
SIZE-OPTIMAL TOP DAG COMPRESSION

MARKUS LOHREY, CARL PHILIPP REH, AND KURT SIEBER

Abstract. It is shown that for a given ordered node-labelled tree of size

n and with s different node labels, one can construct in linear time a top

dag of height Oplognq and size bounded by Opn{ logσ nq and Opd ¨ lognq,
where σ “ maxt2, su and d is the size of the minimal dag. The size bound

Opn{ logσ nq is optimal and improves on previous bounds.

1. Introduction

Top dags were introduced by Bille et al. [1] as a formalism for the compression
of unranked node-labelled ordered trees. Roughly speaking, the top dag for such
a tree t is the dag representation of an expression that evaluates to t, where the
expression builds t from edges using two merge operations (horizontal and vertical
merge). In [1], a linear time algorithm is presented that constructs from a tree
of size n with node labels from the set Σ a top dag of size Opn{ log0.19

σ nq, where
σ “ maxt2, |Σ|u (note that this definition of σ avoids the base 1 in the logarithm)
and the size of a top dag is the number of its edges. Later, in [7] this bound was
improved to Opn log log n{ logσ nq (for the same algorithm as in [1]).

If |tdagptq| denotes the size of a smallest top dag for the tree t, then a simple
counting argument shows that Ωpn{ logσ nq is the information-theoretic lower bound
for maxt|tdagptq| | t P Tn,σu, where Tn,σ denotes the set of all trees of size n with
σ node labels.1 We present a new linear-time top dag construction that achieves
this bound. In addition, our construction has two properties that are also true for
the original construction of Bille et al. [1]: (i) the size of the constructed top dag
is bounded by Op|dagptq| ¨ log nq, where dagptq is the minimal dag of t and (ii) the
height of the top dag is bounded by Oplog nq. Concerning (i) it was shown in [2]
that the factor log n is unavoidable. The logarithmic bound on the height of the
top dag in (ii) is important to obtain the logarithmic time bounds for the querying
operations (e.g., computing the label, parent node, first child, right sibling, depth,
height, nearest common ancestor, etc. of nodes given by their preorder numbers)
in [1].

Our construction is based on a modification of the algorithm BU-Shrink (bottom-
up shrink) from [5], which constructs in linear time a TSLP of size Opn{ logσ nq
for a given binary tree. In fact, we construct the top dag in two phases: in the
first phase we apply the modification of BU-Shrink, whereas in the second phase
we apply the top dag construction of Bille et al.

1This can be shown by noting that (i) a top dag of size m can be encoded by a bit string

of length Opm logmq and (ii) the number of trees of size n with σ node labels is Θp4nσn{n3{2q,

which follows from the asymptotics for the Catalan numbers.

1

2 M. LOHREY, C. P. REH, AND K. SIEBER

Related work. After the arXiv-version of this paper had appeared, an alternative
construction of top dags of size Opn{ logσ nq was presented in [4]. In that paper,
it is also shown that the Opn log log n{ logσ nq bound for the top dag construction
from [1, 7] cannot be improved.

In [6] top dags are compared with two other formalisms for the grammar-based
compression of unranked trees: (i) forest straight-line programs (which generalize
tree straight-line programs that are used for the compression of ranked trees, see the
survey [8]) and (ii) tree straight-line programs for first-child next sibling encodings
of unranked trees. It is shown in [6] that (i) and (ii) are equally succint and that
top dags can be transformed into both formalisms with a constant blow-up, but
the transformation from (i) or (ii) to top dags requires a blow-up of size Opσq.

2. Preliminaries

Let Σ be a finite alphabet. By T we denote the set of ordered labelled trees with
labels from Σ. Here, “ordered” means that the children of every node are linearly
ordered. Fix a tree t P T . We use the following notations: rt is the root of t, V ptq
is the set of nodes of t and Eptq is the set of edges of t. If v P V ptq then we use
λtpvq to denote the label of v in t, and we use tpvq to denote the subtree of t that
is rooted in v. The number of children of v is called the degree of v, degpvq for
short. Our trees are unranked in the sense that the node label does not determine
the degree of the node. A cluster of rank 0 is just a tree t. A cluster of rank 1 is a
tree t together with a distinguished leaf node `t that we call the bottom boundary
node of t. In both cases, the root rt is called the top boundary node. Let Ci be the
set of all clusters of rank i P t0, 1u and let C “ C0 Y C1. With rankptq we denote
the rank of the cluster t. An atomic cluster consists of a single edge, i.e., it is a tree
with two nodes.

