
Largest Common Prefix
of a Regular Tree Language

Markus Lohrey1 and Sebastian Maneth2

1 University of Siegen, Germany lohrey@eti.uni-siegen.de
2 University of Bremen, Germany maneth@uni-bremen.de

Abstract. A family of tree automata of size n is presented such that the
size of the largest common prefix (lcp) tree of all accepted trees is expo-
nential in n. Moreover, it is shown that this prefix tree is not compressible
via DAGs (directed acyclic graphs) or tree straight-line programs. We
also show that determining whether or not the lcp trees of two given tree
automata are equal is coNP-complete; the result holds even for deter-
ministic bottom-up tree automata accepting finite tree languages. These
results are in sharp contrast to the case of context-free string grammars.

1 Introduction

For a given language L one can define the largest common prefix of L as the
longest string which is a prefix of every word in L. This definition can be ex-
tended to tree languages in a natural way. One motivation to compute the largest
common prefix of a set of strings or trees is the so called earliest normal form,
which has been studied for string transducers [1, 8] and tree transducers [3]. The
existence of an earliest normal form has several important consequences. For
instance, the transducer can in a simple further step be made canonical, which
allows deciding equivalence and gives rise to Gold-style learning algorithms [9,
5]. Intuitively, an earliest transducer produces its output “as early as possible”.
In order to compute the earliest form of a given transducer, one has to consider
all possible inputs (for a certain set of states), and has to determine if the corre-
sponding outputs have a non-empty common prefix; if so, then the transducer is
not earliest, because this common prefix is independent of the input and hence
should have been produced before. The questions arise how large such common
prefixes can possibly be, and whether or not they can be compressed.

In this paper we address these questions in a general setting where the trees
of which the common prefix is computed are given by a finite tree automaton. We
present a family of tree automata of size Θ(n) such that their largest common
prefixes (lcps) are of size exponential in n and are essentially incompressible via
common tree compression methods such as DAGs (directed acyclic graphs) or
tree straight-line programs [4, 6]. Recently it has been shown that for a given
context-free string grammar, a representation of the largest common prefix can
be computed in polynomial time [7].

Whenever above we mention “tree automaton”, we always mean “nondeter-
ministic (top-down or bottom-up) tree automaton”. Let us now consider the

case of deterministic tree automata. It is known that in the deterministic case,
top-down automata are strictly less expressive than bottom-up tree automata; in
fact, they are so weak that they cannot even recognize finite tree languages such
as {f(a, f(a, a)), f(f(a, a), a)} (here, we use the standard term representation
for trees; see Section 2). It turns out that the largest common prefix of the trees
recognized by a deterministic top-down tree automaton can be computed by a
simple (top-down) procedure. Moreover, the resulting lcps are compressible via
DAGs, and the procedure can produce in linear time a DAG of the lcp. In con-
trast, for deterministic bottom-up tree automata (which are equally expressive
as nondeterministic tree automata), such a procedure is not possible. Surpris-
ingly, for such automata similar results can be proven as for nondeterministic
automata, e.g., a family of automata of size Θ(n2) can be defined, such that the
size of their lcp is exponential in n. Technically, one ingredient of both families
of automata (nondeterministic and deterministic ones) is the well-known fact
that an automaton needs exponentially many states in order to recognize strings
where the n-th last symbol carries a specific label.

We then address a second important problem for largest common prefixes
given by tree automata, namely to determine whether or not the largest common
prefixes of two given tree automata coincide. Note that when constructing an
earliest canonical (“minimal”) transducer, we need to determine whether two
given states are equivalent; for this to hold, several lcps must be checked for
equality. The following question arises: what is the precise complexity of checking
equality of the lcps of two given tree automata? In this paper, we prove that this
problem is coNP-complete using a reduction from the complement of 3-SAT.

2 Preliminaries

We assume that the reader is familiar with words and finite automata on words.
A language L ⊆ {0, 1}∗ is a right-ideal if L = L{0, 1}∗. A set S ⊆ {0, 1}∗ is
prefix-closed, if uv ∈ S implies that u ∈ S for all u, v ∈ {0, 1}∗. Note that L is a
right-ideal if and only if {0, 1}∗ \ L is prefix-closed.

A DFA (deterministic finite automaton) over a finite alphabet Γ is a 5-tuple
A = (Q,Γ, q0, F, δ), where Q is the finite set of states, q0 ∈ Q is the initial state,
F ⊆ Q is the set of final states, and δ : Q × Γ → Q is the transition mapping.
The language L(A) accepted by A is defined in the usual way. For an NFA (non-
deterministic finite automaton) we have a set I ⊆ Q of initial states and the
transition function δ maps from Q× Γ to 2Q (the powerset of Q).

