA A moves the vertical edges from left to right
and thereby stores (i) the label ci of the vertical edge, (ii) the position in the
current u2-factor where the vertical edge starts (position 0 means that we have
just completed a u2-factor), and (iii) the position in the current u1-factor where
the vertical edge ends. If a u1-factor (resp., u2-factor) is completed then the
automaton makes a (1, 0)-labelled (resp., (0, 1)-labelled) transition. The complete
run that corresponds to Figure 2 is:

q0
(6,3)−−−→(1, c0, 1)

(1,0)−−−→ (0, c1, 1)→ (1, c2, 1)→ (2, c3, 1)→

(3, c4, 1)
(0,1)−−−→ (0, c5, 1)

(1,0)−−−→ (0, c6, 0)→ (0, c7, 1)→

(1, c8, 1)
(1,0)−−−→ (0, c9, 1)→ (1, c10, 1)→ (1, c11, 2)→

(1, c12, 3)
(0,1)−−−→ (1, c13, 0)

(1,0)−−−→ (0, c14, 0)→ (0, c15, 1)→

(1, c16, 1)
(1,0)−−−→ (0, c17, 1)→ (1, c18, 1)→ (1, c19, 2)→

(1, c20, 3)
(1,0)−−−→ (0, c21, 3)

(0,1)−−−→ (0, c22, 0)→ (0, c23, 1)→

(1, c24, 1)
(8,4)−−−→ qf

With the above intuition it is straightforward to show that the Parikh image
of L(A) is indeed S2. Also note that the number of states of A is bounded by
O(`1`2). The statement of the lemma then follows directly from Theorem 8. ut

6.2 Reduction to quasi-geodesic knapsack expressions

Let us call a knapsack expression E = ux1
1 v1u

x2
2 v2 · · ·u

xk

k vk over G (λ, ε)-quasi-
geodesic if all u1, . . . , uk, v1, . . . , vk are geodesic and for all 1 ≤ i ≤ k and all
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n ≥ 0 the word uni is (λ, ε)-quasigeodesic. We say that E has infinite order, if
all ui represent group elements of infinite order. The goal of this section is to
reduce a knapsack expression to a finite number (in fact, exponentially many) of
(λ, ε)-quasigeodesic knapsack expressions of infinite order for certain constants
λ, ε:

Proposition 10. There are fixed constants λ, ε such that from a given knapsack
expression E over G one can compute a finite list of knapsack expressions Ei
(i ∈ I) over G such that

– sol(E) =
⋃
i∈I
(
(mi · sol(Ei) + di)⊕Fi

)
,

– every Fi is a semilinear subset of NY for a subset Y ⊆ XE,
– the magnitude of every Fi is bounded by a constant that only depends on G,
– every Ei is a (λ, ε)-quasigeodesic knapsack expression of infinite order with

variables from Z := XE \ Y ,
– the size of every Ei is bounded by O(|E|), and
– all mi and di are vectors from NZ where all entries are bounded by a constant

that only depends on G (here, mi · sol(Ei) = {mi · z | z ∈ sol(E)} and mi · z
is the pointwise multiplication of the vectors mi and z).

Once Proposition 10 is shown, we can conclude the proof of Theorem 7 by showing
that all sets sol(Ei) are semilinear and that their magnitudes are bounded by
p(|Ei|) for a fixed polynomial p(n). This will be achieved in the next section.

A detailed proof of Proposition 10 can be found in the long version [17]; here we
only provide a sketch. Consider a knapsack expression E = ux1

1 v1u
x2
2 v2 · · ·u

xk

k vk.
We can assume that every ui is shortlex reduced. Let gi ∈ G be the group element
represented by the word ui. Reducing to the case, where all gi have infinite
order is relatively easy. In a hyperbolic group G the order of torsion elements is
bounded by a fixed constant that only depends on G, see also the proof of [22,
Theorem 6.7]). This allows to check for each gi whether it has finite order, and to
compute the order in the positive case. Let Y ⊆ {x1, . . . , xk} be those variables
xi such that gi has finite order. For xi ∈ Y let oi <∞ be the order of gi. Let F
be the set of mappings f : Y → N such that 0 ≤ f(xi) < oi for all xi ∈ Y . For
every such mapping f ∈ F let Ef be the knapsack expression that is obtained

from E by replacing for every xi ∈ Y the power uxi
i by u

f(xi)
i (which is merged

with the word vi). Moreover, let Ff be the set of all mappings g : Y → N such
that g(xi) ≡ f(xi) mod oi for every xi ∈ Y . Then the set sol(E) can be written
as sol(E) =