We define two partial binary merge operations �,� : C ˆ C Ñ C:

(1) s� t (the vertical merge of s and t) is only defined if s P C1 and λsp`sq “
λtprtq. We obtain s � t by taking the disjoint union of s and t and then
merging `s P V psq with rt P V ptq (note that this is possible since the labels
coincide). The rank of s � t is rankptq and if t P C1, then the bottom
boundary node of s� t is `t.

(2) s�t (the horizontal merge of s and t) is only defined if rankpsq`rankptq ď 1
and λsprsq “ λtprtq. We obtain s� t by taking the disjoint union of s and
t and then merging rs P V psq with rt P V ptq (note that this is possible
since the labels coincide). If the children of rs (resp., rt) are ordered as
u1, . . . , uk (resp., v1, . . . , vl) then the order of the children of the root of
s� t is u1, . . . , uk, v1, . . . , vl. The rank of s� t is rankpsq` rankptq. In case
s P C1 (resp., t P C1), the bottom boundary node of s� t is `s (resp., `t).

The (minimal) directed acyclic graph (dag) for a tree t is obtained by keeping for
every subtree t1 of t only one occurrence of that subtree and replacing every edge
that goes to a node in which a copy of t1 is rooted by an edge to the unique chosen
occurrence of t1. We denote this dag as dagptq. Note that the number of nodes
in dagptq is the number of different subtrees that occur in t. We define the size
|dagptq| as the number of edges of dagptq.

We can now define top trees and top dags. A top tree is a binary node-labelled
ordered tree, where every internal node is labelled with one of the two operations
�,� and every leaf is labelled with an atomic cluster plus a bit for the rank of the

SIZE-OPTIMAL TOP DAG COMPRESSION 3

cluster. The latter information can be represented by a triple pa, b, iq with a, b P Σ
and i P t0, 1u. Moreover, for a top tree T it is required that we can evaluate T to
a tree t P T by recursively applying the merge operations at its inner nodes. In
other words, if an internal node v of T is labelled with the operation d P t�,�u
and its left (resp., right) child evaluates to the cluster s1 (resp., s2), then s1 d s2
must be defined according to the above definitions (1) and (2). Also note that the
root of T is required to evaluate to a tree t, i.e., a cluster of rank 0. We then say
that T is a top tree for t and dagpT q is a top dag for t. Note that the number of
nodes and the number of edges of a top dag differ at most by the factor 2 (since
every internal node of a top dag has two outgoing edges). Hence, if we only want
to prove an asymptotic upper bound for the size of a top dag, we can either count
its edges or its nodes.

Let t P T be a tree. A subcluster of t of rank one is an induced subgraph of
t that is obtained as follows: Take a node u P V ptq with the ordered sequence of
children u1, . . . , ud and let 1 ď i ď j ď d. Let v P V be a node that belongs
to one of the subtrees tpuiq, . . . , tpujq. Then the tree is induced by the nodes

in tu, vu Y p
Ťj
s“i tpusq z tpvqq. The node u (resp., v) is the top (resp., bottom)

boundary node of the cluster. A subcluster of t of rank zero is obtained in the same

way, except that we take the tree induced by the nodes in tuuY
Ťj
s“i tpusq. Its top

boundary node is u. Note that every edge of t is a subcluster of t. We identify a
subcluster of t with the set of edges of t belonging to the subcluster. If T is a top
tree for t then it follows easily by induction that every subtree of T evaluates to an
isomorphic copy of a subcluster of t.

To prove our main result in the next section, we need the following lemma, which
is shown in [1].

Lemma 2.1. There is a linear time algorithm that computes from a given tree t
with n ě 1 edges a top tree Tof height Oplog nq and size Opnq. The corresponding
top dag dagpT q has size Op|dagptq| ¨ log nq.

We also need the following simple lemma:

Lemma 2.2. Let t P T with m ě 1 edges and let U “ tv P V ptqztrtu | degpvq ď 1u.
Then we have |U | ą m{2.

Proof. Let U 1 “ tv P V ptq | degpvq ě 2u and let m1 ď m be the total number of
outgoing edges of nodes v P U 1. Then m1 ě 2 ¨ |U 1| and thus |U 1| ď m1{2.

