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Abstract. In the sliding window streaming model the goal is to compute
an output value that only depends on the last n symbols from the data
stream. Thereby, only space sublinear in the window size n should be
used. Quite often randomization is used in order to achieve this goal. In
the literature, one finds two different correctness criteria for randomized
sliding window algorithms: (i) one can require that for every data stream
and every time instant t, the algorithm computes a correct output value
with high probability, or (ii) one can require that for every data stream the
probability that the algorithm computes at every time instant a correct
output value is high. Condition (ii) is stronger than (i) and is called
“strict correctness” in this paper. The main result of this paper states
that every strictly correct randomized sliding window algorithm can be
derandomized without increasing the worst-case space consumption.

1 Introduction

Sliding window streaming algorithms process an input sequence a1a2 · · · am from
left to right and receive at time t the symbol at as input. Such algorithms are
required to compute at each time instant t a value f(at−n+1 · · · at) that depends
on the n last symbols (we should assume t ≥ n here). The value n is called the
window size and the sequence at−n+1 · · · at is called the window content at time
t. In many applications, data items in a stream are outdated after a certain
time, and the sliding window model is a simple way to model this. A typical
application is the analysis of a time series as it may arise in medical monitoring,
web tracking, or financial monitoring.

A general goal in the area of sliding window algorithms is to avoid the explicit
storage of the window content, and, instead, to work in considerably smaller
space, e.g. space polylogarithmic in the window size. In the seminal paper of
Datar, Gionis, Indyk and Motwani [10], where the sliding window model was
introduced, the authors prove that the number of 1’s in a 0/1-sliding window
of size n can be maintained in space O( 1

ε · log2 n) if one allows a multiplicative
error of 1± ε. Other algorithmic problems that were addressed in the extensive
literature on sliding window streams include the computation of statistical data
(e.g. computation of the variance and k-median [3], and quantiles [2]), optimal
sampling from sliding windows [7], membership problems for formal languages
[11–14], computation of edit distances [8], database querying (e.g. processing
of join queries over sliding windows [15]) and graph problems (e.g. checking for



connectivity and computation of matchings, spanners, and minimum spanning
trees [9]). The reader can find further references in [1, Chapter 8] and [6].

Many of the above mentioned papers deal with sliding window algorithms that
only compute a good enough approximation of the exact value of interest. In fact,
even for very simple sliding window problems it is unavoidable to store the whole
window content. Examples are the exact computation of the number of 1’s [10] or
the computation of the first symbol of the sliding window for a 0/1-data stream
[12]. In this paper, we consider a general model for sliding window approximation
problems, where a (possibly infinite set) of admissible output values is fixed for
each word. To be more accurate, a specific approximation problem is described by
a function A : Σ∗ → 2Ω which associates to words over a finite alphabet Σ (the
set of data values in the stream) admissible output values from a possibly infinite
set Ω. A sliding window algorithm for such a problem is then required to compute
at each time instant an admissible output value for the current window content.
This model covers exact algorithms (where A is a function A : Σ∗ → Ω) as well
as a wide range of approximation algorithms. For example the computation of
the number of 1’s in a 0/1-sliding window with an allowed multiplicative error
of 1± ε is covered by our model, since for a word with k occurrences of 1, the
admissible output values are the integers from b(1− ε)kc to d(1 + ε)ke.

A second ingredient of many sliding window algorithms is randomization. Fol-
lowing our recent work [11–13] we model a randomized sliding window algorithm
as a family R = (Rn)n≥0 of probabilistic automata Rn over a finite alphabet Σ,
where Rn is the algorithm for window size n. Probabilistic automata were intro-
duced by Rabin [17] and can seen as a common generalization of deterministic
finite automata and Markov chains. The basic idea is that for every state q and
every input symbol a, the next state is chosen according to some probability
distribution. In addition to the classical model of Rabin, we require that for every
probabilistic automaton Rn, (i) states are encoded by bit strings (the memory
contents of the algorithm – this allows to define the space consumption of Rn on
a certain input) and (ii) every state is associated with an output value from the
set Ω. The second point allows to associate with every input word w ∈ Σ∗ and
every output value ω ∈ Ω the probability that the automaton outputs ω on input
w. In order to solve a specific approximation problem A : Σ∗ → 2Ω one should
require that for every window size n, the probabilistic automaton Rn should have
a small error probability ε (say ε = 1/3) on every input stream. But what does
the latter exactly mean? Two different definitions can be found in the literature:

– For every input stream w = a1 · · · am and every window size n (n ≤ m), the
probability that Rn outputs on input w a value ω /∈ A(am−n+1 · · · am) is at
most ε. In this case, we say that R is ε-correct for A.

– For every input stream w = a1 · · · am and every window size n, the prob-
ability that Rn outputs at some time instant t (n ≤ t ≤ m) a value
ω /∈ A(at−n+1 · · · at) is at most ε. In this case, we say that R is strictly
ε-correct for A.

One can rephrase the difference between strict ε-correctness and ε-correctness as
follows: ε-correctness means that while the randomized sliding window algorithm
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runs on an input stream it returns at each time instant an admissible output value
with probability at least 1− ε. In contrast, strict ε-correctness means that while
the randomized sliding window algorithm reads an input stream, the probability
that the algorithm returns an admissible output value at every time instant is at
least 1− ε. Obviously this makes a difference: imagine that Ω = {1, 2, 3, 4, 5, 6}
and that for every input word w ∈ Σ∗ the admissible output values are 2, 3, 4, 5, 6,
then the algorithm that returns at every time instant the output of a fair dice
throw is 1/6-correct. But the probability that this algorithm returns an admissible
output value at every time instant is only (5/6)m for an input stream of length
m and hence converges to 0 for m→∞. Of course, in general, the situation is
more complex since successive output values of a randomized sliding window
algorithm are not independent.

In the following discussion, let us fix the error probability ε = 1/3 (using
probability amplification, one can reduce ε to any constant > 0). In our recent
paper [13] we studied the space complexity of the membership problem for regular
languages with respect to ε-correct randomized sliding window algorithms. It
turned out that in this setting, one can gain from randomization. Consider for
instance the regular language ab∗ over the alphabet {a, b}. Thus, the sliding
window algorithm for window size n should output “yes”, if the current window
content is abn−1 and “no” otherwise. From our results in [11, 12], it follows that
the optimal space complexity of a deterministic sliding window algorithm for the
membership problem for ab∗ is Θ(log n). On the other hand, it is shown in [13]
that there is an ε-correct randomized sliding window algorithm for ab∗ with (worst-
case) space complexity O(log log n) (this is also optimal). In fact, we proved in [13]
that for every regular language L, the space optimal ε-correct randomized sliding
window algorithm for L has either constant, doubly logarithmic, logarithmic,
or linear space complexity, and the corresponding four space classes can be
characterized in terms of simple syntactic properties.

Strict ε-correctness is used (without explicit mentioning) for instance in [5,
10].1 In these papers, the lower bounds shown for deterministic sliding-window
algorithms are extended with the help of Yao’s minimax principle [18] to strictly
ε-correct randomized sliding-window algorithms. The main result of this paper
states that this is a general phenomenon: we show that every strictly ε-correct
sliding window algorithm for an approximation problem A can be derandomized
without increasing the worst-case space complexity (Theorem 4). To the best of
our knowledge, this is the first investigation on the general power of randomization
on the space consumption of sliding window algorithms. We emphasize that our
proof does not utilize Yao’s minimax principle, which would require the choice of
a “hard” distribution of input streams specific to the problem. It remains open,
whether such a hard distribution exists for every approximation problem.

We remark that the proof of Theorem 4 uses exponentially long input streams
in the size of the sliding window. In fact, we show that for a certain problem

1 For instance, Ben-Basat et al. write “We say that algorithm A is ε-correct on a input
instance S if it is able to approximate the number of 1’s in the last W bits, at every
time instant while reading S, to within an additive error of Wε”.
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a restriction to polynomially long input streams yields an advantage of strictly
correct randomized algorithms over deterministic ones, see Propositions 8 and 9.