⋃
f∈F sol(Ef ) ⊕ Ff . Note that Ff is a semilinar set of magnitude

O(1).
In a second step we reduce every Ef (which has infinite order) to (λ, ε)-

quasigeodesic knapsack expressions for fixed constants λ and ε. Let us again
write Ef = ux1

1 v1u
x2
2 v2 · · ·u

xk

k vk. We first use Lemma 1, which tells us that for
every n ≥ 0 and 1 ≤ i ≤ k, the word uni is (λi, εi)-quasigeodesic for λi = N |ui|,
εi = 2N2|ui|2+2N |ui|. In order to reduce these λi, εi to fixed constants we mainly
use the following two results from [3], where L = 34δ + 2 and K = |B4δ(1)|2
(these are constants):
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– Let u = u1u2 be shortlex reduced, where |u1| ≤ |u2| ≤ |u1| + 1, and ũ =
shlex(u2u1). If |ũ| ≥ 2L + 1 then for every n ≥ 0, the word ũn is L-local
(1, 2δ)-quasigeodesic [3, Lemma 3.1].

– Let u be geodesic such that |u| ≥ 2L+1 and for every n ≥ 0, the word un is L-
local (1, 2δ)-quasigeodesic. Then one can compute c ∈ B4δ(1) and 1 ≤ m ≤ K
such that (shlex(c−1umc))n is geodesic for all n ≥ 0 [3, Section 3.2]. ut

6.3 Proof of Theorem 7

In this subsection we sketch the proof of Theorem 7; a detailed proof can be found
in the full version [17]. Consider a knapsack expression E = ux1

1 v1u
x2
2 v2 · · ·u

xk

k vk.
We can assume that all ui, vi are geodesic. By Proposition 10 we can moreover
assume that for all 1 ≤ i ≤ k, ui represents a group element of infinite order and
that uni is (λ, ε)-quasigeodesics for all n ≥ 0, where λ, ε are fixed constants. We
want to show that sol(E) is semilinear and has a magnitude that is polynomially
bounded by |E|.

For the case k = 1 we have to consider all n ∈ N with un1 = v−11 in G. Since u1
represents a group element of finite order there is at most one such n. Moreover,
since uni is (λ, ε)-quasigeodesic, such an n has to satisfy |u1| ·n ≤ λ|v1|+ ε, which
yields a linear bound on n. For the case k = 2 we can directly use Proposition 9.
Now assume that k ≥ 3. We want to show that the set sol(E) is a semilinear subset
of Nk (later we will consider the magnitude of sol(E)). For this we construct a
Presburger formula with free variables x1, . . . , xk that is equivalent to E = 1. We
do this by induction on the depth k. Therefore, we can use in our Presburger
formula also knapsack equations of the form F = 1, where F has depth at most
k − 1. One can also easily observe that it suffices to construct a Presburger
formula for sol(E) ∩ (N \ {0})k.

Consider a tuple (n1, . . . , nk) ∈ sol(E)∩ (N \ {0})k and the corresponding 2k-
gon that is defined by the (λ, ε)-quasigeodesic paths Pi = (un1

1 v1 · · ·uni−1

i−1 vi−1) ·
P [uni

i ] and the geodesic paths Qi = (un1
1 v1 · · ·uni

i ) · P [vi], see Figure 3a for the
case k = 3. Since all paths Pi and Qi are (λ, ε)-quasigeodesic, we can apply [22,
Lemma 6.4]: Every side of the 2k-gon is contained in the h-neighborhoods of the
other sides, where h = ξ + ξ log(2k) for a constant ξ that only depends on the
constants δ, λ, ε.

Let us now consider the side P2 of the quasigeodesic (2k)-gon. It is labelled
with ux2

2 . Every point on P2 must have distance at most h from one of the sides
P1, Q1, Q2, P3, . . . , Pk, Qk. We distinguish several cases. In each case we cut the
2k-gon into smaller pieces along paths of length ≤ 2h+ 1 (in fact, length h except
for one case), and these smaller pieces will correspond to knapsack expressions
of depth < k. This is done until all knapsack expressions have depth at most
two. Let us consider one typical case, the other cases are considered in the long
version [17].

Assume that there is a point p ∈ P2 that has distance at most h from a
point q ∈ Qi, where 3 ≤ i ≤ k. The situation looks as shown in Figure 3b. For
every tuple t = (w, u2,1, u2,2, vi,1, vi,2) such that w ∈ Σ∗ is of length at most h,
u2 = u2,1u2,2 and vi = vi,1vi,2, we construct two new knapsack expressions Ft =
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un2
2v1

un1
1

v3

un3
3

v2

(a) The 2k-gon for k = 3.

u2,2u2,1

uz2
2uy2

2

v1

ux1
1

v3,2 v3,1

ux3
3

v2

w

(b) Splitting the 2k-gon into two parts.