We distinguish two cases: If rt P U
1 then we have U “ V ptqzU 1 which implies

|U | “ m ` 1 ´ |U 1| ě m ` 1 ´ m1{2 ą m{2. If rt R U
1 then m1 ă m (since the

outgoing edge of rt is not counted in m1) and U “ V ptqzpU 1 Y trtuq. This implies
|U | “ m` 1´ p|U 1| ` 1q “ m´ |U 1| ě m´m1{2 ą m{2. �

Our exposition of top trees and top dags differs slightly from Bille et al. [1]. Bille
et al. only define the above notion of a subcluster inside a concrete tree t, and then
construct a concrete top tree for t by partitioning t into certain subclusters. Our
approach is slightly different. We define top trees as expression trees T over the
two merge operations � and �. Such an expression tree T can then be evaluated
to a tree t, and we say that T is a top tree of t. We believe that this definition adds
flexibility: a top dag compression algorithm is any algorithm that constructs a top
tree T of a given input tree t. The output is then the dag representation of this
top tree. Moreover, the definition of a top tree as an expression tree over certain

4 M. LOHREY, C. P. REH, AND K. SIEBER

merge operations allows to compare top dags better with related grammar-based
formalisms for tree compression that only differ in the merge operations (e.g. for-
est straight-line programs [6]). To define a particular grammar-based compression
formalism for trees, one has to fix a finite set of operations for constructing trees.
Every tree should be constructible from certain constants (for top dags these con-
stants are atomic clusters) and the operations. Then a grammar-based compressor
constructs from a tree t the dag-representation of an expression tree that evaluates
to t. Top dags, forest straight-line programs and ordinary dags can be seen as
concrete instantiations of this idea. This is also our approach from [6].

3. Optimal worst-case compression

We can now state and prove the main result of this paper:

Theorem 3.1. Let σ “ maxt|Σ|, 2u. There is a linear time algorithm that computes
from a given tree t P T with n ě 1 edges a top dag of height Oplog nq, whose size is
bounded by Opn{ logσ nq and Op|dagptq| ¨ log nq.

Proof. We first prove the theorem without the bound Op|dagptq| ¨ log nq on the
size of the constructed top dag. In a second step, we explain how to modify the
algorithm to obtain the Op|dagptq| ¨ log nq bound.

Take a tree t P T with n ě 1 edges and let σ “ maxt|Σ|, 2u. We build from
t a sequence of trees t0, t1, . . . tm, where every edge pu, vq P Eptiq (u is the parent
node of v) is labelled with a subcluster ciu,v of t. If v is a leaf of ti, then ciu,v is

a subcluster of rank 0 with top boundary node u, otherwise ciu,v is a subcluster of
rank 1 with top boundary node u and bottom boundary node v. The number of
edges in the subcluster ciu,v is also called the weight γiu,v of the edge pu, vq.

Our algorithm does not have to store the subclusters explicitly but only their
weights. Moreover, the algorithm builds for every edge pu, vq P Eptiq a top tree
T iu,v. The invariant of the algorithm is that T iu,v evaluates to (an isomorphic copy

of) the subcluster ciu,v. The top trees T iu,v are stored as pointer structures, but
below we write them for better readability as expressions using the operators �
and �.

The initial tree t0 is the tree t, where c0u,v “ tpu, vqu for every edge pu, vq P Ept0q.

Thus, c0u,v is a subcluster of rank 0 if v is a leaf, and of rank 1 otherwise. We set

γ0u,v “ 1 and T 0
u,v “ pλtpuq, λtpvq, iq, where i is the rank of the subcluster c0u,v.

Let us now fix a number k ď n that will be made precise later. Our algorithm
proceeds as follows: Let ti be the current tree. We proceed by a case distinction.
Ties between the following three cases can be broken in an arbitrary way. The
updating of the subclusters ciu,v is only shown to give a better intuition for the
algorithm; it is not part of the algorithm.

Case 1. There exist edges pu, vq, pv, wq P Eptiq of weight at most k such that w is
the unique child of v. We obtain ti`1 from ti by (i) removing the node v, and (ii)
replacing the edges pu, vq, pv, wq by the edge pu,wq. Moreover, we set

ci`1
u,w :“ ciu,v Y c

i
v,w,

T i`1
u,w :“ T iu,v � T iv,w,

γi`1
u,w :“ γiu,v ` γ

i
v,w.