It is possible to extend Theorem 4 to average space complexity with the cost
of an additional constant factor. More precisely, for every randomized strictly
ε-correct sliding window algorithm R for A there exists a deterministic sliding
window algorithm for A whose space complexity is only a constant factor larger
than the average space complexity of R. This is a direct corollary of Theorem 4
and Lemma 3, which allows to go from average space to worst-case space with
the cost of a constant blow-up.

Let us add further remarks on our model. First of all, it is crucial for our
proofs that the input alphabet (i.e., the set of data values in the input stream)
is finite. This is for instance the case when counting the number of 1’s in a
0/1-sliding window. On the other hand, the problem of computing the sum of
all data values in a sliding window of arbitrary numbers (a problem that is
considered in [10] as well) is not covered by our setting, unless one puts a bound
on the size of the numbers in the input stream.

As a second remark, note that our sliding window model is non-uniform in
the sense that for every window size we may have a different streaming algorithm.
In other words: it is not required that there exists a single streaming algorithm
that gets the window size as a parameter. Clearly, lower bounds get stronger
when shown for the non-uniform model. Moreover, all proofs of lower bounds in
the sliding window setting, we are aware of, hold for the non-uniform model.

2 Preliminaries

With [0, 1] we denote the real interval {p ∈ R : 0 ≤ p ≤ 1}. The set of all words
over a finite alphabet Σ is denoted by Σ∗. The empty word is denoted by λ. The
length of a word w ∈ Σ∗ is denoted with |w|. The sets of words over Σ of length
exactly, at most and at least n are denoted by Σn, Σ≤n and Σ≥n, respectively.

2.1 Approximation problems

An approximation problem is a mapping A : Σ∗ → 2Ω where Σ is a finite alphabet
and Ω is a (possibly infinite) set of output values. For a given input word w ∈ Σ∗
the set A(w) is the set of admissible outputs for w. Typical examples include:

– exact computation problems A : Σ∗ → Ω (here we identify an element
ω ∈ Ω with the singleton subset {ω}). A typical example is the mapping
c1 : {0, 1}∗ → N where c1(w) is the number of 1’s in w. Another exact problem
is given by the characteristic function χL : Σ∗ → {0, 1} of a language L ⊆ Σ∗.

– approximation of some numerical value for the data stream, which can be
modeled by a function A : Σ∗ → 2N. A typical example would be the mapping
w 7→ {k ∈ N : (1− ε) · c1(w) ≤ k ≤ (1 + ε) · c1(w)} for some 0 < ε < 1.
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2.2 Probabilistic automata with output

In the following we will introduce probabilistic automata [16, 17] as a model
of randomized streaming algorithms which produce an output after each input
symbol. A probabilistic automaton R = (Q,Σ, ι, ρ, ω) consists of a (possibly
infinite) set of states Q, a finite alphabet Σ, an initial state distribution ι : Q→
[0, 1], a transition probability function ρ : Q × Σ × Q → [0, 1] and an output
function ω : Q→ Ω such that

–
∑
q∈Q ι(q) = 1,

–
∑
q∈Q ρ(p, a, q) = 1 for all p ∈ Q, a ∈ Σ.

If ι and ρ map into {0, 1}, then R is a deterministic automaton; in this case we
write R as R = (Q,Σ, q0, δ, ω), where q0 ∈ Q is the initial state and δ : Q×Σ → Q
is the transition function. A run on a word a1 · · · am ∈ Σ∗ in R is a sequence
π = (q0, a1, q1, a2, . . . , am, qm) where q0, . . . , qm ∈ Q and ρ(qi−1, ai, qi) > 0 for
all 1 ≤ i ≤ m. If m = 0 we obtain the empty run (q0) starting and ending in q0.
We write runs in the usual way