We consider finite binary trees that are unlabeled, rooted, and ordered. The
latter means that there is an order on the children of a node. Moreover, every
node is either a leaf or has exactly two children. We will use two equivalent
formalizations of such trees. We can view them as formal expressions over the
set of function symbols {f, a}, where f gets two arguments and a is a constant-
symbol (i.e., gets no arguments). The set of all such expressions is denoted by T2
and is inductively defined by the following conditions: a ∈ T2 and if t1, t2 ∈ T2
then also f(t1, t2) ∈ T2. Trees from T2 are binary trees, where each leaf is labeled

2

0 1

0 1

0 1

0 1 0 1

0 1

0 1

Fig. 1. Trees t0 = f(f(a, a), a) (left), t1 = f(f(a, a), f(a, a)) (midle) and the minimal
DAG of t1 (right).

with a and every internal node is labeled with f . Obviously, the labeling bears no
information, and trees from T2 can be identified with unlabeled binary trees. For
instance, the expression f(f(a, a), a) represents the binary tree t0 from Figure 1.
Alternatively, we can specify a binary tree by a path language. A path language
P is a finite non-empty subset of {0, 1}∗ such that

– P is prefix-closed and
– for every w ∈ {0, 1}∗, w0 ∈ P if and only if w1 ∈ P .

A binary tree t ∈ T2 can be uniquely represented by a path language P (t), and
vice versa. Formally, we define P (t) inductively as follows:

– P (a) = {ε}
– P (f(t1, t2)) = {ε} ∪ {iw | i ∈ {0, 1}, w ∈ P (ti)}.

For instance, for the binary tree t0 from Figure 1 we have P (t0) = {ε, 0, 1, 00, 01}.
The root of a tree corresponds to the empty word ε, u0 denotes the left child of
u, and u1 denotes the right child of u. The leaves of a tree t correspond to those
words in P (t) that are maximal with respect to the prefix relation. The depth
of t ∈ T2 can be defined as the maximal length of a word in P (t). Note that the
intersection of an arbitrary number of path languages is again a path language.

A nondeterministic top-down tree automaton (NTTA for short) is a 4-tuple
B = (Q, I, F, δ), where Q is a finite set of states, I ⊆ Q with I 6= ∅ is the set of

initial states, F ⊆ Q is the set of final states, and δ : Q→ 2Q
2

is the transition
function (here and in the following we view elements of Q2 as words of length
two over the alphabet Q). A run of B on a tree t is a mapping ρ : P (t) → Q
such that:

– If v ∈ P (t) is a leaf of t, then ρ(v) ∈ F .
– If v, v0, v1 ∈ P (t) with ρ(v) = p, ρ(v0) = p0 and ρ(v1) = p1 then p0p1 ∈ δ(p).

For q ∈ Q, we let T (B, q) denote the set of all trees t for which there exists a
run ρ of B such that ρ(ε) = q. Finally we define T (B) =

⋃
q∈I T (B, q) as the

tree language accepted by B.
An NTTA B = (Q, I, F, δ) is called productive if T (B, q) 6= ∅ for every q ∈ Q.

From a given NTTA B with T (B) 6= ∅ one can construct in polynomial time an
equivalent productive NTTA B′. One first computes in polynomial time the set
P = {p ∈ Q | T (B, p) 6= ∅}. Note that F ⊆ P . Then B′ is obtained from B by

3

removing all states from Q \P . To do this, one also has to replace every set δ(q)
(q ∈ P) by δ(q) ∩ P 2.

A deterministic top-down tree automaton (DTTA for short) is a 4-tuple B =
(Q, q0, F, δ), where Q is a finite set of states, q0 ∈ Q is the initial state, F ⊆ Q is
the set of final states, and δ : Q→ Q2 is the transition function. We can identify
this 4-tuple with the NTTA (Q, {q0}, F, δ′) where δ′(q) = {δ(q)}. This allows us
the transfer all definitions from NTTAs to DTTAs.

Finally a deterministic bottom-up tree automaton (DBTA for short) is an
NTTA B = (Q, I, F, δ) such that |F | = 1 and for every q1q2 ∈ Q2 there is at
most one q ∈ Q such that q1q2 ∈ δ(q). In other words, the sets δ(q) (q ∈ Q)
are pairwise disjoint. This allows defining a partially defined inverse δ−1 of δ by
δ−1(q1q2) = q if q1q2 ∈ δ(q). For every tree t there is at most one run of B on t
and this run ρ can be constructed bottom-up by first setting ρ(u) = qf for every
leaf u of t, where qf is the unique state in F . Then, for all v, v0, v1 ∈ P (t) such
that ρ(v0) and ρ(v1) have been already defined, one sets ρ(v) = δ−1(ρ(v0)ρ(v1)).

It is well known that for every NTTA there exists an equivalent DBTA ac-
cepting the same tree language. On the other hand, there exist NTTAs which
do not have an equivalent DTTA; see [2] for examples.

The minimal DAG for a tree t ∈ T2 is obtained by keeping for every subtree s
of t exactly one isomorphic copy to which all tree edges that point to occurrences
of s are redirected. The size of the minimal DAG of t (measured in number of
nodes) is exactly the number of pairwise non-isomorphic subtrees of t.

Lemma 1. Let t be a tree. The following statements are equivalent:

1. The minimal DAG for the tree t has n nodes.
2. The minimal DFA for the path language P (t) has n+ 1 states.

The proof of the lemma is straightforward. Consider for instance the tree t1 =
f(f(a, a), f(a, a)) from Figure 1. Its minimal DAG is shown in Figure 1 on the
right. It yields a DFA for P (t1) by taking the root node as the initial state, all
othern nodes as final states and adding a failure state (note that a DFAs has a
totally defined transition mapping according to our definition).