SIZE-OPTIMAL TOP DAG COMPRESSION 5

For all edges px, yq P Eptiqztpu, vq, pv, wqu we set

(1) ci`1
x,y :“ cix,y, T i`1

x,y :“ T ix,y and γi`1
x,y :“ γix,y.

Case 2. There exist edges pu, vq, pu,wq P Eptiq of weight at most k such that v is a
leaf and the left sibling of w. Then ti`1 is obtained from ti by removing the edge
pu, vq. Moreover, we set

ci`1
u,w :“ ciu,v Y c

i
u,w,

T i`1
u,w :“ T iu,v � T iu,w,

γi`1
u,w :“ γiu,v ` γ

i
u,w.

For all edges px, yq P Eptiqztpu, vq, pu,wqu we make the updates from (1).

Case 3. There exist edges pu, vq, pu,wq P Eptiq of weight at most k such that v is
a leaf and the right sibling of w. We make the same updates as in Case 2 except
that T i`1

u,w is set to T iu,w � T iu,v.

If none of the above three cases holds, then the algorithm stops. Let t1 “ tm be the
final tree that we computed. Note that every edge pu, vq of t1 has weight at most
2k. We now bound the number of edges of t1:

Claim: The number of edges of t1 is less than 8n
k .

Proof of the claim: Let n1 be the number of edges of t1. Note that n1 ě 1 and that
t1 has n1 ` 1 nodes. If n1 “ 1 we are done, since 8n

k ě 8. So, assume that n1 ě 2.
Let U be the set of all nodes in t1 of degree at most one except for the root node
rt1 . By Lemma 2.1 we have |U | ą n1{2. For every node u P U , let ppuq be its parent
node. We now assign to certain edges of t1 (possibly several) markings by doing
the following for every u P U : If the weight of the edge pppuq, uq is larger than k
then we assign to pppuq, uq a marking. Now assume that the weight of pppuq, uq is
at most k. If u has degree one and v is the unique child of u, then the weight of
pu, vq must be larger than k (otherwise, we would merge the edges pppuq, uq and
pu, vq), and we assign a marking to pu, vq. The remaining case is that u is a leaf.
Since t1 has at least two edges, at least one of the following three edges must exist:

‚ pppuq, vq, where v is the left sibling of u,
‚ pppuq, vq, where v is the right sibling of u,
‚ pv, ppuqq, where ppuq has degree one.

Moreover, each of these edges (if it exists) must have weight more than k. We
choose such an edge and assign a marking to it. The following then holds:

‚ Markings are only assigned to edges of weight more than k.
‚ Every edge of t1 can get at most 4 markings (see Figure 1 for an edge which

really gets 4 markings).
‚ In total, t1 contains |U | ą n1{2 many markings.

Since the sum of all edge weights of t1 is n, we obtain

n ě
|U | ¨ k

4
ą
n1 ¨ k

8

Thus, we have n1 ă 8n
k . This shows the claim.

We now build a top tree T for t as follows: Construct a top tree T 1 for t1 of
height Oplog nq using Lemma 2.2. Consider a leaf e of T 1. It corresponds to an edge
pu, vq P Ept1q. In the process of folding the cluster cmu,v into the edge pu, vq we have

6 M. LOHREY, C. P. REH, AND K. SIEBER

r

v

w x

y

z

Figure 1. If pv, xq has weight ą k then no further merges are
allowed by our algorithm. If all other edges have weight ď k then
pv, xq gets 4 markings because U “ tw, x, y, zu and each node u P U
causes a marking on pv, xq.

constructed the top tree Te :“ Tmu,v that evaluates to the cluster cmu,v. Therefore,
we obtain a top tree T for t by replacing every leaf e of T 1 by the top tree Te. To
bound the minimal dag of T we have to count the number of different subtrees of
T . This number can be upper bounded by the number of nodes in T 1 (which is
in Opn{kq) plus the number of different top trees of size at most 2k. The latter
number can be bounded as follows: A top tree for a tree from T is a binary tree with
2p|Σ|2 ` 1q many node labels (2|Σ|2 many different atomic clusters together with
the bit for their rank and two labels for the two merge operations). The number of
binary trees with m nodes is bounded by 4m. Hence, we can bound the number of
different top trees of size at most 2k by 2k ¨ rk with r “ 64p|Σ|2 ` 1q2. Note that
log r P Θplog σq, where σ “ maxt|Σ|, 2u. Take k “ 1

2 logr n P Θplogσ nq. Then we
obtain the following upper bound on the number of non-isomorphic subtrees of T :

O
ˆ

n

logσ n

˙

` logr n ¨
?
n “ O

ˆ

n

logσ n

˙

Moreover, the height of T is in Oplog nq since T 1 and all Te have height Oplog nq.
For the Te this follows from the fact that every Te has size at most 2k P Oplog nq.