π : q0
a1−→ q1

a2−→ · · · am−−→ qm

or also omit the intermediate states: π : q0
a1···am−−−−−→ qm. We extend ρ to runs

in the natural way: if π : q0
a1−→ q1

a2−→ · · · am−−→ qm is a run in R then ρ(π) =∏m
i=1 ρ(qi−1, ai, qi). Furthermore we define ρι(π) = ι(q0) · ρ(π). We denote by

Runs(R,w) the set of all runs on w in R and denote by Runs(R, q, w) those runs
on w that start in q ∈ Q. If R is clear from the context, we simply write Runs(w)
and Runs(q, w). Notice that for each w ∈ Σ∗ the function ρι is a probability
distribution on Runs(R,w) and for each q ∈ Q the restriction of ρ to Runs(R, q, w)
is a probability distribution on Runs(R, q, w). If Π is a set of runs (which
will often be defined by a certain property of runs), then Prπ∈Runs(w)[π ∈ Π]
denotes the probability

∑
π∈Runs(w)∩Π ρι(π) and Prπ∈Runs(q,w)[π ∈ Π] denotes∑

π∈Runs(q,w)∩Π ρ(π).

3 Randomized streaming and sliding window algorithms

We define a randomized streaming algorithm as a pair (R, enc) consisting of a
probabilistic automaton R = (Q,Σ, ι, ρ, ω) as above and an injective function
enc: Q→ {0, 1}∗. Usually, we will only refer to the underlying automaton R. If R
is deterministic, we speak of a deterministic streaming algorithm. The maximum
number of bits stored in a run π : q0

a1−→ q1
a2−→ · · · am−−→ qm is denoted by

space(R, π), i.e.,

space(R, π) = max{|enc(qi)| : 0 ≤ i ≤ m}.

We are interested in two space measures for an input stream w:

– worst case space:

space(R,w) = max{space(R, π) : π ∈ Runs(R,w), ρι(π) > 0}.
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– expected space:

space∅(R,w) =
∑

π∈Runs(R,w)

ρι(π) · space(R, π)

Let R = (Q,Σ, ι, ρ, ω) be a randomized streaming algorithm, let A : Σ∗ → 2Ω

be an approximation problem and let w = a1a2 · · · am ∈ Σ∗ be an input stream.

– A run π : q0
w−→ qm is correct for A if ω(qm) ∈ A(w). The error probability of

R on w for A is
ε(R,w,A) =

∑
π∈N

ρι(π),

where N = {π ∈ Runs(R,w) : π is not correct for A}.
– A run π : q0

a1−→ q1
a2−→ · · · qm−1

am−−→ qm is strictly correct for A if ω(qt) ∈
A(a1 · · · at) for all 0 ≤ t ≤ m. The strict error probability of R on w for A is

ε∗(R,w,A) =
∑
π∈N∗

ρι(π),

where N∗ = {π ∈ Runs(R,w) : π is not strictly correct for A}.

3.1 Sliding window algorithms

For a window length n ≥ 0 and a stream w ∈ Σ∗ we define lastn(w) to be the
suffix of �nw of length n where � ∈ Σ is a fixed alphabet symbol. The word
lastn(λ) = �n is also called the initial window. Given an approximation problem
A : Σ∗ → 2Ω and a window length n ≥ 0 we define the sliding window problem
An : Σ∗ → 2Ω as

An(w) = A(lastn(w))

for w ∈ Σ∗. Since we can identify a language L ⊆ Σ∗ with its characteristic
function χL : Σ∗ → {0, 1}, the definition of An specializes to

Ln = {w ∈ Σ∗ : lastn(w) ∈ L}.

A randomized sliding window algorithm (randomized SWA for short) is a sequence
R = (Rn)n≥0 of randomized streaming algorithms Rn over the same alphabet
Σ and over the same set of output values Ω. If every Rn is deterministic, we
speak of a deterministic SWA. Note that this is a non-uniform model in the sense
that for every window length n we have a separate algorithm Rn. The space
complexity of the randomized SWA R = (Rn)n≥0 is the function

f(R, n) = sup{space(Rn, w) : w ∈ Σ∗}

and its expected space complexity is the function

f∅(R, n) = sup{space∅(Rn, w) : w ∈ Σ∗}.