Largest common prefix tree. Consider a non-empty tree language L ⊆
T2. The largest common prefix lcp(L) of L is the unique binary tree t such
that P (t) =

⋂
t∈L P (t). For instance, for L = {f(f(a, a), a), f(a, a)} we obtain

lcp(L) = f(a, a).

Lemma 2. Assume that B is an NTTA with n states and such that T (B) 6= ∅.
Then every word w ∈ P (lcp(T (B))) =

⋂
t∈T (B) P (t) has length at most n − 1,

i.e., the depth of lcp(T (B)) is at most n− 1.

Proof. It well-known that B must accept a tree t of depth at most n−1; see e.g.
[2, Corollary 1.2.3]. Hence, |w| ≤ n − 1 for every word w ∈ P (t). This implies
the statement of the lemma. ut

4

It is straightforward extend all the notions from this section to labelled binary
trees. A Σ-labelled binary tree can be defined as a pair (P, λ) where P ⊆ {0, 1}∗
is a path language and λ : P → Σ is the labelling function. Given a set L of
Σ-labelled binary trees, one can define its lcp as the unique tree (P, λ) where P is
the largest (with respect to inclusion) path language such that for all (P ′, λ′) ∈ L
we have: P ⊆ P ′ and λ(u) = λ′(u) for all u ∈ P . All results in this paper also
hold for Σ-labelled binary trees. Since the focus of this paper is on lower bounds,
we decided to restrict our considerations to unlabelled trees.

3 From NTTAs to DFAs

In this and the next section we establish a correspondence between largest com-
mon prefix trees of regular tree languages and finite automata (on words).

Let B = (Q, I, F, δ) be a productive NTTA. We extend δ : Q → 2Q
2

to

δ̂ : 2Q → 2Q
2

by setting δ̂(Q′) =
⋃

p∈Q′ δ(p) ⊆ Q2 for Q′ ⊆ Q. For a state

pair p0p1 ∈ Q2 and i ∈ {0, 1} we define the projection πi(p0p1) = pi. For a set
S ⊆ Q2 and i ∈ {0, 1} we define πi(S) = {πi(pq) | pq ∈ S}.

We fix a fresh state qf /∈ Q and define a DFA Bs (s for string) by

Bs = (2Q \ {∅}] {qf}, {0, 1}, I, 2Q \ {∅}, δs)

(] denotes disjoint union) where for all Q′ ⊆ Q with Q′ 6= ∅ and i ∈ {0, 1} we
set

δs(Q′, i) =

{
πi(δ̂(Q

′)) if Q′ ∩ F = ∅
qf if Q′ ∩ F 6= ∅.

Moreover, δs(qf , 0) = δs(qf , 1) = qf . The state qf is called the failure state
of Bs. Note that if Q′ ∩ F = ∅ for Q′ 6= ∅, then the productivity of B implies
that δ̂(Q′) 6= ∅. In particular, we have πi(δ̂(Q

′)) 6= ∅ if Q′ 6= ∅, which implies
that δs is well-defined.

Lemma 3. Let B be a productive NTTA. Then

L(Bs) = P (lcp(T (B))) =
⋂

t∈T (B)

P (t).

Proof. Consider a word w = a1a2 · · · an with a1, . . . , an ∈ {0, 1}. Let us first
assume that w ∈ L(Bs) and let t ∈ T (B). We have to show that w ∈ P (t). In
order to get a contradiction, assume that w /∈ P (t). Let v be a longest prefix of
w that belongs to P (t). Since ε ∈ P (t), v is well-defined. Clearly, v is a proper
prefix of w and v is a leaf of t. Thus, we can write v as v = a1a2 · · · ak for k < n.
Fix a run ρ of B on t such that ρ(ε) ∈ I. Let qi = ρ(a1 · · · ai) for 0 ≤ i ≤ k.
Since v is a leaf of t we have qk ∈ F . Since w ∈ L(Bs) there exists a path

I = Q0
a1−→ Q1

a2−→ Q2
a3−→ · · · an−−→ Qn,

5

where, for 0 ≤ i ≤ n, Qi ⊆ Q and Qi 6= ∅, and for 0 ≤ i ≤ n − 1, Qi ∩ F = ∅
and Qi+1 = πai

(δ̂(Qi)). The latter point implies by induction on i that qi ∈ Qi

for 0 ≤ i ≤ k. Since Qk ∩F = ∅, we must have qk /∈ F , which is a contradiction.

Now assume that w /∈ L(Bs). Hence, the unique run of Bs on w ends in the
failure state qf . Thus, there must exist a proper prefix v = a1 · · · ak of w such
that k < n and the run of Bs on w has the form

I = Q0
a1−→ Q1

a2−→ · · · ak−→ Qk
ak+1−−−→ qf

ak+2−−−→ · · · an−−→ qf .

where Qi ⊆ Q and Qi 6= ∅ for 0 ≤ i ≤ k, Qi ∩ F = ∅ and Qi+1 = πai(δ̂(Qi)) for
0 ≤ i ≤ k − 1, and Qk ∩ F 6= ∅. Let qk ∈ Qk ∩ F .