It remains to argue that our algorithm can be implemented in linear time. The
arguments are more or less the same as for the analysis of BU-Shrink in [5]: The
algorithm maintains for every node of ti its degree, and for every edge pu, vq its
weight γiu,v. Additionally, the algorithm maintains a queue that contains pointers
to all edges pu, vq of ti having weight at most k and such that v has degree one.
Then every merging step can be done in constant time, and there are at most n
merging steps. Finally, the minimal dag of T can be computed in linear time by [3].

We now explain the modification of the above algorithm such that the con-
structed top dag has size Op|dagptq| ¨ log nq. Note that the above algorithm has
in general several choices for the edges that are merged in each step of the first
phase. It is not clear to us, whether every possible choice leads to a top dag of size
Op|dagptq| ¨ log nq. Intuitively, to obtain this bound, one should construct isomor-
phic top trees for isomorphic subtrees of t (at least to some extent). The idea that
ensures this property is to perform the first phase of the above algorithm (where
the tree t1 is constructed) on dagptq instead of t itself. Thus, the algorithm starts
with the construction of d :“ dagptq from t, which is possible in linear time [3]. We
now build from d a sequence of dags d0, d1, . . . dm, where analogously to the above

SIZE-OPTIMAL TOP DAG COMPRESSION 7

construction every edge pu, vq of di is labelled with a weight γiu,v and a top tree

T iu,v. Since we are working on the dag, we cannot assign a unique subcluster ciu,v
of t to the dag edge pu, vq. In fact, every edge of di represents a set of isomorphic
subclusters that are shared in the dag. The top tree T iu,v evaluates to an isomorphic
copy of these subclusters.

The initial dag d0 is the dag d where every edge pu, vq P Epd0q is labelled with
the top tree T 0

u,v that only consists of the leaf pλdpuq, λdpvq, iq (λd assigns to every
node of the dag its label from Σ) where i “ 0 if v is a leaf of the dag and i “ 1
otherwise. We take the same threshold value k ď n as before. Let di be the current
dag. Also the case distinction is the same as before:

Case 1. There exist edges pu, vq, pv, wq P Epdiq of weight at most k such that w
is the unique child of v. We obtain di`1 from di by replacing the edge pu, vq by
the edge pu,wq. If the node v has no incoming edge after this modification, we
can remove v and the edge pv, wq (although this is not necessary for the further
arguments). The weights γix,y and the top trees T ix,y are updated in exactly the
same way as in the previous case 1.

Case 2. There exist edges pu, vq, pu,wq P Epdiq of weight at most k such that v is a
leaf of di (i.e., has no outgoing edge) and it is the left sibling of w in the list of all
children of u. Then di`1 is obtained from di by removing the edge pu, vq. If v has
no more incoming edges after this modification, then we can also remove v. The
weights γix,y and the top trees T ix,y are updated in exactly the same way as in the
previous case 2.

Case 3. There exist edges pu, vq, pu,wq P Epdiq of weight at most k such that v
is a leaf and it is the right sibling of w in the list of all children of u. Then di`1

is obtained from di by removing the edge pu, vq. If v has no more incoming edges
after this modification, then we can remove v. The weights γix,y and the top trees

T ix,y are updated in exactly the same way as in the previous case 3.

If none of the above three cases holds, then the algorithm stops. Let d1 “ dm be
the final dag that we computed. We unfold d1 to a tree t1. This tree t1 is one of
the potential outcomes of the above tree version of the algorithm. The rest of the
construction is the same as before: We apply Lemma 2.2 to construct a top tree T 1

for t1, then we combine T 1 with the top trees Tmu,v to obtain a top tree T for t, and
finally we return dagpT q as the result of our algorithm.