Clearly, if Rn is finite, then one can always find a state encoding such that
f(R, n) = blog2 |Rn|c (|Rn| denotes the number of states of Rn).
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Definition 1. Let 0 ≤ ε ≤ 1 be an error bound, let R = (Rn)n≥0 be a randomized
SWA, and let A be an approximation problem.

– R is ε-correct for A if ε(Rn, w,An) ≤ ε for all n ≥ 0 and w ∈ Σ∗.
– R is strictly ε-correct for A if ε∗(Rn, w,An) ≤ ε for all n ≥ 0 and w ∈ Σ∗.

A deterministic SWA for A is a deterministic SWA which is 0-correct (and hence
strictly 0-correct) for A.

Remark 2. Since one can store for window size n the window content with
dlog2 |Σ|e · n bits, every approximation problem has a deterministic SWA D =
(Dn)n≥0 such that f(D, n) ≤ dlog2 |Σ|e · n. In particular, for every (strictly)
ε-correct randomized SWA R for A, there exists a (strictly) ε-correct randomized
SWA R′ for A such that f(R′, n) ≤ min{f(R, n), dlog2 |Σ|e · n}.

It is not clear, whether the statement in Remark 2 also holds for average space
complexity. On the other hand, the following statement holds:

Lemma 3. Let R be a randomized SWA which is (strictly) ε-correct for A and let
µ ≥ 1. Then there exists a randomized SWA R′ which is (strictly) (ε+ 1

µ )-correct

for A such that f(R′, n) ≤ µ · f∅(R, n).

Proof. Fix n ≥ 0 and let s = f∅(R, n) be the expected space complexity on
window length n. If s =∞ then the statement is trivial (take R′n = Rn). So, let
us assume that s is finite. Let Q≥ be the set of states in Rn with encoding length
≥ µ · s. If Q≥ = ∅, then f(R, n) ≤ µ · f∅(R, n) already holds. If Q≥ is nonempty,
let R′n be the algorithm obtained from Rn by merging all states q ∈ Q≥ into a
single state q⊥ encoded using an unused bit string of minimal length, which is at
most µ · s. On an input stream w ∈ Σ∗, the probability that q⊥ is reached is

Pr
π∈Runs(R′n,w)

[π contains q⊥] = Pr
π∈Runs(Rn,w)

[space(Rn, π) ≥ µ · s] ≤ s

µ · s
=

1

µ

by Markov’s inequality. Note that if an R′n-run on w is not (strictly) correct, then
(i) it must contain q⊥ or (ii) it must be an Rn-run on w which is not (strictly)
correct. Hence, an union bound yields

ε(R′n, w,A) ≤ 1

µ
+ ε(Rn, w,A) ≤ 1

µ
+ ε, respectively

ε∗(R
′
n, w,A) ≤ 1

µ
+ ε∗(Rn, w,A) ≤ 1

µ
+ ε,

which shows the lemma. ut

4 Derandomization of strictly correct algorithms

In this section we prove the main result of this paper, which states that strictly
correct randomized SWAs can be completely derandomized:

7



Theorem 4. Let A : Σ∗ → 2Ω be an approximation problem and let R be a
randomized SWA which is strictly ε-correct for A, where 0 ≤ ε < 1. There exists
a deterministic SWA D for A such that f(D, n) ≤ f(R, n) for all n ≥ 0.

Theorem 4 talks about the worst-case space complexity f(R, n). On the other
hand, if we choose a constant µ ≥ 1 with ε + 1/µ < 1 then with Lemma 3 we
obtain from a strictly ε-correct randomized SWA R for A a deterministic SWA
D for A with f(D, n) ≤ µ · f∅(R, n).