We have to construct a tree t ∈ T (B) such that w /∈ P (t). For this we choose
states qi ∈ Qi for 0 ≤ i ≤ k. The state qk ∈ Qk∩F has already been chosen in the
last paragraph. Assume that qi+1 ∈ Qi+1 has been defined for some 0 ≤ i ≤ k−1.
To define qi note that qi+1 ∈ πai

(δ̂(Qi)). Hence, there exist states p ∈ Qi and
q′i+1 ∈ Q such that the following holds: if ai = 0 then qi+1q

′
i+1 ∈ δ(p) and if

ai = 1 then q′i+1qi+1 ∈ δ(p). We set qi = p. By the productivity of B there exist
trees t′i ∈ T (B, q′i) for 1 ≤ i ≤ k. Moreover, since qk ∈ Qk ∩ F , the one-node
tree a belongs to T (B, qk). From the trees t′1, . . . , t

′
k, a we can now construct a

tree t ∈ T (B) such that v = a1 · · · ak is a leaf of t (and hence w /∈ P (t)). For
instance, if v = 1k then we take t = f(t′1, f(t′2, f(t′3, · · · f(t′k, a) · · ·))). For the
general case, we define trees t0, t1, . . . , tk inductively as follows:

– tk = a,

– ti = f(ti+1, t
′
i+1) if 0 ≤ i ≤ k − 1 and ai+1 = 0, and

– ti = f(t′i+1, ti+1) if 0 ≤ i ≤ k − 1 and ai+1 = 1.

Finally, let t = t0. Then t has the desired properties. ut

Note that the size of the above DFA Bs is exponential in the size of B. In the case
where we start with a DTTA, we can easily modify the above construction in
order to construct in linear time a DFA (of linear size). Hence, let us redefine for
a DTTA B = (Q, q0, F, δ) the DFA Bs = (Q] {qf}, {0, 1}, q0, Q, δs) by setting
for all q ∈ Q and i ∈ {0, 1}:

δs(q, i) =

{
πi(δ(q)) if q /∈ F
qf if q ∈ F.

Moreover, δs(qf , 0) = δs(qf , 1) = qf . The proof of the following lemma is similar
as the proof for Lemma 3.

Lemma 4. Let B be a DTTA with T (B) 6= ∅. Then

L(Bs) = P (lcp(T (B))) =
⋂

t∈T (B)

P (t).

6

4 From NFAs to NTTAs

We now consider NFAs that generate languages L over {0, 1} such that the
complement of L is a finite path language. An NFA A = (Q, {0, 1}, I, F, δ) is
well-behaved, if there are two different states qe, qf ∈ Q such that

1. F = {qf} and qf /∈ I,
2. δ(q, a) 6= ∅ for all q ∈ Q and all a ∈ {0, 1},
3. qf /∈ δ(q, a) for all q ∈ Q \ {qe, qf} and all a ∈ {0, 1},
4. δ(qe, 0) = δ(qe, 1) = δ(qf , 0) = δ(qf , 1) = {qf},
5. the NFA obtained from A by removing the state qf is acyclic, and
6. all states are reachable from I.

In a well-behaved NFA A every path of length at least |Q| − 1 that starts in
a state q 6= qf must visit qe (this follows from points 2 and 5) . Moreover, the
complement {0, 1}∗ \ L(A) is a path language.

From a well-behaved NFA A = (Q, {0, 1}, I, {qf}, δ) we construct the NTTA
At = (Q \ {qf}, I, {qe}, δt) (t for tree) with

– δt(q) = {q1q2 | q1 ∈ δ(q, 0), q2 ∈ δ(q, 1)} for q ∈ Q \ {qe, qf}, and
– δt(qe) = ∅.

Note that for every well-behaved NFA A, the NTTA At is productive.

Lemma 5. Let A be a well-behaved NFA. Then P (lcp(T (At))) = {0, 1}∗ \L(A).

Proof. Let A = (Q, {0, 1}, I, F, δ). We first assume that w ∈ L(A) and show that
w /∈ P (lcp(T (At))). For this, we have to prove that there exists a tree t ∈ T (At)
such that w /∈ P (t). Since w ∈ L(A) we can write w = uv with v 6= ε such that
in A there exists a u-labeled path from q0 ∈ I to qe. Let us write this path as

q0
a1−→ q1

a2−→ q2
a3−→ · · · an−−→ qn = qe,

where u = a1a2 · · · an and a1, . . . , an ∈ {0, 1}. Note that q0, . . . , qn−1 ∈ Q \
{qe, qf}. For 1 ≤ i ≤ n let us choose any state q′i ∈ δ(qi−1, āi) (where 0̄ = 1 and
1̄ = 0). Such a state q′i must exist since A is well-behaved. Moreover, choose for
every 1 ≤ i ≤ n a tree ti ∈ T (At, q′i). Finally let t be the unique tree with

P (t) = {u} ∪
n⋃

i=1

{a1 · · · ai−1āiu′ | u′ ∈ P (ti)}.