The size bound Opn{ logσ nq and the height bound Oplog nq for dagpT q follow
from our previous arguments. It remains to show that |dagpT q| P Op|dagptq| ¨ log nq.
Note that |dagpT q| is bounded by |dagpT 1q| plus the total size of all top trees Tmu,v.
Lemma 2.2 ensures that |dagpT 1q| is bounded by Op|dagpt1q|¨log |t1|q ď Op|d1|¨log nq
where the latter inequality holds because d1 is a dag for t1. The total size of all
top trees Tmu,v is also bounded by Op|d1| ¨ log nq since each Tmu,v has size at most
2k P Oplogσ nq ď Oplog nq. Hence we have |dagpT q| P Op|d1| ¨ log nq. Finally note
that |d1| “ |dm| ď |d0| “ |dagptq| since each step from di to di`1 of the above
construction does not increase the number of nodes and edges. Thus we obtain
|dagpT q| P Op|dagptq| ¨ log nq. �

Example 3.2. Let Σ “ ta, bu. In the following picture we show a dag d0 (on the
left) with 4 nodes and N ` 3 edges and a possible run of the merging algorithm up
to d2 (on the right):

8 M. LOHREY, C. P. REH, AND K. SIEBER

r

u

v

w

N edges . . . pa, a, 1q

pa, b, 1q

pb, a, 0q

pa, a, 0q

r

u

v

w

. . . pa, a, 1q

pa, a, 0q� pa, b, 1q

pb, a, 0q

r

u

w

. . . pa, a, 1q

ppa, a, 0q� pa, b, 1qq
� pb, a, 0q

In the first step we merge the two atomic clusters pa, a, 0q and pa, b, 1q using �.
This is done by removing the edge pu,wq since w is a leaf and it is the left sibling
of v among all children of u. Then we merge the clusters pa, a, 0q � pa, b, 1q and
pb, a, 0q using �. This is done by replacing the edge pu, vq with the edge pu,wq.
The edge pv, wq is removed because it has no further incoming edges.

Note that these two merging steps are only allowed in our algorithm if the
threshold value k is at least 2, i.e., if |t0| ě 4 ¨ p64p|Σ|2 ` 1q2q2 “ 10240000 for
the original tree t0 with d0 “ dagpt0q. Since |t0| “ 4N ` 1 ą 4N we can choose
N “ 64p|Σ|2 ` 1q2q2 to obtain a threshold value k with 2 ă k ă 3. In this case
no further merging step is allowed on d2 because pu,wq has weight 3 and merging
steps without the edge pu,wq are anyway impossible. Hence we unfold d2 to a tree
t2 of size 2N ` 1 and proceed with the algorithm of Bille et al. [1] on t2.

References

[1] P. Bille, I. L. Gørtz, G. M. Landau, and O. Weimann. Tree compression with top trees.
Inf. Comput., 243:166–177, 2015.

[2] P. Bille, F. Fernstrøm, and I. L. Gørtz. Tight bounds for top tree compression. In Proc. SPIRE

2017, volume 10508 of LNCS, 97–102. Springer, 2017.
[3] P. J. Downey, R. Sethi, and R. E. Tarjan. Variations on the common subexpression problem.

J. ACM, 27(4):758–771, 1980.

[4] B. Dudek and P. Gawrychowski. Slowing down top trees for better worst-case bounds. In
Proc. CPM 2018, volume 105 of LIPIcs, pages 16:1–16:8. Schloss Dagstuhl - Leibniz-Zentrum

für Informatik, 2018.
[5] M. Ganardi, D. Hucke, A. Jeż, M. Lohrey, and E. Noeth. Constructing small tree grammars

and small circuits for formulas. J. Comput. Syst. Sci., 86:136–158, 2017.
[6] A. Gascón, M. Lohrey, S. Maneth, C. P. Reh, and K. Sieber. Grammar-based compression of

unranked trees. In Proc. CSR 2018, volume 10846 of LNCS, 118–131, Springer 2018.
[7] L. Hübschle-Schneider and R. Raman. Tree compression with top trees revisited. In Proc. SEA

2015, volume 9125 of LNCS, 15–27. Springer, 2015.
[8] M. Lohrey. Grammar-based tree compression. In Proc. DLT 2015, volume 9168 of Lecture

Notes in Computer Science, pages 46–57. Springer, 2015.

E-mail address: {lohrey,reh,sieber}@eti.uni-siegen.de