Let A : Σ∗ → 2Ω ,R = (Rn)n≥0, and 0 ≤ ε < 1 as in Theorem 4. By Remark 2,
we can assume that every Rn has a finite state set. Fix a window size n ≥ 0 and
let Rn = (Q,Σ, ι, ρ, ω). Consider a run

π : q0
a1−→ q1

a2−→ · · · am−−→ qm

in Rn. The run π is simple if qi 6= qj for 0 ≤ i < j ≤ m. A subrun of π is a run

qi
ai+1−−−→ qi+1

ai+2−−−→ · · · qj−1
aj−→ qj

for some 0 ≤ i ≤ j ≤ m. Consider a nonempty subset S ⊆ Q and a function
δ : Q × Σ → Q such that S is closed under δ, i.e., δ(S × Σ) ⊆ S. We say that
the run π is δ-conform if δ(qi−1, ai) = qi for all 1 ≤ i ≤ m. We say that π
is (S, δ)-universal if for all q ∈ S and x ∈ Σn there exists a δ-conform subrun

π′ : q
x−→ q′ of π. Finally, π is δ-universal if it is (S, δ)-universal for some nonempty

subset S ⊆ Q which is closed under δ.

Lemma 5. Let π be a strictly correct run in Rn for A, let S ⊆ Q be a nonempty
subset and let δ : Q×Σ → Q be a function such that S is closed under δ. If π
is (S, δ)-universal, then there exists q0 ∈ S such that Dn = (Q,Σ, q0, δ, ω) is a
deterministic streaming algorithm for An.

Proof. Let q0 = δ(p,�n) ∈ S for some arbitrary state p ∈ S and define Dn =

(Q,Σ, q0, δ, ω). Let w ∈ Σ∗ and consider the run σ : p
�n

−−→ q0
w−→ q in Dn of length

≥ n. We have to show that (lastn(w), ω(q)) ∈ A. We can write �nw = x lastn(w)

for some x ∈ Σ∗. Thus, we can rewrite the run σ as σ : p
x−→ q′

lastn(w)−−−−−→ q. We
know that q′ ∈ S because S is closed under δ. Since π is (S, δ)-universal, it contains

a subrun q′
lastn(w)−−−−−→ q. Strict correctness of π implies (lastn(w), ω(q)) ∈ A. ut

For the rest of this section we fix an arbitrary function δ : Q×Σ → Q such
that for all q ∈ Q, a ∈ Σ,

ρ(q, a, δ(q, a)) = max{ρ(q, a, p) : p ∈ Q}.

Note that

ρ(q, a, δ(q, a)) ≥ 1

|Q|
. (1)

for all q ∈ Q, a ∈ Σ. Furthermore, let Dn = (Q,Σ, q0, δ, ω) where the initial state
q0 will be defined later. We define for each i ≥ 1 a state pi, a word wi ∈ Σ∗, a
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corresponding run π∗i ∈ Runs(Dn, pi, wi) in Dn and a set Si ⊆ Q. For m ≥ 0, we
use the abbreviation

Πm = Runs(Rn, w1 · · ·wm).

Note that Π0 = Runs(Rn, λ). For 1 ≤ i ≤ m let Hi denote the event that for a
random run π = π1 · · ·πm ∈ Πm, where each πj is a run on wj , the subrun πi is
(Si, δ)-universal. Notice that Hi is independent of m ≥ i.

First, we choose for pi a state that maximizes the probability

Pr
π∈Πi−1

[π ends in pi | ∀j ≤ i− 1 : Hj ],

which is at least 1/|Q|. Note that p1 is a state such that ι(p1) is maximal, since Π0

only consists of empty runs (q). For Si we take any maximal strongly connected
component of Dn (viewed as a directed graph) which is reachable from pi. Here,
maximality means that for every q ∈ Si and every a ∈ Σ, also δ(q, a) belongs to
Si. Finally, we define the run π∗i and the word wi. The run π∗i starts in pi. Then,
for each pair (q, x) ∈ Si ×Σn the run π∗i leads from the current state to state q
via a simple run and then reads the word x from q. The order in which we go
over all pairs (q, x) ∈ Si ×Σn is not important. Since Si is a maximal strongly
connected component of Dn such a run π∗i exists. Hence, π∗i is a run on a word

wi =
∏
q∈Si

∏
x∈Σn

yq,x x,

where yq,x is the word that leads from the current state via a simple run to state
q. Since we choose the runs on the words yq,x to be simple, we have |yq,x| ≤ |Q|
and thus |wi| ≤ |Q| · |Σ|n · (|Q|+ n). Let us define

µ =
1

|Q||Q|·|Σ|n·(|Q|+n)+1
.