From the construction of At it follows that t ∈ T (At). Moreover, since w = uv
with v 6= ε we get w /∈ P (t). This concludes the first part of the proof.

Now assume that w /∈ P (lcp(T (At))). We have to show that w ∈ L(A). Since
w /∈ P (lcp(T (At))), there exists t ∈ T (At) such that w /∈ P (t). We can factorize
w = uv with v 6= ε, where u = a1 · · · an is the longest prefix of w with u ∈ P (t).
Hence, u leads in the tree t to a leaf. Since t ∈ T (At), there exists a run ρ of At

on t such that ρ(ε) ∈ I. Let qi = ρ(a1 · · · an) for 0 ≤ i ≤ n. Since u leads to a
leaf of t we must have qn = qe. Then

q0
a1−→ q1

a2−→ q2
a3−→ · · · an−−→ qn = qe

is a u-labeled path in A from q0 ∈ I to qe. Since v 6= ε we get w = uv ∈ L(A). ut

7

5 Incompressibility of Largest Common Prefix Trees

5.1 Incompressibility by DAGs

In this section we present our first main result, which shows that there is a family
of tree automata such that the size of the minimal DAG of the corresponding
largest common prefix tree is exponential in the automata size.

For n ≥ 1 we consider the following language Ln:

Ln = {0, 1}2n+3{0, 1}∗ ∪
n−1⋃
i=0

(
{0, 1}i0{0, 1}n0{0, 1}+

)
.

Let us first establish that the complement Vn = {0, 1}∗ \Ln is a path language.
Since Ln is a right ideal, the complement Vn is prefix closed. Since all words
of length at least 2n + 3 belong to Ln, the language Vn is finite. Finally, w0 ∈
{0, 1}2n+3{0, 1}∗ iff |w0| ≥ 2n+3 iff |w1| ≥ 2n+3 iff w1 ∈ {0, 1}2n+3{0, 1}∗ and
w0 ∈ {0, 1}i0{0, 1}n0{0, 1}+ iff w1 ∈ {0, 1}i0{0, 1}n0{0, 1}+. Hence, w0 ∈ Ln if
and only if w1 ∈ Ln, and the same property must hold for the complement Vn
of Ln. Thus, Vn is a path language.

Lemma 6. The minimal DFA A for Vn has at least 2n states.

Proof. Let A = (Q, {0, 1}, δ, q0, F). Consider the extension δ : Q × {0, 1}∗ → Q
with δ(q, ε) = q and δ(q, ua) = δ(δ(q, u), a) for u ∈ {0, 1}∗, a ∈ {0, 1}. We claim
that δ(q0, u) 6= δ(q0, v) for every u, v ∈ {0, 1}n with u 6= v, which implies that
A has at least 2n states (and hence size at least 2n). Assume by contradiction
that δ(q0, u) = δ(q0, v) for some u, v ∈ {0, 1}n with u 6= v. We can write u
and v as u = x0y and v = x1z (or vice versa) for some x, y, z ∈ {0, 1}∗. Note
that 0 ≤ |x| ≤ n − 1 and |y| = |z|. We define the words u′ = x0y1n−|y|01 =
u1n−|y|01 and v′ = x1z1n−|z|01 = v1n−|y|01. Since δ(q0, u) = δ(q0, v) we have
δ(q0, u

′) = δ(q0, v
′). It should be clear that u′ ∈ Ln = {0, 1}∗ \ Vn. Hence,

in order to get a contradiction, it suffices to show v′ 6∈ Ln. First, note that
|v′| = 2n− |y|+ 2 ≤ 2n+ 2. This implies that if v′ ∈ Ln, then it must belong to
{0, 1}i0{0, 1}n0{0, 1}+ for some 0 ≤ i ≤ n − 1. But the word v′ = x1z1n−|z|01
contains no factor from 0{0, 1}n0 (note that x1z has length n and hence cannot
contain such a factor). ut

Figure 2 shows a well-behaved NFA An with Θ(n) states for the language
Ln. The NTTA Bn := At

n has Θ(n) states as well and satisfies P (lcp(T (Bn))) =
{0, 1}∗ \ L(An) = Vn by Lemma 5. From Lemma 1 and 6 it follows that the
minimal DAG for lcp(T (At

n)) has at least 2n − 1 nodes. We have shown:

Theorem 1. For every n there is a NTTA Bn with Θ(n) states such that the
minimal DAG for the tree lcp(T (Bn)) has at least 2n − 1 nodes.

The bound 2n−1 in Theorem 1 is optimal up to constant factors in the exponent:
If B is an NTTA with n states then by Lemma 2, lcp(T (B)) has depth at most
n − 1 and hence at most 2n − 1 nodes. A variation of the above construction
yields a slightly weaker lower bound for DBTAs:

8

q0 qe qf
0,1

0,1

0,1

0,1
0,1

0

0,1
· · ·

0,1 0

1

0,1
· · ·

0,1 0

1

0,1

0,1

0,1 0,1 · · · 0,1

0,1

n− 1 transitions n transitions

2n transitions

Fig. 2. The well-behaved NFA An recognizing the language Ln

Theorem 2. For every n there is a DBTA B′n with Θ(n2) states such that the
minimal DAG for the tree lcp(T (B′n)) has at least 2n − 1 nodes.