Fig. 3: Planar diagrams from the proof of Theorem 7.

ux1
1 v1u

y2
2 (u2,1wvi,2)u

xi+1

i+1 vi+1 · · ·uxk

k vk, Gt = u2,2u
z2
2 v2u

x3
3 v3 · · ·u

xi
i (vi,1w

−1) and
the formula ∨

t

∃y2, z2 : x2 = y2 + 1 + z2 ∧ Ft = 1 ∧Gt = 1, (3)

where t ranges over all tuples of the above form. Here y2, z2, yi, zi are new variables.
Note that Ft and Gt have depth at most k − 1.

There are several other cases in which we can similarly split E into several
(at most three) knapsack expressions of depth < k. In each case, we get a formula
similar to (3), and we take the disjunction of all these formulas. This shows that
sol(E) is semilinear.

It remains to argue that the magnitude of sol(E) is bounded polynomially in
|E|. Iterating the splitting procedure results in a disjunction of formulas of the
form

∃y1, . . . , ym
∧
i∈I

Ei = 1
∧
j∈J

zj = z′j + z′′j + 1, (4)

where every Ei is a knapsack expression of depth at most two. Moreover, for
i 6= j, Ei and Ej have no common variables. The existentially quantified variables
y1, . . . , ym are the new variables that were introduced when splitting factors uxi

i

(e.g., y2, z2 in (3)). The variables zj , z
′
j , z
′′
j in (4) are from {x1, . . . , xk, y1, . . . , ym}.

The equations zj = z′j + z′′j + 1 in (4) result from the splitting of factors uxi
i . For

instance, x2 = y2 + 1 + z2 in (3) is one such equation.
In order to bound the magnitude of sol(E) it suffices to consider a single

conjunctive formula of the form (4), since disjunction corresponds to union of
semilinear sets, which does not increase the magnitude. We can also ignore the
existential quantifiers in (4), because existential quantification corresponds to
projection onto some of the coordinates, which cannot increase the magnitude.
Hence, we have to consider the magnitude of the semilinear set A defined by the
subformula

∧
i∈I Ei = 1

∧
j∈J zj = z′j + z′′j + 1 of (4). To bound the magnitude

of A, we show that (i) the size of every Ei in (4) is bounded by O(|E|2) and (ii)
that the size of the index set I is bounded by O(k2). From (i) it follows that the
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magnitude of every set sol(Ei) is bounded polynomially in |E|. For the additional
variables that are defined by the equations zj = z′j + z′′j + 1 in (4) one has to
notice that these equations zj = z′j + z′′j + 1 result in a tree-shaped additive
circuit whose input gates are the variables that appear in the Ei (i ∈ I). By (ii)
this circuit has O(k2) input gates. From this, one can finally deduce that the
magnitude of the set A is indeed polynomially bounded in E. ut

7 More groups with knapsack in LogCFL

Let C be the smallest class of groups such that (i) every hyperbolic group
belongs to C, (ii) if G ∈ C then also G × Z ∈ C, and (iii) if G,H ∈ C then also
G∗H ∈ C (where G∗H is the free product of G and H). From Theorem 7 and [19,
Proposition 4.11 and 4.17] it follows that every group G ∈ C is knapsack-tame
and hence polynomially knapsack-bounded. Hence, knapsack for a group G ∈ C is
logspace reducible to membership for acyclic NFAs over G (the reduction in the
proof of Theorem 6 works for any group). Finally, it was shown in the full version
[17] that the word problem for every group in C can be accepted by a one-way
AuxPDA in logarithmic space and polynomial time (the proof is essentially the
same as in [19, Lemma 4.8]). This allows to generalize the proof of Theorem 5 to
groups from C. Hence, for every group G ∈ C, membership for acyclic NFAs over
G and knapsack for G can be solved in LogCFL.

8 Conclusion

In this paper, it is shown that every hyperbolic group is knapsack-tame and that
the knapsack problem can be solved in LogCFL. Here is a list of open problems
that one might consider for future work.

– For the following important groups, it is not known whether the knapsack
problem is decidable: braid groups Bn (with n ≥ 3), solvable Baumslag-
Solitar groups BS1,p = 〈a, t | t−1at = ap〉 (with p ≥ 2), and automatic groups
which are not in any of the known classes with a decidable knapsack problem.

– In [12], it was shown that knapsack is decidable for every co-context-free
group. The algorithm from [12] has an exponential running time. Is there a
more efficient solution?

– Is there a polynomially knapsack-bounded group which is not knapsack-tame?
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