Note that by construction, the run π∗i is (Si, δ)-universal. Inequality (1) yields

Pr
π∈Runs(pi,wi)

[π = π∗i ] ≥ 1

|Q||wi|
≥ µ · |Q|. (2)

Lemma 6. For all m ≥ 0 we have Prπ∈Πm [Hm | ∀i ≤ m− 1 : Hi] ≥ µ.

Proof. In the following, let π be a random run from Πm and let πi be the subrun
on wi. Under the assumption that the event [πm−1 ends in pm] holds, the events
[πm = π∗m] and [∀i ≤ m− 1 : Hi] are conditionally independent.2 Thus, we have

Pr
π∈Πm

[πm = π∗m | πm−1 ends in pm ∧ ∀i ≤ m− 1 : Hi]

= Pr
π∈Πm

[πm = π∗m | πm−1 ends in pm].

2 Two events A and B are conditionally independent assuming event C if Pr[A ∧B |
C] = Pr[A | C] · Pr[B | C], which is equivalent to Pr[A | B ∧ C] = Pr[A | C].
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Since the event [πm = π∗m] implies the event [πm−1 ends in pm], we obtain:

Pr
π∈Πm

[Hm | ∀i ≤ m− 1 : Hi]

≥ Pr
π∈Πm

[πm = π∗m | ∀i ≤ m− 1 : Hi]

= Pr
π∈Πm

[πm = π∗m ∧ πm−1 ends in pm | ∀i ≤ m− 1 : Hi]

= Pr
π∈Πm

[πm = π∗m | πm−1 ends in pm ∧ ∀i ≤ m− 1 : Hi] ·

Pr
π∈Πm

[πm−1 ends in pm | ∀i ≤ m− 1 : Hi]

= Pr
π∈Πm

[πm = π∗m | πm−1 ends in pm] ·

Pr
π∈Πm

[πm−1 ends in pm | ∀i ≤ m− 1 : Hi]

≥ Pr
πm∈Runs(pm,wm)

[πm = π∗m] · 1

|Q|
≥ µ,

where the last inequality follows from (2). This proves the lemma. ut

Lemma 7. Prπ∈Πm
[π is δ-universal] ≥ Prπ∈Πm

[∃i ≤ m : Hi] ≥ 1− (1− µ)m.

Proof. The first inequality follows from the definition of the event Hi. Moreover,
with Lemma 6 we get

Pr
π∈Πm

[∃i ≤ m : Hi] = Pr
π∈Πm

[∃i ≤ m− 1 : Hi] +

Pr
π∈Πm

[Hm | ∀i ≤ m− 1 : Hi] · Pr
π∈Πm

[∀i ≤ m− 1 : Hi]

= Pr
π∈Πm−1

[∃i ≤ m− 1 : Hi] +

Pr
π∈Πm

[Hm | ∀i ≤ m− 1 : Hi] · Pr
π∈Πm−1

[∀i ≤ m− 1 : Hi]

≥ Pr
π∈Πm−1

[∃i ≤ m− 1 : Hi] + µ · Pr
π∈Πm−1

[∀i ≤ m− 1 : Hi].