Proof. Consider the NFA A′n = (Q, {0, 1}, I, {qf}, δ) from Figure 3. It is a well-
behaved NFA that recognizes the language Ln as well. The transition function
δ can be viewed as a mapping δ : Q× {0, 1} → Q (nondeterminism only comes
from the fact that there are several initial states). Moreover, δ has the property
that for all states p, q ∈ Q \ {qf}, if p 6= q then δ(p, 0)δ(p, 1) 6= δ(q, 0)δ(q, 1).

Together with the fact that qe is the unique final state of the NTTA A′
t
, this

implies that A′
t

is a DBTA. ut

5.2 Incompressibility by tree straight-line programs

So far we considered the compression of trees by DAGs. Let us now consider
the more general formalism of tree straight-line programs (TSLPs) [4, 6].3 As
explained in Section 2 we consider binary trees as expressions over the leaf
symbol a and the binary symbol f . A TSLP is a 4-tuple G = (V0, V1, ρ, S) where
V0 and V1 are finite disjoint sets of variables, S ∈ V0 is the start nonterminal,
and ρ is a function that assigns to each variable A a formal expression (the
right-hand side of A) such that one of the following conditions holds:

(a) A ∈ V0 and ρ(A) = a,
(b) A,B,C ∈ V0 and ρ(A) = f(B,C),
(c) A,C ∈ V0, B ∈ V1 and ρ(A) = B(C),
(d) A,B,C ∈ V1 and ρ(A) = B(C),
(e) A ∈ V1, B ∈ V0 and ρ(A) = f(B, x),
(f) A ∈ V1, B ∈ V0 and ρ(A) = f(x,B).

3 We define here monadic TSLPs in normal form [6] which makes no difference with
respect to succinctness; see [6].

9

q0,n

q0,0

q0,1

q0,2

q0,3

qe qf

...

0,1 0,1
· · ·

0,1 0 0,1
· · ·

0,1 0 0,1

0,1

1

0

1

0,1

0

1

0,1 0,1
0

1

0,1 0,1 0,1 · · · 0,1 0,1 · · ·
0,1

0,1

1

n− 1 transitions n transitions

n transitions n + 1 transitions

Fig. 3. The well-behaved NFA A′
n recognizing Ln from the proof of Theorem 2.

We require that the binary relation E(G) = {(B,A) | B occurs in ρ(A)} is
acyclic. We can therefore define a partial order ≤G as the reflexive transitive
closure of E(G). The idea is that with the above rules, every variable A ∈ V0
evaluates to a unique binary tree JAKG , whereas every variable A ∈ V1 evaluates
to a unique binary tree JAKG with a marked leaf. This marked leaf is denoted by
the special symbol x. For instance, f(f(a, x), f(a, a)) would be such a tree. We
let T2,x denote the set of all such trees. For s ∈ T2,x and t ∈ T2,x ∪ T2 we let s[t]
denote the result of replacing in s the unique occurrence of x by t. For instance,
for s = f(f(a, x), f(a, a)) and t = f(a, x) we have s[t] = f(f(a, f(a, x)), f(a, a)).
Here are the formal inductive rules for the evaluation of variables. In all cases
tB := JBKG and tC := JCKG are already defined by induction.

– if A ∈ V0 and ρ(A) = a, then JAKG = a,
– if A,B,C ∈ V0 and ρ(A) = f(B,C), then JAKG = f(tB , tC),
– if A,C ∈ V0, B ∈ V1 and ρ(A) = B(C), then JAKG = tB [tC],
– if A,B,C ∈ V1 and ρ(A) = B(C), then JAKG = tB [tC],
– if A ∈ V1, B ∈ V0 and ρ(A) = f(B, x), then JAKG = f(tB , x),
– if A ∈ V1, B ∈ V0 and ρ(A) = f(x,B), then JAKG = f(x, tB).

Finally, we define JGK = JSKG ∈ T2. Readers that are familiar with the notion
of context-free tree grammars will notice that a TSLP is a context-free tree
grammar that produces a unique tree. A DAG corresponds to a TSLP where only
variables of the above types (a) and (b) are present. In contrast to DAGs, TSLPs
can also compress deep narrow trees, such as caterpillar trees, for example.

Lemma 7. Let G = (V0, V1, ρ, S) be a TSLP with t = JGK and let d be the depth
of t. Then the minimal DAG for t has at most |V0| · d nodes.

10

Proof. We count the number of pairwise non-isomorphic subtrees of t. Consider
a specific subtree s ∈ T2 of t. By walking down from the start variable S ∈ V0
we can determine the smallest variable A (with respect to ≤G) such that s is a
subtree of JAKG . Let us consider the cases (a)–(f) for the right-hand side ρ(A).