Thus, rm := Prπ∈Πm
[∃i ≤ m : Hi] satisfies rm ≥ rm−1 + µ · (1 − rm−1) =

(1− µ) · rm−1 + µ. Since r0 = 0, we get rm ≥ 1− (1− µ)m by induction. ut

Proof of Theorem 4. We use the probabilistic method in order to show that
there exists q0 ∈ Q such that Dn = (Q,Σ, q0, δ, ω) is a deterministic streaming
algorithm for An. With Lemma 7 we get

Pr
π∈Πm

[π is strictly correct for A and δ-universal]

= 1− Pr
π∈Πm

[π is not strictly correct for A or is not δ-universal]

≥ 1− Pr
π∈Πm

[π is not strictly correct for A]− Pr
π∈Πm

[π is not δ-universal]

≥ Pr
π∈Πm

[π is δ-universal]− ε
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≥ 1− (1− µ)m − ε.

We have 1 − (1 − µ)m − ε > 0 for m > log(1 − ε)/ log(1 − µ) (note that ε < 1
and 0 < µ < 1 since we can assume that |Q| ≥ 2). Hence there are m ≥ 0 and a
strictly correct δ-universal run π ∈ Πm. We can conclude with Lemma 5. ut
The word w1w2 · · ·wm (with m > log(1− ε)/ log(1−µ)), for which there exists a
strictly correct and δ-universal run has a length that is exponential in the window
size n. In other words: We need words of length exponential in n in order to
transform a strictly ε-correct randomized SWA into an equivalent deterministic
SWA. We now show that this is unavoidable: if we restrict to inputs of length
poly(n) then strictly ε-correct SWAs can yield a proper space improvement over
deterministic SWAs.

For a word w = a1 · · · an let wR = an · · · a1 denote the reversed word. Take
the language Kpal = {wwR : w ∈ {a, b}∗} of all palindromes of even length, which
belongs to the class DLIN of deterministic linear context-free languages [4], and
let L = $Kpal.

Proposition 8. If D is a deterministic SWA for L, then f(D, 2n+ 1) = Ω(n).

Proof. Let D = (Dn)n≥0. Take two distinct words $x and $y where x, y ∈ {a, b}n.
Since D2n+1 accepts $xxR and rejects $yxR, the automaton D2n+1 reaches two
different states on the inputs $x and $y. Therefore, D2n+1 must have at least
|{a, b}n| = 2n states and hence Ω(n) space. ut
Proposition 9. Fix a polynomial p(n). There is a randomized SWA R =
(Rn)n≥0 such that (i) f(R, n) ∈ O(log n) and (ii) ε∗(Rn, w, Ln) ≤ 1/e (e denotes
Euler’s number) for all input words w ∈ Σ∗ with |w| ≤ p(n).

Proof. Babu et al. [4] have shown that for every language K ∈ DLIN there
exists a randomized streaming algorithm using space O(log n) which, given an
input w of length n,

– accepts with probability 1 if w ∈ K,
– and rejects with probability at least 1− 1/n if w /∈ K.

We remark that the algorithm needs to know the length of w in advance. To stay
consistent with our definition, we view the algorithm above as a family (Sn)n≥0 of
randomized streaming algorithms Sn. Furthermore, the error probability 1/n can
be further reduced to 1/nd where p(n) ≤ nd for sufficiently large n (by picking
random primes of size Θ(nd+1) in the proof from [4]).

Now we prove our claim for L = $Kpal. The streaming algorithm Rn for
window size n works as follows: After reading a $-symbol, the algorithm Sn−1
from above is simulated on the longest factor from {a, b}∗ that follows (i.e. Sn−1
is simulated until the next $ arrives). Simultaneously we maintain the length ` of
the maximal suffix over {a, b}, up to n, using O(log n) bits. If ` reaches n − 1,
then Rn accepts if and only if Sn−1 accepts. Notice that Rn only errs if the stored
length is n − 1 (with probability 1/nd), which happens at most once in every
n steps. Therefore the number of time instants where Rn errs on w is at most
|w|/n ≤ nd/n = nd−1. The union bound yields ε∗(Rn, w, Ln) ≤ nd−1/nd = 1

n for

every stream w ∈ {$, a, b}≤p(n). This concludes the proof. ut
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