If (a) or (b) holds, then we must have s = JAKG . The cases (e) and (f) cannot
occur (in both cases s would be a subtree of JBKG). Similarly, (d) cannot occur
since s would be a subtree of either JBKG or JCKG . Finally in case (c), since s is
neither a subtree of JBKG nor JCKG , the subtree s must be rooted at one of the
nodes on the path leading from the root of JAKG to the position of the symbol x
in JBKG (excluding the position of x). There are at most d such nodes. It follows
that JGK contains at most |V0| · d different subtrees. ut

Theorem 3. For every n there is an NTTA Bn with Θ(n) states such that the
smallest TSLP for the tree lcp(T (Bn)) has Ω(2n/n) variables. Moreover, for
every n there is a DBTA B′n with Θ(n2) states such that the smallest TSLP for
the tree lcp(T (B′n)) has Ω(2n/n) variables.

Proof. We take the tree automata families from Theorem 1 and 2, respectively.
Assume that G = (V0, V1, ρ, S) is a TSLP for the tree lcp(T (Bn)) from Theo-
rem 1. The minimal DAG for lcp(T (Bn)) has has at least 2n − 1 nodes. Recall
that P (lcp(T (Bn))) = Vn = {0, 1}∗ \ Ln. Since Ln contains all word of length
at least 2n + 3, the path language Vn contains only words of length at most
2n+ 2. Thus, the depth of the tree lcp(T (Bn)) is at most 2n+ 2. With Lemma 7
it follows that the smallest TSLP for lcp(T (Bn)) has at least (2n − 1)/(2n+ 2)
variables. For DBTAs one can argue analogously using Theorem 2. ut

The upper bound Ω(2n/n) for NTTAs in Theorem 3 cannot be improved much:
As remarked before, if an NTTA B has n states then the tree lcp(T (B)) has at
most 2n nodes. By [4], lcp(T (B)) has a TSLP with O(2n/n) variables.

6 Checking Equality of Largest Common Prefixes

We now deal with the problem of checking whether to tree languages yield the
same lcp (or whether one lcp is contained in the other lcp). For DTTAs this is
possible in polynomial time, whereas the problem becomes coNP-complete for
DBTAs.

Theorem 4. The problem of checking P (lcp(T (B1))) ⊆ P (lcp(T (B2))) for two
given DTTAs B1 and B2 can be solved in polynomial time.

Proof. We compute the DFAs Bs
1 and Bs

2 from Section 3. Since B1 and B2 are
DTTAs, these DFAs can be computed in polynomial time. By Lemma 4 we have
P (lcp(T (B1))) ⊆ P (lcp(T (B2))) if and only if L(Bs

1) ⊆ L(Bs
2). The theorem

follows because inclusion of DFAs can be checked in polynomial time. ut

Theorem 5. The problem of checking P (lcp(T (B1))) ⊆ P (lcp(T (B2))) for two
given NTTAs B1 and B2 belongs to coNP.

11

q0,2

q0

q0,1 q1,1 q2,1 q3,1 q4,1

q1,2 q2,2 q3,2 q4,2

q1 q2 q3 q4 q5 qe qf

0,1 0 0 0

1 0 1 0,1

0,1 0,1 0,1 0,1 0,1 0,1 0,1

0

0

0,1

1 1

1

0
1

0 1

1

Fig. 4. The construction from the proof of Theorem 6 for the 3-SAT formula C =
C1 ∧ C2 with C1 = (¬x1 ∨ x2 ∨ ¬x3) and C2 = (x2 ∨ x3 ∨ x4) (so n = 4 and m = 2).

Proof. We show that there exists a nondeterministic polynomial time machine
that checks whether there exists u ∈ P (lcp(T (B1))) with u /∈ P (lcp(T (B2))).
W.l.o.g. we can assume that B1 and B2 are productive. Let m be the number
of states of B1. By Lemma 2 we know that P (lcp(T (B1))) only contains words
of length at most m − 1. Hence, we can nondeterministically guess a word u
of length at most m − 1 and then verify whether u ∈ P (lcp(T (B1))) and u /∈
P (lcp(T (B2))). For this we use the DFAs Bs

1 and Bs
2 from Lemma 3 and check

whether u ∈ L(Bs
1) and u /∈ L(Bs

2). For this, we do not have to construct the
DFAs Bs

1 and Bs
2 explicitly (they have exponential size); it suffices to run Bs

1

and Bs
2 on the fly on the word u (recall that u has polynomial length). ut

Theorem 6. The problem of checking lcp(T (B1)) = lcp(T (B2)) for two given
NTTAs B1 and B2 is coNP-complete. The coNP lower bound already holds for
the case that B1 and B2 are DBTAs.

Proof. Since coNP is closed under intersection, we obtain the upper bound from
Theorem 5. Let us now show coNP-hardness for DBTAs by a reduction from
the complement of 3-SAT. Consider a 3-SAT formula C =

∧m
i=1 Ci where every

Ci is a disjunction of three literals (possibly negated variables). Let x1, . . . , xn
be the variables that occur in C. W.l.o.g. we can assume that n ≥ m (we can
add dummy variables if necessary) and that there is no clause Ci and variable
xj such that xj and ¬xj both belong to Ci. Given a bit string w = a1a2 · · · an
with ai ∈ {0, 1} we write w |= Ci (resp., w |= C) if Ci (resp., C) becomes true
when every variable xi gets the truth value ai.

We first construct an (incomplete) acyclic DFA Ai for the language {w0 |
w ∈ {0, 1}n, w 6|= Ci}. The states of Ai are q0,i, q1,i, . . . , qn,i, qn+1,i, q0,i is the
initial state, qn+1,i is the final state, and the transitions are defined as follows,
where 1 ≤ j ≤ n:

– qj−1,i
0−→ qj,i if xj belongs to Ci,

12

– qj−1,i
1−→ qj,i if ¬xj belongs to Ci,

– qj−1,i
0,1−−→ qj,i if neither xj nor ¬xj belongs to Ci,

– qn,i
0−→ qn+1,i.

By taking the disjoint union of the DFAs Ai, we obtain an NFA A with

L(A) =

n⋃
i=1

L(Ai)

=

n⋃
i=1

{w0 | w ∈ {0, 1}n, w 6|= Ci}

= {w0 | w ∈ {0, 1}n, w 6|= C}.

Hence, we have L(A) = {0, 1}n0 if and only if C is not satisfiable. Note that the
initial states of A are the states q0,1, . . . , q0,m.

We finally construct a well-behaved NFA A1 from A as follows (an example
is shown in Figure 4):

– Merge the final states qn+1,i (1 ≤ i ≤ m) into a single non-final state qe.
– Add states q0, q1, . . . , qn+1, qf , where q0 is an initial state (hence, the initial

states of A1 are q0, q0,1, . . . , q0,m) and qf is the unique final state of A1.

– Add the transitions qj
0,1−−→ qj+1 for 0 ≤ j ≤ n, qn+1

0,1−−→ qe
0,1−−→ qf

0,1−−→ qf .
– If some state qj−1,i (1 ≤ i ≤ m, 1 ≤ j ≤ n) has no outgoing a-transition for
a ∈ {0, 1} (this happens if a = 0 and ¬xj belongs to Ci or a = 1 and xj
belongs to Ci) then add the transition qj−1,i

a−→ q0 to A1.
– For every 1 ≤ i ≤ m we add a 1-transition from qn,i to one of the states
q0, . . . , qn+1 in such a way that no two such 1-transitions enter the same
state. Since m ≤ n+ 2, this is possible.

The automaton A1 satisfies L(A1) = L(A){0, 1}{0, 1}∗ ∪ {0, 1}n+3{0, 1}∗ and is
is well-behaved. The transition function δ of A1 can be viewed as a mapping δ :
Q×{0, 1} → Q (nondeterminism only comes from the fact that there are several
initial states). Moreover, δ has the property that for all states p, q ∈ Q \ {qf},
if p 6= q then δ(p, 0)δ(p, 1) 6= δ(q, 0)δ(q, 1). Together with the fact that qe is the
unique final state of the NTTA At

1, this implies that At
1 is a DBTA.

It is straightforward to construct a well-behaved NFA A2 such that L(A2) =
{0, 1}n0{0, 1}{0, 1}∗ ∪ {0, 1}n+3{0, 1}∗ and At

2 is a DBTA (one can make the
above construction with an unsatisfiable 3-SAT formula). We get the following
equivalences:

C is unsatisfiable⇔ L(A) = {0, 1}n0

⇔ L(A1) = {0, 1}n0{0, 1}{0, 1}∗ ∪ {0, 1}n+3{0, 1}∗

⇔ L(A1) = L(A2)

⇔ {0, 1}∗ \ L(A1) = {0, 1}∗ \ L(A2)

⇔ P (lcp(T (At
1))) = P (lcp(T (At

2)))

⇔ lcp(T (At
1)) = lcp(T (At

2)).

This concludes the proof of the theorem. ut

13

References

1. C. Choffrut. Minimizing subsequential transducers: a survey. Theoretical Computer
Science, 292(1):131–143, 2003.

2. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, C. Löding, S. Ti-
son, and M. Tommasi. Tree automata techniques and applications. Available at:
http://tata.gforge.inria.fr/, 2007.

3. J. Engelfriet, S. Maneth, and H. Seidl. Deciding equivalence of top-down XML
transformations in polynomial time. Journal of Computer and System Sciences,
75(5):271–286, 2009.

4. M. Ganardi, D. Hucke, A. Jez, M. Lohrey, and E. Noeth. Constructing small tree
grammars and small circuits for formulas. Journal of Computer and System Sci-
ences, 86:136–158, 2017.

5. A. Lemay, S. Maneth, and J. Niehren. A learning algorithm for top-down XML
transformations. In Proceedings of PODS 2010, pages 285–296, ACM 2010.

6. M. Lohrey, S. Maneth, and M. Schmidt-Schauß. Parameter reduction and automata
evaluation for grammar-compressed trees. Journal of Computer and System Sci-
ences, 78(5):1651–1669, 2012.

7. M. Luttenberger, R. Palenta, and H. Seidl. Computing the longest common prefix of
a context-free language in polynomial time. In Proceedings of STACS 2018, volume
96 of LIPIcs, pages 48:1–48:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2018

8. M. Mohri. Minimization algorithms for sequential transducers. Theoretical Com-
puter Science, 234(1-2):177–201, 2000.

9. J. Oncina, P. Garćıa, and E. Vidal. Learning subsequential transducers for pat-
tern recognition interpretation tasks. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 15(5):448–458, 1993.

14

